🚳 https://ntrs.nasa.gov/sea

R=20150000749 2019-08-31T14:33:40+00:00Z

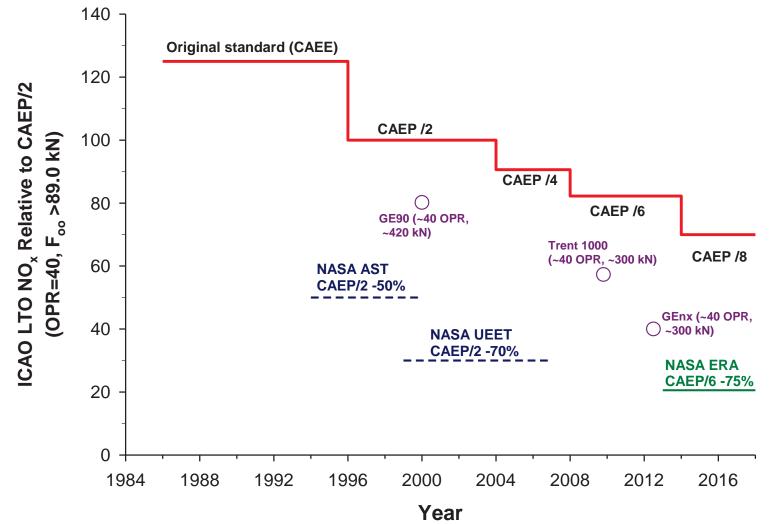
An Overview of Low-Emissions Combustic

NASA Glenn Research Center

Dr. Rubén Del Rosario Manager, Fixed Wing Project

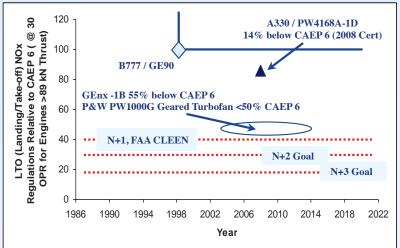
CAEP Review of Advanced Aero-Engine Combustor Design Munich, DE October 2, 2014

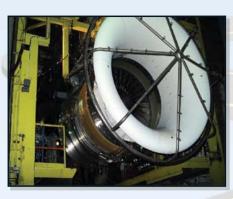
brought to you by TCORE


Cornerstones of NASA Combustion Research

- 1. Combustor concept development
- 2. Enabling technology research
- 3. Understanding of emissions
- 4. Challenges of NASA Goals and Metric
- 5. Cooperative research

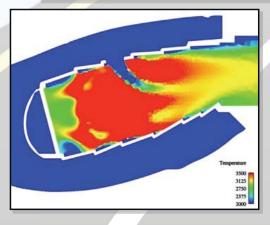
NASA Research Leads Product by ~15 Years




~50% NOx Reduction every 15 yrs

Courtesy of Changlie Wey

Technology for Advanced Low NOx (TALON) Combustor ~ 50% reduction in Nitrogen Oxide emissions

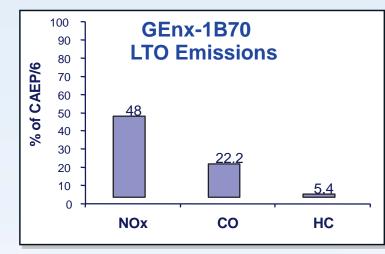


In service on Airbus A330

Systems Assessment: 1999-2008

- PW4178 Talon II development engine test with NASA PAGEMS particulates van on-site – 1999
- PW 4168 Talon II Engine Certification in ground engine test stand – 2000. EIS in 2001
- PW 4168 Talon IIB Engine Certification in ground engine test stand – 2008. EIS in 2009

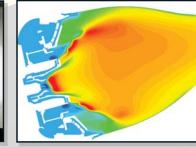
Fundamental Research: 1995-2010


Development of Rich Quick-Quench Lean Burning TALON Proof of Concept Sector Demonstration Rig

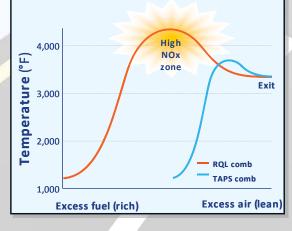
Seedling Idea: mid 1990's

Basic Computational and experimental research to develop a fundamental understanding of Rich Quick-Quench Lean Burning Technology

Twin Annular Premixing Swirler (TAPS) Combustor ~ 50% reduction in Nitrogen Oxide emissions

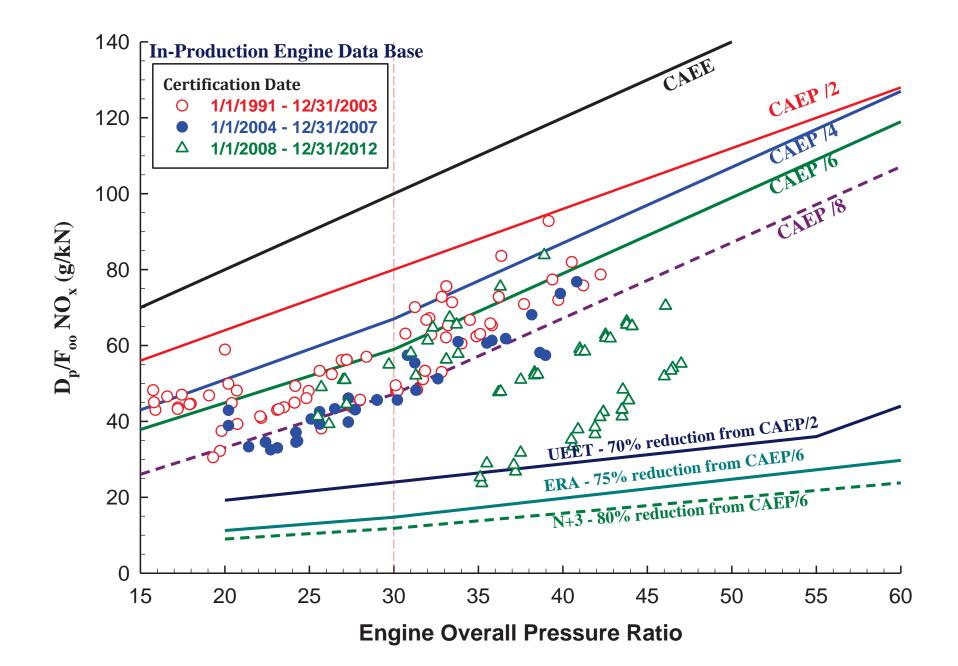

In service in 2011

Systems Assessment: 2005-2009 GEnx Engine Certification in ground engine test stands


Component Test

Fundamental Research: 1998-2003

Development of Lean Burning TAPS Proof of Concept Sector test at NASA and GE, CFM56 full annular rig and engine demonstration



Seedling Idea: 1995

Basic Computational and experimental research to develop fundamental understanding of Lean Burning Technology

Emission Levels of Recently Certified Engines

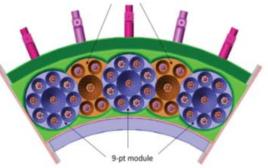
NASA

Strategic Thrusts				v2013.1	
1. Energy Efficiency 2. Environmental Compatibility	TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)			
		N+1 (2015)	N+2 (2020**)	N+3 (2025)	
	Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-52 dB	
	LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%	
	Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%	
	Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%	
	* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines ** ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015				

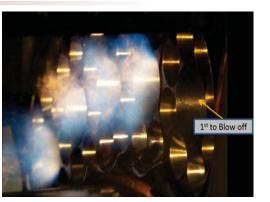
** ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015
 CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel and/or energy source used

Research addressing revolutionary far-term goals with opportunities for near-term impact

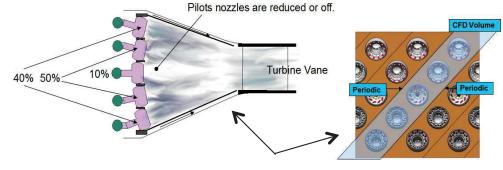
Lean Direct Injector (LDI) Design



Objective


Design, fabricate and test in real engine operating conditions innovative injector concepts that meets N+2 goals.

Accomplishments


- All concepts designed for high OPR (50-70) engine cycles to meet N+2 emissions goals
- All injectors designed for alternative fuels flexibility (Up to 85% alt fuel blend)
- Goodrich, Woodward, and Parker downselected most promising LDI concept
- All LDI injectors successfully completed lean blow-off testing
- Testing of the three concepts in NASA's high pressure facility (CE-5) were completed and emissions reduction goals met. Results presented at AIAA 2014 Joint Propulsion Conference.

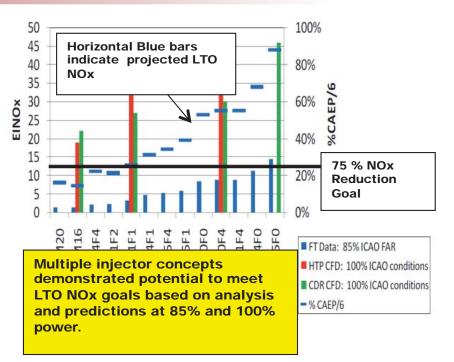
Woodward: 5-cup arcsector concept

Woodward: Lean-blowout testing

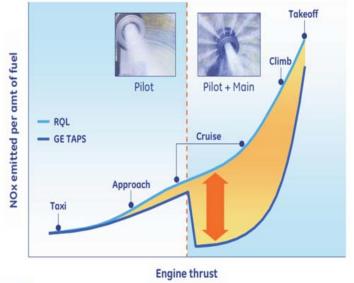
GOODRICH LDI concept

Parker Hannifin: 3-cup arc installation concept

Low NOx, Fuel Flexible Combustor (N+2, ERA) General Electric Phase 1


Objective

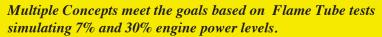
 Reduce LTO NOx 75% from CAEP6, while achieving a 50% reduction in fuel burn for the integrated engine/ vehicle.

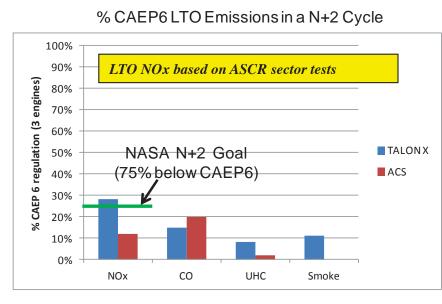

Results and Significance

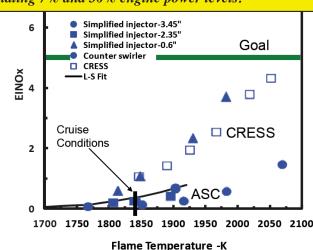
- Designed and evaluated 13 multiple fuel injector and mixing concepts
- Predicts by CFC that 4 of these configurations could meet the 75% NOx reduction goal
- Demonstrated successful open-loop and closed-loop control of a combustion instability using pilot fuel and an auxiliary fuel injector
- Down-selected one concept for 5-cup sector rig with a CMC liner test at the NASA Advanced Subsonic Combustor Rig.
 - Lower power and cruise NOx levels low as predicted
 - ✓ NASA and GE Independent analysis indicates performance better than 75% reduction below CAEP/6 standards

NOx flight cycle comparison (GE TAPS vs. RQL combustor)

ASCR Sector Rig test results indicated approximately -88% LTO NOx reduction achieved

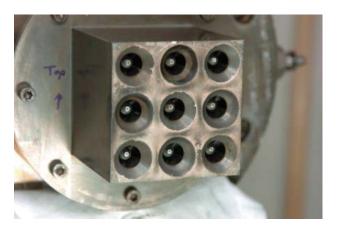

Low NOx, Fuel Flexible Combustor (N+2, ERA) Pratt and Whitney Phase 1

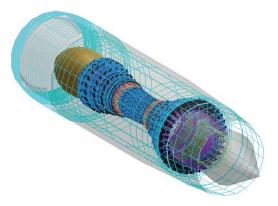

Objective


Reduce LTO NOx 75% from CAEP6, while achieving a 50% reduction in fuel burn for the integrated engine/ vehicle.

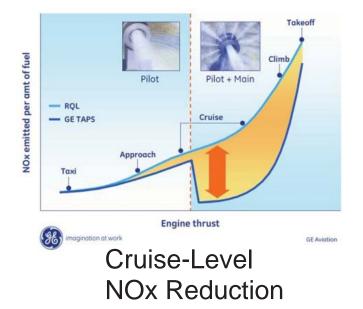
Results and Significance

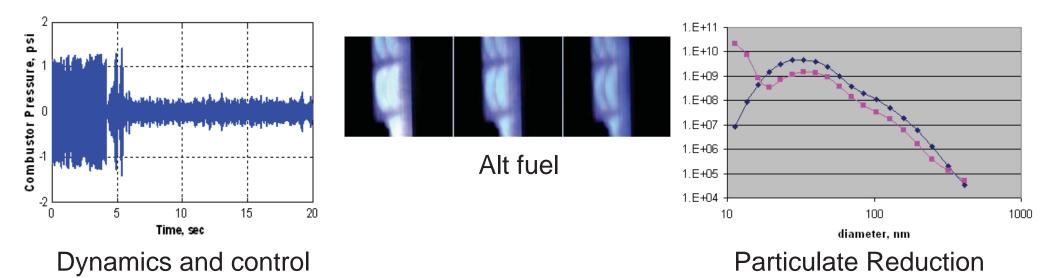
- Designed and evaluated multiple fuel injector and mixing concepts in flame tube environment
- Down-selected one concept for a 3-cup sector rig test test at the NASA Advanced Subsonic Combustor Rig.
- Tested combustor in ASCR at the LTO NOx conditions as well as cruise condition. (Sept 2012)
- ASCR Sector Rig test results indicated approximately ٠ -88% LTO NOx reduction to CAEP 6 and Cruise NOx with margin to 5 El Nox
- NOx correlation Equation for lean burn and alt fuels testing • completed March 2014.





Future Direction





High-pressure Multi-point LDI

Smaller High Pressure Engine Cores

Low NOx Combustor for High OPR Compact Cores

<u>Objective</u>

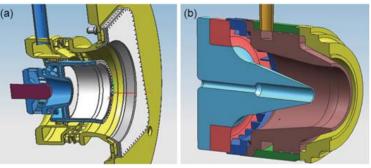
Reduce NOx emissions from fuel-flexible combustors to 80% below the CAEP6 standard

Develop design criteria for alternative fuels use in a small core engine to meet high OPR (50+) conditions

Technical Areas and Approaches

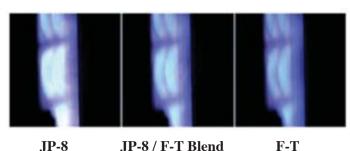
Axially Controlled Stoichiometry (ACS) Concepts

 Small core scaling, fuel injection and thermal growth management techniques

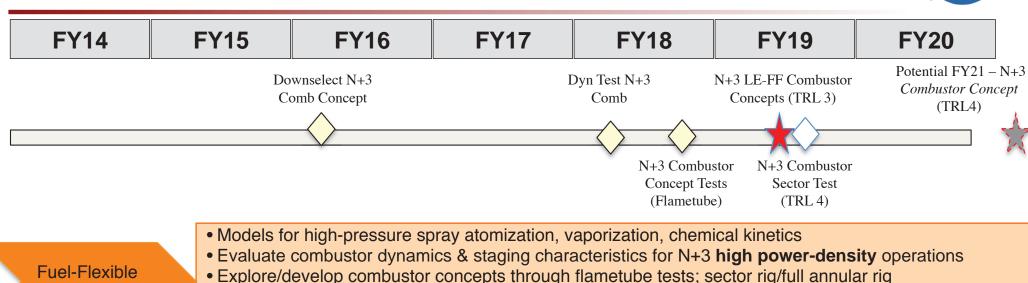

Alternative Fuels Flexibility

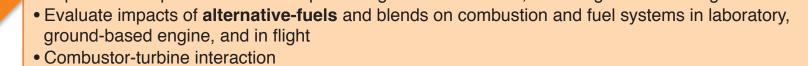
 Autoignition, compatibility and blending, and combustion dynamics and stability

Benefit/Pay-off


- Achievement of N+3 emission goals for landing LTO conditions including a 80% reduction in NOx emissions lower than CAEP-6 standards for high OPR (50+) for future single-aisle transport aircraft.
- Reduction of particulate formation at LTO conditions
- Compatible for gas-only and hybrid gas-electric architectures and ducted/unducted propulsors
- Compatible with alternative fuel blends
- Reduction of combustion dynamics and instability with alternative fuels

Smith et al., ASME Paper No. GT2012-69078


PLIF



Low NOx Combustor for High OPR Compact Cores

Combustor • Explore/develop combustor concepts

High Altitude • Combus

Combustor system dynamics mitigation technology

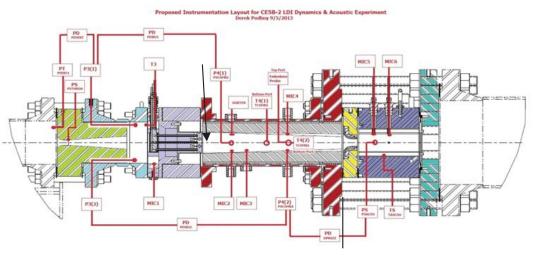
Fundamental Understanding

- High temperature CMC liner suitable for 3000F flame temperature
- High-pressure spray validation data, identify lean direct injection fundamentals, closed-loop active combustor control strategy
- Improved understanding and modeling of combustion flow physics, including multi-species mixing/dynamics
- Active combustion control components (minature high-freq valves, hi-Temp sensors, CNTL method)

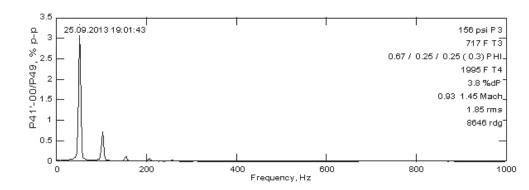
Other Research Theme Investments • Understanding combustor-turbine interaction and noise physics

Combustion Dynamics Test Rig

Objective


Study combustion dynamics of a typical lean combustion system to improve understanding and provide data for combustion dynamics models.

Approach


A test rig based on a baseline Lean Direct Injection low-emissions concept has been developed. The rig allows spatial variation in fuel placement with welldefined upstream and downstream boundary conditions.

Results and Significance

- Rig shakedown and initial data tests conducted. Several operating points where combustion dynamics was important identified.
- Test rig supports NASA investigation into combustion dynamics in lean combustion concepts.
- Data of this nature at appropriate gas turbine conditions is not available and will be required for the development of low NOx combustion systems to meet N+3 NOx emissions goals.

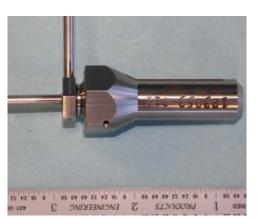
Test Rig Schematic

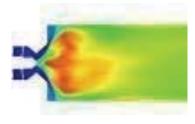
Unsteady pressure data indicating pressure oscillations at several frequencies for a specific operating condition

Fundamental Understanding Efforts

Goal

 Provide improved computational tools and critical technologies to enable combustor concepts that meet NASA fuel burn and emissions goals for future aircraft engines.


Develop and validate physics-based combustion models, perform


fundamental experiments and investigate new combustor technologies

Approach

- Develop and validate <u>physics-based combustion models</u> for CFD.
 Develop capability for tightly coupled combustor-turbine simulations
- Perform <u>experiments</u> to provide high-quality <u>CFD validation data</u> at relevant combustor conditions (fuel, pressure, temperature)
- Perform <u>experiments</u> with detailed diagnostics to provide a <u>fundamental understanding</u> of low-emission systems
- Develop and test <u>critical combustion control technologies</u> (passive and active) for future lean burn combustors
- Explore <u>innovative combustor technologies</u> (such as Pressure Gain Combustion)

Alternative Fuel Emissions at Cruise

Objectives

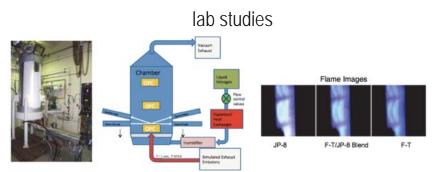
Explore the potential of alternative fuels to reduce the impact of aviation on air quality and climate, and their impact on performance

Technical Areas & Approaches

Emission & Performance Characterization

- Flight tests
- Ground tests
- Laboratory tests

Benefit/Pay-off


- Will dramatically reduce the impact of aviation on the environment (gaseous, particulates, and contrails)
- Will support standard-setting organizations by providing important and timely data

EmiSSions (ACCESS)

leverage ground tests from prior years

Alternative Fuel Emissions Research

Sample fleet emissions at airports and in the NAS at cruise

Examine fuel effects on contrail formation in altitude test cell

ACCESS part of Multi-Tiered Effort to Assess Alt Fuel Performance and Environmental Benefits

Perform detailed ground emissions tests with partners

Assess emissions from a broad range of fuels using APU

Alternative Aviation Fuel Emissions Research

- Laboratory tests to determine alternative fuel combustion and emissions characteristics
 - High-pressure flame-tube experiments on LDI fuel injectors—ongoing
 - High-pressure tests on GE & PW sector rig combustors—2013
- Ground-based engine tests to evaluate alternative fuel effects on emissions under real-world conditions
 - o PW308-March 2008
 - o AAFEX-I—January 2009
 - o AAFEX-II-March 2011

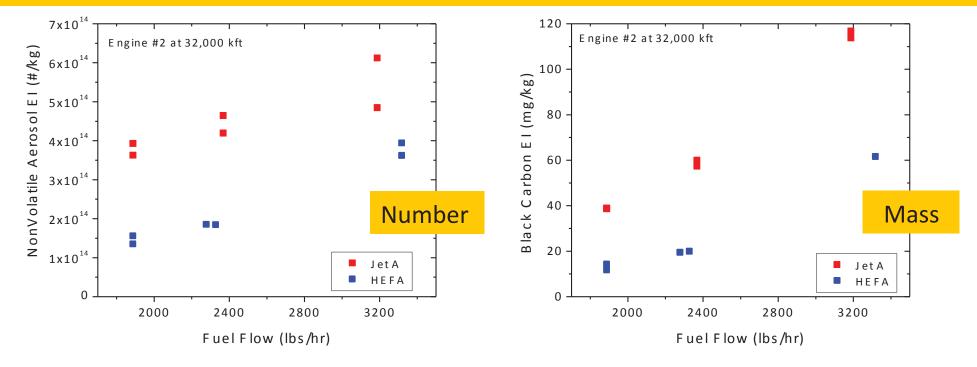
LaRC, GRC, AFRC, EPA, AFRL, FAA, SAE, Boeing, GE

- Altitude chamber tests to examine PM effects on contrail formation
 - SE-11 facility at GRC: 2010-2012

GRC, LaRC, FAA ACCRI, SBIR

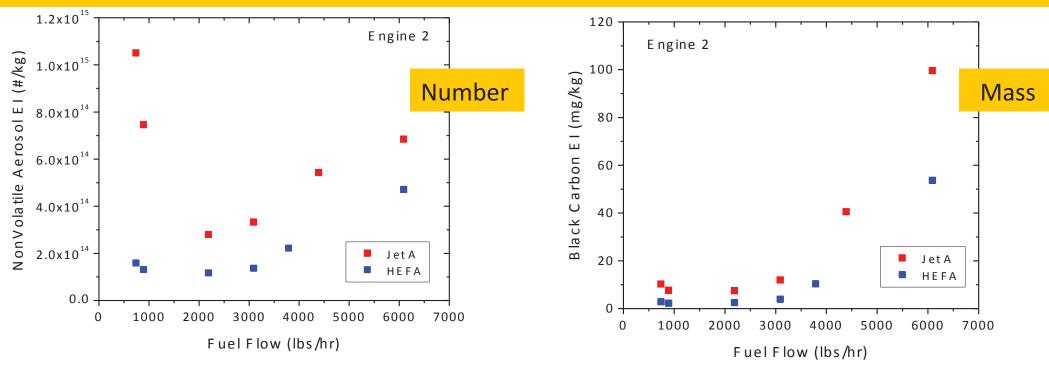
- o APU/SE-11 facility at GRC: 2014-2016
- Airborne experiments to evaluate fuel effects on emissions and contrail formation at cruise
 - o ACCESS-I: Feb-April, 2013
 - OACCESS-II: May, 2014LaRC, GRC, AFRC, DLR, NRC, JAXA, FAA, Boeing, GE

ACCESS: Multi-Platform, Multi-Fuels Sampling



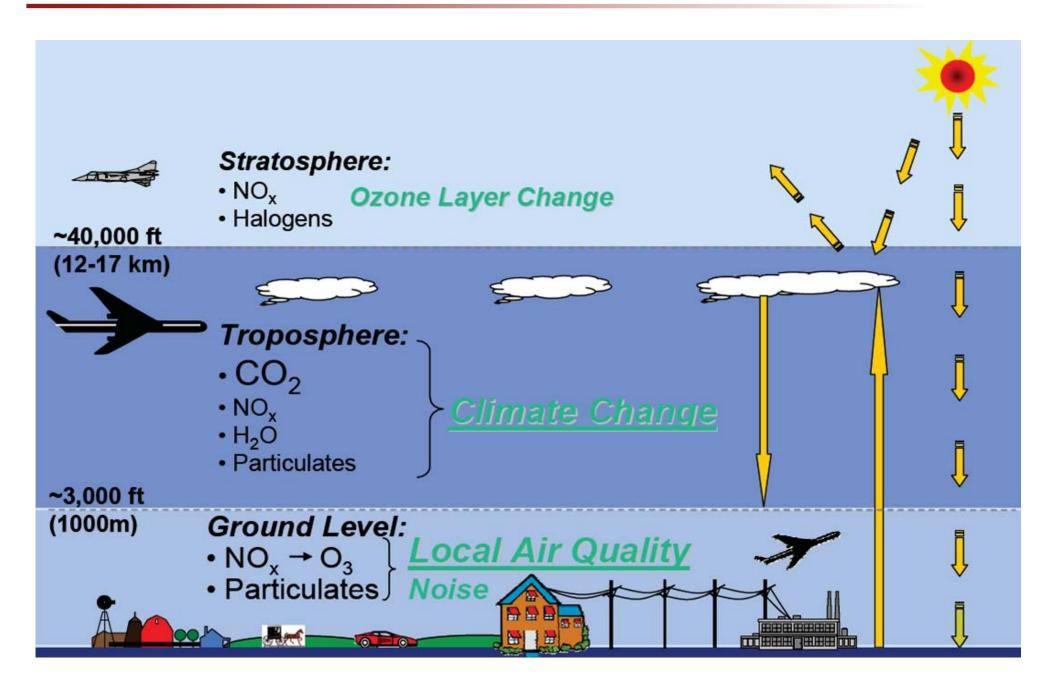
Test	JP-8	JP-8 Hi S	Blend
Sulfur (ppm)	<10 ppm	1000 ppm	<5 ppm
Aromatics (%vol)	18	18	9
Density (kg/L)	0.81	0.81	0.79
End Point (degC)	275	275	279

Preliminary Results from ACCESS II Flight Campaign


HEFA Blend Reduces Black Carbon Number and Mass Emissions by 30 to 60% at Cruise

Preliminary Results from ACCESS II Ground Emissions Test

HEFA Blend Reduces Black Carbon Number and Mass Emissions by 30 to 80% during Ground Ops



- Rich NASA history in research leading to reduction of LTO NOx emissions
- Strong collaborative efforts with Industry, Academia and Other Government Organization.
- Current research portfolio targeting future generations of commercial transport with goals of reduction of NOx of up to more than 80% below CAEP 6
- Efforts in developing advanced prediction, modeling and simulations tools
- Efforts in understanding the effect on using alternative fuels for aviation and characterizing emissions through ground and flight testing

Impact of Aviation on The Environment

