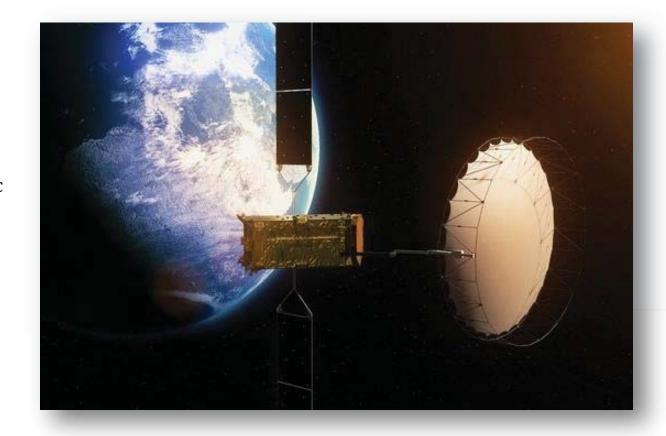


Design of a K/Q-band Beacon Receiver for the Alphasat Technology Demonstration Payload (TDP) #5 Experiment

Jacquelynne R. Morse NASA Glenn Research Center Cleveland, OH

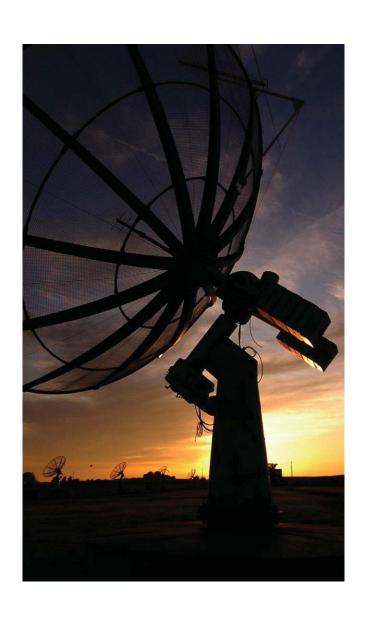
2014 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting

Session: 126: Atmospheric and Ionospheric


Propagation Characterization

Paper Number: 2331

July 6-11th, 2014 Memphis, TN



Keeping the universe connected.

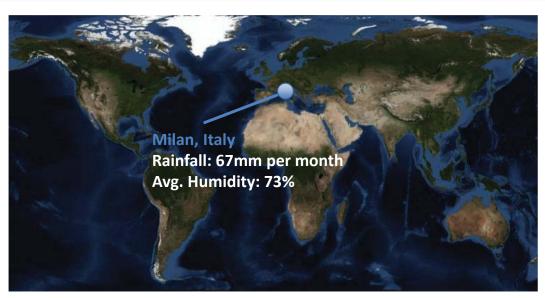
Presentation Overview

- 1. Technical Motivation
- 2. Site Information
- 3. Receiver Design
- 4. Receiver Performance
- 5. Measurement Resolution
- 6. Initial Results
- 7. Conclusions & Future Work

Technical Motivation

Propagation studies at a given site are valuable in designing efficient, cost effective ground stations without sacrificing performance or availability. [1]

Original Signal Power **Troposphere** (7km - 20km)Clouds **Atmospheric** Gases Rain Attenuated Signal Power

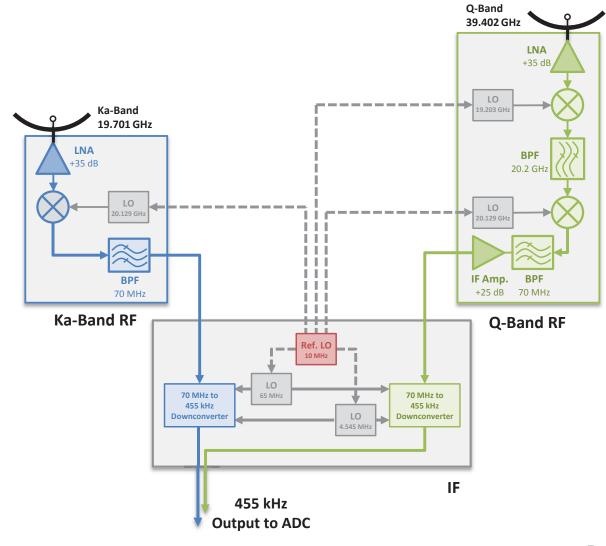

Beacon Receiver

Attenuation measurements characterize the attenuation of a link due to rain, clouds, and gases in the troposphere. The total attenuation can be measured on the ground via a beacon receiver.

The beacon transmits a signal, and the power is measured on the ground. This power measurement will fluctuate with atmospheric conditions, yielding a characterization of the total atmospheric attenuation.

Site Information

		Milan, Italy
Site	Installation Date	April 2014
	Latitude	45.4787° N
	Longitude	9.2327° E
	Altitude	121 m
Satellite	Name	Alphasat
	Elevation	48.6°
	Azimuth	170.2°
	Beacon Freqs.	19.701 GHz 39.402 GHz


This work was performed as part of the development of a beacon receiver terminal deployed to **Milan**, Italy in collaboration with the Politecnico di Milano.

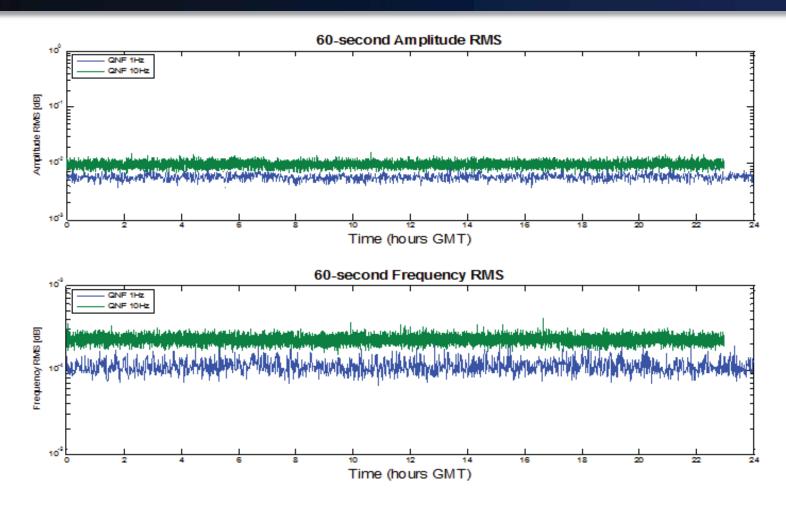
Receiver Design

System Specifications				
Downconversion (Ka)	3-step down to 455 kHz			
Downconversion (Q)	4-step down to 455 kHz			
Sampling Rate	1.111 MHz			
Number of Points	2 ¹⁷			
Integration Time	125 ms			
Time Series Output Rate	8 Hz			
Dynamic Range	35 dB			

Receiver Performance

Laboratory Performance

System Performance			
	Ka	Q	
System Temperature	504K	720K	
Dynamic Range at 1 Hz	58dB	58dB	
Dynamic Range at 8 Hz	48dB	48dB	


Actual Performance

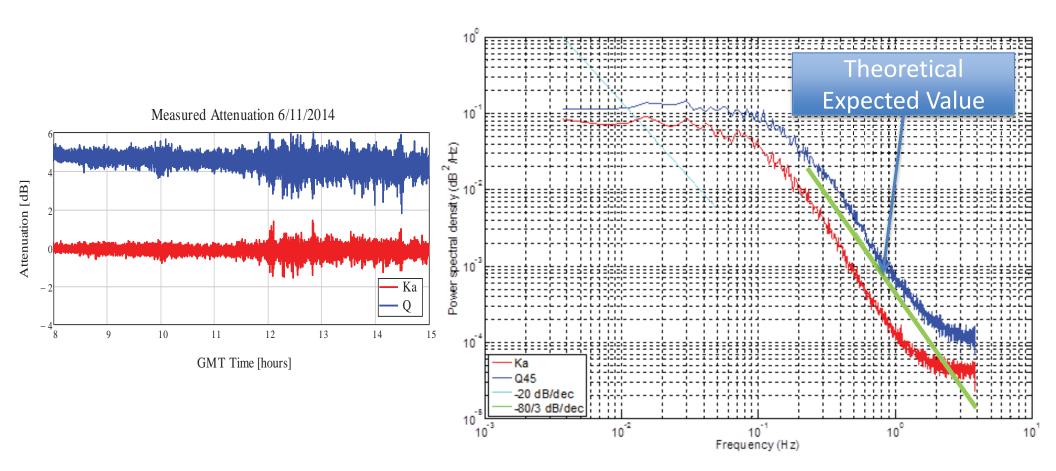
System Performance			
	Ka	Q	
System Temperature	504K	720K	
Dynamic Range at 1 Hz	40dB	40dB	
Dynamic Range at 8 Hz	37dB	37dB	

In laboratory testing the system achieved a dynamic range of 58/48dB for the 1Hz and 8Hz measurements. This was based on the link budget calculations that estimated the power at the flange to be ~-115dB. The actual power is lower than expected reducing the dynamic range, additionally the phase stability of the satellite is worse than expected. The phase instability made the 1Hz measurements noisy due to the long integration time. The 1Hz measurements are now made by averaging the 8Hz measurements over the 1Hz integration time further reducing the dynamic range.

Measurement Resolution

The above figure shows the system performance in clear sky conditions. The measurement resolution of the system during this condition is .009dB root-mean-square (RMS) at 10Hz and .005dB RMS at 1Hz

Initial Results - Rain Event



Data collection officially began 6/1/2014. It is too soon for full statistical analysis but several major rain events have been recorded by the system. During a deep fade event the rain slope corresponds very well with theory at the low frequencies.

Initial Results – Clear Sky

During a events such as atmospheric heating the scintillation slope corresponds very well with theory at the high frequencies.

Conclusions/Future Work

The AlphaSat terminal was installed in Milan Italy in April of 2014 with the official data collection starting on June 1st, 2014. The goals of the campaign will be to study the atmospheric effects at Ka/Q band and to investigate site diversity at these frequencies using a second terminal located in Spino d'Adda, Italy approximately 30km away.

Current Plans:

- Continued Data Collection
 - ≥ 5 years per site

Long-Term Goals:

- Adaptive Compensation Techniques
- New Frequency Bands
 - *Q/V/W Band*
- Additional Sites

References

- [1] A.R. Thompson, J.M. Moran, and G.W. Swenson, Interferometry and Synthesis in Radio Astronomy, Second Edition, John Wiley & Sons, 2001.
- [2] D. H. Rogstad, A. Mileant, and T. T. Pham, Antenna Arraying Techniques in the Deep Space Network. Pasadena, CA, Hoboken, NJ: Wiley, 2003.
- [3] J. A. Nessel and R. J. Acosta, "Predicting Sparse Array Performance From Two-Element Interferometer Data," IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 886-894, Feb. 2012.
- [4] R. J. Acosta, et al., "Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA," in 17th Ka and Broadband Communications Conference, Palermo, Italy, 2011.
- [5] "The Proposer's Guide for the Green Bank Telescope," National Radio Astronomy Observatory, 2013.
- [6] C. Salter, "An Astronomer's Guide to the Arecibo 305m Telescope," National Astronomy and Ionosphere Center, 2012.
- [7] J.-R. Cook, "Historic Deep Space Network Antenna Starts Major Surgery," Jet Propulsion Laboratory Press Release, 2010.
- [8] R. K. Crane, "Propagation Phenomena Affecting Satellite Communication System Operating in the Centimeter and Millimeter Wavelength Bands," Proc. IEEE, vol. 59, no. 2, pp. 173-188, Feb. 1971.
- [9] P. Hariharan, Basics of Interferometry, 2nd ed. Burlington, MA: Elsevier, 2007.
- [10] R. J. Acosta, B. D. Frantz, J. A. Nessel, and D. D. Morabito, "Goldstone Site Test Interferometer," in 13th Ka and Broadband Communications Conference, Turin, Italy, 2007.

- [11] R. J. Acosta, M. J. Zemba, J. R. Morse, and J. A. Nessel, "Two Years of Simultaneous Ka-Band Measurements: Goldstone, CA; White Sands, NM; and Guam, USA," in 18th Ka and Broadband Communications Conference, Ottawa, Canada, 2012.
- [12] R. J. Acosta, J. R. Morse, M. J. Zemba, and J. A. Nessel, "Two Years of Site Diversity Measurements in Guam," in 18th Ka and Broadband Communications Conference, Ottawa, Canada, 2012.
- [13] R. J. Acosta, J. A. Nessel, and D. D. Morabito, "Data Processing for Atmospheric Phase Interferometers," in 14th Ka and Broadband Communications Conference, Matera, Italy, 2008.
- [14] C. Peat. (2013, Aug.) Heavens Above ANIK F2 Orbit. http://www.heavens-above.com/orbit.aspx?satid=28378&lat=0&lng=0&loc=Unspecified&alt=0&tz=CET
- [15] Mathworks. (2013, Aug.) MATLAB Polynomial Curve Fitting. http://www.mathworks.com/help/matlab/ref/polyfit.html
- [16] A. Kolmogorov, "The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers," Proc. USSR Academy of Sciences, vol. 30, pp. 229-303, 1941.
- [17] G. I. Taylor, "The Spectrum of Turbulence," Proc. Roy. Soc. Lond. A, vol. 164, no. 919, pp. 476-490, 1938.
- [18] S. Radford and M. A. Holdaway, "Atmospheric Conditions at a site for submillimeter Wavelength Astronomy," Proc. SPIE, vol. 3357, 1998.
- [19] F. Davarian, "Uplink Arrays for the Deep Space Network," Proc. IEEE, vol. 95, no. 10, pp. 1923-1930, Oct. 2007.
- [20] B. J. Butler and S. J. E. Radford, "Atmospheric Phase Stability at Chajnantor and Pampa la Bola," NRAO ALMA Memo. No. 365, 2001.
- [21] R. E. Hills, R. J. Kurz, and A. B. Peck, "ALMA: Status Report on Construction and Early Results from Commissioning," Joint ALMA Observatory, 2012.