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Abstract

We demonstrate the power of adaptive mesh refinement with adjoint-
based error estimates in verification of simulations governed by the steady
Euler equations. The flow equations are discretized using a finite vol-
ume scheme on a Cartesian mesh with cut cells at the wall boundaries.
The discretization error in selected simulation outputs is estimated us-
ing the method of adjoint-weighted residuals. Practical aspects of the
implementation are emphasized, particularly in the formulation of the
refinement criterion and the mesh adaptation strategy. Following a thor-
ough code verification example, we demonstrate simulation verification
of two- and three-dimensional problems. These involve an airfoil perfor-
mance database, a pressure signature of a body in supersonic flow and
a launch abort with strong jet interactions. The results show reliable
estimates and automatic control of discretization error in all simulations
at an affordable computational cost. Moreover, the approach remains ef-
fective even when theoretical assumptions, e.g., steady-state and solution
smoothness, are relaxed.
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Nomenclature

A Face area
C Constant used in estimating discretization error, C = 2 or 4

3
d Distance vector from cell centroid to face centroid
E Discretization error
E Total energy per unit mass
e Discretization error with respect to a uniformly refined mesh
F Inviscid flux tensor
G Numerical flux function
J Scalar functional or output, e.g., lift coefficient
n̂ Outward pointing unit normal
N Number of cells
P Prolongation operator or matrix
p Pressure
Q Flow solution vector of conservative variables [ρ, ρu, ρv, ρw, ρE]T

R Vector of residuals
t Time
U Flow solution vector of primitive variables [ρ, u, v, w, p]T

u, v, w Cartesian components of velocity
V Volume

Greek letters
η Error indicator
ρ Density
ψ Adjoint vector

Superscripts
a Adjoint
H Data reconstruction from mesh with characteristic cell-size H

Subscripts
H Discretization on mesh with characteristic cell-size H
h Discretization on mesh with characteristic cell-size h = 1

2H
c Adjoint correction
L Linear interpolant
TL Trilinear interpolant
TQ Triquadratic interpolant
w Wall
∞ Freestream
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There is no doubt that mesh adaptation can lead to
significant improvement in solution accuracy. . . .What
remains in doubt is whether the current methods of mesh
adaptation can be brought to a sufficient level of reliability
and robustness for routine use as a predictive tool.

T. Baker, 1997 [1]

1 Introduction

Despite significant progress in solution-adaptive mesh refinement [1, 2, 3,
4, 5], verification of flow simulations remains largely a manual procedure
that requires expert guidance [6, 7, 8]. Most of the time is consumed by
crafting a computational mesh, checking the results and refining the mesh
to assess and control discretization errora. As the number and complexity
of simulations increase (for example consider flight vehicle performance
databases involving 103–105 cases), manual simulation verification be-
comes impractical. Instead, simulations are verified for only a subset of
cases and involve “best-practice” guidelines, which do not guarantee that
the results comply with the expected standards of accuracy [9, 10].

The numerical accuracy of flow simulations depends inextricably on
discretization error. In other words, numerical inaccuracy is a conse-
quence of the mesh. Establishing credibility for complex simulations,
therefore, requires that mesh generation and error estimation be inte-
gral parts of each simulation. As the mesh and flow solution evolve, a
systematic reduction in the discretization error is achieved through use
of error estimates derived from the flow solution on the current mesh.
The benefit is a straightforward quantitative assessment of convergence
because a mesh refinement study is intrinsic to every case.

The goal of most engineering simulations is to predict a handful of
outputs, for example aerodynamic forces and moments. In such goal-
oriented simulations, it is most efficient to focus on discretization error
directly affecting the outputs of interest. For example, even the simple
problem of predicting the span efficiency factor of an isolated wing in
subsonic inviscid flow becomes prohibitively expensive if the mesh is
refined to follow the tip vortex far downstream. As the influence of the
vortex on span efficiency decreases with downstream distance, so should
the cell refinement. Experience with error estimates that do not target
outputs, in particular direct residual or truncation-error estimates, indeed
shows that the adapted meshes are frequently inferior to those crafted
by experts who understand the goals of the simulation.

Remarkably, a relatively straightforward modification to residual er-
ror estimates allows the prediction of error in outputs: the cell-wise

aThe subject of validation (modeling error) is not considered and in our experience,
discretization errors dominate other aspects of simulation verification such as iterative
convergence.
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residuals are weighted by their influence on the output. This is the idea
behind the method of adjoint-weighted residuals, where the weights are
obtained from the solution of an adjoint equation. The result is not only
an estimate of error in the outputs due to discretization (for example the
error in lift), but also a cell-wise error indicator to guide mesh refinement.
The adjoint-weighted approach was first developed within the framework
of the finite element method [11, 12] and extended to finite volume meth-
ods by Giles and Pierce [13], Barth [14], and Venditti and Darmofal [15].
The approach has been steadily refined to improve its accuracy and ef-
ficiency [16, 17, 18, 19, 20, 21, 22], and has been used successfully to
establish the credibility of goal-oriented simulations [23, 24, 25, 26, 27].

The routine use of adjoint-based error estimates for automatic sim-
ulation verification, however, is predicated on robust mesh generation.
This is because failures in mesh generation often require expert interven-
tion to resolve. If a typical simulation requires five to ten adaptation
cycles to attain sufficient output accuracy, then the construction of an
aerodynamic performance database for a moderate range of operating
conditions may invoke the mesh generator ten thousand times. Therefore,
the mesh generator must be fast and failsafe for automatic verification to
be viable in an engineering environment. One such robust approach is the
embedded-boundary (cut-cell) method, where the mesh is constructed
by embedding the geometry in a regular lattice of hexahedral (Cartesian)
or tetrahedral elements [28, 29, 30, 31, 23, 32, 33].

The purpose of this paper is to demonstrate that the combination
of adjoint-based error estimates with a Cartesian cut-cell method is a
practical approach for automatic verification of steady, goal-oriented sim-
ulations. The paper covers the development and implementation of a
simulation verification framework previously described in [34, 35, 36] with
additional details and improvements. The framework uses the approach
of Venditti and Darmofal [15] to formulate reliable error estimates and the
approach of Aftosmis and Berger [37] for incremental refinement of nested
Cartesian cut-cell meshes. The framework emphasizes robustness and
efficiency, in terms of both execution speed and memory requirements, be-
cause both are central considerations in engineering and decision-making.

We begin with a brief review of discretization error in Sec. 2. An
estimate of the error in user-selected outputs is expressed in terms of
adjoint-weighted residuals using the algebraic formulation of [15]. Sec-
tion 3 presents the salient features of the flow solver, the formulation of
the discrete adjoint equation and the implementation of the adjoint solver.
Section 4 explains the details of the error estimation procedure and the
formulation of a robust refinement criterion. The simulation verification
framework is presented in Sec. 5, including a discussion of the adapta-
tion mechanics, error control and practical aspects of the implementation.
The results are organized in two parts. Section 6 presents a code veri-
fication example that establishes the accuracy of the error estimate for
guiding mesh refinement. Section 7 demonstrates examples of automatic
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simulation verification on a sequence of three problems of increasing diffi-
culty. Additional examples of simulation verification through use of this
framework can be found in [38, 39, 40, 41, 42, 43, 44, 45].

2 Error Estimates

2.1 Discretization Error

Number of Cells
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Figure 1. Example of a uniform mesh
refinement study showing the defini-
tion of discretization error, E , and the
error relative to the next mesh, e.

Our goal is to compute a reliable
approximation of a scalar output
functional J(Q), for example lift
or drag, derived from a flow so-
lution Q that satisfies the flow
equations

R(Q) = 0 (1)

such as the Euler or Navier–
Stokes equations. To compute
a discrete approximation of the
functional JH(QH), the domain
is tessellated into N control vol-
umes with characteristic cell-size
H, which we call the “working”
mesh. The flow equations are dis-
cretized and solved to satisfy a
system of modified partial differential equations

RH(QH) = 0 (2)

where QH = [Q1,Q2, . . . ,QN ]T is the discrete flow solution vector, e.g.,
an algebraic vector of cell-average values, and the discrete operator RH

represents the residual vector. Similarly, JH represents the discrete oper-
ator used to evaluate scalar functionals, e.g., the integration of pressure
to obtain lift given the flow solution on the working mesh QH .

The error in the functional due to discretization is

E = |J(Q)− JH(QH)| (3)

This is illustrated in Fig. 1, which shows a notional mesh refinement study
on a sequence of nested, uniformly refined meshes. We assume that er-
rors not related to H, such as distance to farfield, are negligible. If the
discretization is consistent, then the approximation JH(QH) converges
to the exact solution J(Q) as the number of cells in the computational
domain is increased and the characteristic cell-size H shrinks. In prac-
tice, direct computation of the discretization error is difficult because it
involves the analytic partial differential equations, Eq. 1.
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An alternate approach is to compute the error relative to the func-
tional on the next nested mesh

e = |Jh(Qh)− JH(QH)| (4)

as shown in Fig. 1. We refer to the next uniformly refined mesh as
the “embedded” mesh with characteristic cell-size h. Assuming that
the problem is smooth, the discretization error E can be expressed as a
geometric series in e. For example, the error expression for a functional
with second-order convergence is

E =

∞∑
i=0

1

4i
e =

4

3
e (5)

and E = 2e for first-order functionalsb. This trades the need for the exact
solution J(Q) for the requirement that the functional be in the asymptotic
range with a known convergence rate. Put another way, the starting mesh
should be sufficiently fine. The key step becomes approximating Jh(Qh)
without solving on the embedded mesh.

2.2 Method of Adjoint-Weighted Residuals

To derive a reliable approximation of the functional Jh(Qh), consider its
truncated Taylor series expansion about the working-mesh solution

Jh(Qh) ≈ Jh(Q
H
h ) +

∂Jh(Q
H
h )

∂Qh

(
Qh −QH

h

)
(6)

The algebraic vector QH
h denotes a reconstruction of the flow solution

from the working mesh to the embedded mesh via a prolongation operator,
QH

h = PQH . The term Jh(Q
H
h ) is the evaluation of the functional

using the reconstructed flow solution on the embedded mesh, e.g., lift
computation using the reconstructed state and finer boundary resolution.
This is usually straightforward. The challenge is the explicit dependence
on Qh in the inner-product term of Eq. 6.

To eliminate Qh, expand the residual equation to obtain

Rh(Qh) = 0 ≈ Rh(Q
H
h ) +

∂Rh(Q
H
h )

∂Qh

(
Qh −QH

h

)
(7)

Note that Eqs. 6 and 7 are approximate. The derivation can be made ex-
act through use of the mean-value linearization; however, this only defers
the use of similar approximations to obtain computable error estimates.
Combining Eqs. 6 and 7 gives

Jh(Qh) ≈ Jh(Q
H
h )− ∂Jh(Q

H
h )

∂Qh

[
∂Rh(Q

H
h )

∂Qh

]−1

Rh(Q
H
h ) (8)

bThe sum of a geometric series 1+ r+ r2 + . . . is 1
1−r

if |r| < 1. The common ratio
r is 1/4 for second-order functionals and 1/2 for first-order functionals.
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which is independent of Qh. The adjoint equation is obtained from Eq. 8
by defining the following intermediate product

[
∂Rh(Q

H
h )

∂Qh

]T
ψh =

∂Jh(Q
H
h )

∂Qh

T

(9)

where the vector ψ denotes the adjoint variables. Rewriting Eq. 8 with
the adjoint variables

Jh(Qh) ≈ Jh(Q
H
h )− ψT

h Rh(Q
H
h ) (10)

reveals that the adjoints weight the residual errors to form a correction
term to approximate the functional on the embedded mesh. Substituting
Eq. 10 into Eq. 4, the error expression (Eq. 5) becomes

E ≈ C|Jh(QH
h )− ψT

h Rh(Q
H
h )− JH(QH)| (11)

where the constant C = 4
3 for second-order functionals and C = 2 for

first-order functionals.
While Eq. 11 is independent of Qh, it does require the solution of

the adjoint equation on the embedded mesh (ψh of Eq. 9). This is
impractical because a solution of the large, linear adjoint system can be
nearly as expensive as a nonlinear flow solution. Various strategies exist
to circumvent this difficulty. The initial step involves solving the adjoint
system on the working mesh

[
∂RH(QH)

∂QH

]T
ψH =

∂JH(QH)

∂QH

T

(12)

This solution is then prolonged to the embedded mesh to estimate ψh.
The estimate can be sharpened by additional (implementation specific)
procedures, such as relaxation. To explain the salient features of our
approach, we first introduce the governing equations and the numerical
method, and then return to evaluation of Eq. 11 in Sec. 4.

3 Governing Equations and Numerical Method

3.1 Flow Equations

We solve the three-dimensional Euler equations governing compressible
flow of a perfect gas. For a finite region of space with volume V and
surface area A, the integral form of the Euler equations is given by

d

dt

∫
V
Q dV +

∮
A
F · n̂ dA = 0 (13)

where Q = [ρ, ρu, ρv, ρw, ρE]T, F is the inviscid flux tensor and n̂ is the
outward facing unit normal vector.
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Figure 2. A multilevel Carte-
sian mesh with a cut-cell
boundary. Adjacent cells can-
not exceed 2:1 ratio.

The Euler equations are solved with a
finite-volume method on a regular Carte-
sian mesh with embedded boundaries.
The body geometry is specified by a wa-
tertight surface triangulation. The vol-
ume mesh consists of hexahedral cells,
except for a layer of body-intersecting
cells, or cut cells, which are arbitrary
polyhedra adjacent to the boundaries, as
illustrated in Fig. 2. The mesh is viewed
as an unstructured collection of control
volumes to facilitate solution-adaptive re-
finement.

Spatial discretization uses a cell-
centered approach, where the control volumes V correspond to the mesh
cells and the cell-averaged value of Q, denoted by QH , is located at
the centroid of each cell. The control volumes are fixed in time. The
semi-discrete form is given by

VH
dQH

dt
+RH(QH) = 0 (14)

where VH is a diagonal matrix containing the cell volumes. The residual
in each cell i is expressed as

Ri =
∑
j∈Vi

Gj · n̂jAj (15)

where j denotes the jth face of volume Vi with area A, and G represents
the numerical flux function.

UL UR

Ul Ur
dl dr

Figure 3. Reconstruction of
face midpoint value from cell
centroids

Residual evaluation for a second-
order accurate discretization proceeds by
linearly reconstructing the solution to
the face centroid. This is illustrated
in Fig. 3, for two neighboring Cartesian
cells l, r sharing a common face. Prim-
itive variables, U = [ρ, u, v, w, p]T, are
used for the reconstruction, and the left
and right states are given by

UL = Ul + dl φl ∇Ul UR = Ur − dr φr ∇Ur (16)

Here dl and dr are the distance vectors from the cell centroids to the face
centroid, ∇U is the solution gradient determined via a linear least-squares
procedure and φ is a vector of slope limiter values used to directionally
enforce monotonic solutions [46]. The flux value at the face centroid is
obtained via the flux-vector splitting approach of van Leer [47]

G(UL,UR) = f+(UL) + f−(UR) (17)
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At the implementation level, the assembly of the residual vector is
accomplished by a loop over the faces of the mesh. The flux contributions
are scattered from the face and accumulated in the cells

Rl = Rl +GA Rr = Rr −GA (18)

where the sign reflects the change in the direction of the outward-pointing
normal.

pw

Uc
dw

Figure 4. Linear reconstruc-
tion of pressure to face cen-
troid at the wall

All boundary conditions are enforced
weakly. At the wall, zero normal velocity
is enforced by specifying a wall flux. This
flux is non-zero only for the momentum
components and uses the pressure at the
wall centroid of each cut cell (pw)

Gw = (0, pw, pw, pw, 0)
T (19)

as shown in Fig. 4. Linear reconstruc-
tion, Eq. 16, is used to compute pw. In
the farfield, the flux function, Eq. 17, is used to compute the flux across
faces on the boundary. The boundary state (either UL or UR) is set
via Riemann invariants and linear reconstruction, Eq. 16, is used for the
interior state.

Steady-state solutions are obtained with a five-stage Runge–Kutta
scheme accelerated by local time stepping and full approximation stor-
age multigrid. The multigrid residual restriction operator is the sum
of the residuals of the fine mesh cells enclosed by the coarse cell, while
the prolongation operator is direct injection. Time-to-solution is further
reduced by parallel computing using a highly-scalable domain decom-
position scheme. For details on mesh generation and the flow solution
algorithm, see Aftosmis et al. [48, 28, 49, 50] and Berger et al. [51].

We consider two classes of functionals as primary outputs of interest.
The first are aerodynamic performance coefficients, such as coefficients
of lift and drag, given by

J =
1

q∞ Aref

∫
w
(n̂ · ξ)(pw − p∞) dA (20)

where q∞ is the freestream dynamic pressure, Aref is the reference area,
p∞ is the freestream pressure and ξ is the appropriate projection for
the coefficient of interest, e.g., ξ ⊥ V∞ for lift. The discretization of
Eq. 20 uses midpoint quadrature and is summed over all cut cells. The
second class are field functionals that can be specified anywhere in the
computational domain. An example is a line sensor for pressure

Jl =

∫ L

0

(
p− p∞
p∞

)n

d� (21)
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where L is the length of the line and n is a user specified exponent (usually
1 or 2). The evaluation of line sensors involves finding the set of cells
intersected by the line and integrating with midpoint quadrature that
uses linear reconstruction of pressure to the line-segment midpoint inside
each intersected cell.

3.2 Discrete Adjoint Equation

The adjoint equation as derived in Eqs. 9 and 12 is in discrete form, i.e.
the discretized residual and functional operators are linearized. This is
a consequence of computing the error relative to the embedded mesh,
Eq. 4, instead of the exact solution, Eq. 3. For a reliable estimate of
error via Eq. 11, the discrete adjoint solution must converge as the mesh
is refined

lim
h→0

ψh → ψ (22)

where ψ is the solution of the analytic adjoint equation obtained by
linearizing the flow equations, Eq. 13, and functional before discretization.
In other words, the discretization of the flow equations and functional
must yield an asymptotically consistent adjoint discretizationc.

Adjoint consistency for functionals that involve wall-boundary inte-
grals, such as Eq. 20, is prescribed by the form of the wall flux. Referring
to Eq. 19, the transpose of the wall-flux Jacobian is column-rank deficient
because the flux is zero for both the continuity and energy equations. For
example, the adjoint system at the wall is given by

⎡
⎢⎢⎣

0 n̂x∂pρ n̂y∂pρ 0
0 n̂x∂pu n̂y∂pu 0
0 n̂x∂pv n̂y∂pv 0
0 n̂x∂pp n̂y∂pp 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ψ1

ψ2

ψ3

ψ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂Jρ
∂Ju
∂Jv
∂Jp

⎤
⎥⎥⎦ (23)

where for clarity we assumed two dimensions, first-order discretization
(pw = p) and linearized with respect to primitive variables. This reduces
to

n̂xψ
2 + n̂yψ

3 = ∂Jp (24)

which is a well-known analytic adjoint boundary condition derived by
recognizing that any variation in wall-normal velocity is zero. Moreover,
Eq. 23 shows that the boundary functional should be a function of only
pressure, J = J(p). There are no similar restrictions on field functionals;
these may be a function of any flow variable.

At the farfield boundary, linearization of the flux function, Eq. 17, in
conjunction with the Riemann invariants yields an inconsistent adjoint
discretization for subsonic freestream conditions [52]. Since this should
have little impact on functional accuracy if the distance to the farfield is

cFor a definition of adjoint consistency see [52, 53]; here we use this term only in
the sense of Eq. 22.
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sufficiently large, we leave the residuals unchanged. For an example of a
duality preserving formulation see [53]. To avoid pollution of the error
estimates, we omit values from cells adjacent to the farfield boundary
and their face neighbors (two layers of cells).

3.3 Adjoint Solver

The solution of the adjoint equation proceeds by introducing an unsteady
term in Eq. 12 to obtain the following semi-discrete form

VH
dψH

dt
+Ra = 0 (25)

where the adjoint residual vector is given by

Ra =
∂RH

∂QH

T

ψH − ∂JH
∂QH

T

(26)

An important consideration for adjoint solvers is memory usage relative
to the flow solver. In general, since the adjoint solver is required to

run on the working mesh H, the large matrix-vector product ∂R
∂Q

T
ψ

introduces a complication. The flow Jacobian ∂R
∂Q is a sparse matrix that

is constant during the adjoint solution procedure. Its non-zero entries can
be precomputed and stored, thereby minimizing the time to compute the
matrix-vector product at each iteration. This is an effective strategy when
dealing with implicit flow solvers that already store the flow Jacobian [54].
Alternatively, when dealing with explicit solvers some or all entries of
the flow Jacobian can be recomputed when forming the matrix-vector
product, see for example Barth [55], Giles et al. [56], Nielsen et al. [57]
and Mavriplis [58].

We adopt the explicit flow-solution method outlined in Sec. 3.1 for the
solution of the adjoint system. The matrix-vector product is recomputed
on-the-fly at each evaluation of the residual by reusing the face-based
approach of the flow solver. To demonstrate, consider first-order dis-
cretization and examine the update of the flow-solver residual vector
from an arbitrary face of the mesh as shown in Fig. 3 and Eq. 18

RH =

⎡
⎢⎢⎢⎢⎣

...
+GA
−GA

...

⎤
⎥⎥⎥⎥⎦

← cell l
← cell r

(27)

Linearize and apply the transpose operator to obtain

∂R

∂Q

T

ψ =

⎡
⎢⎢⎢⎢⎢⎣

. . .

A ∂G
∂Ql

T −A ∂G
∂Ql

T

A ∂G
∂Qr

T −A ∂G
∂Qr

T

. . .

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

...
ψl

ψr
...

⎤
⎥⎥⎥⎥⎦ (28)
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Therefore, the adjoint residual update when sweeping over the faces of
the mesh in a fashion analogous to the flow solver is

Ra
l = Ra

l +
∂f+

∂Ql

T

A (ψl − ψr) (29)

Ra
r = Ra

r +
∂f−

∂Qr

T

A (ψl − ψr) (30)

where we include the linearization of the split fluxes of Eq. 17. Note that
the transpose reverses the operator order of the flow solution procedure.
For example, linearizing one of the split fluxes

∂f+

∂Ql

T

=

(
∂Ul

∂Ql

)T(
∂f+

∂Ul

)T

(31)

shows that the flux-function linearization is evaluated before the adjoint
of the transformation from conservative to primitive variables.

For second-order spatial discretization, the adjoint of the reconstruc-
tion procedure, Eq. 16, requires an additional pass over the faces of the
mesh. Linearization of the flow gradient involves only the geometry-
dependent least-squares weights, which are already computed and stored
by the flow solver. Gradient linearization is omitted in cut cells with
volume fractions less than single-precision machine epsilon to avoid spu-
rious adjoint values similar to those observed in [59]. Furthermore, the
linearization assumes that the limiter values, φ in Eq. 16, are indepen-
dent of the flow solution. In other words, the limiter is treated as a
constant. Although this is mostly a pragmatic choice, in [34] we showed
that the impact of this simplification on the accuracy of the linearization
is relatively small. The right-hand-side of Eq. 12 is the linearization of
the functional, i.e. Eq. 20 or 21. This linearization involves the pressure
reconstruction procedure of Eq. 16 and is exact except for the treatment
of the limiter.

Since the eigenvalues of the flow Jacobian matrix are not changed
by the transpose operator, we expect Eq. 25 to have similar stability
properties as the flow equations, Eq. 14. Convergence to steady-state is
accomplished using the same five-stage Runge–Kutta time marching and
multigrid schemes of the flow solver. Giles [60, 61] derived conditions for
Runge–Kutta time marching schemes and multigrid that ensure the same
asymptotic convergence rate of the flow and adjoint solvers. This duality-
preserving algorithm is implemented almost automatically, since the flow
solver’s residual prolongation operator is a transpose of the restriction
operator.

Overall, the CPU time per iteration of the adjoint solver is roughly
equivalent to the flow solver. This is because the additional cost of re-
evaluating the matrix-vector product at each adjoint iteration is offset by
reusing the local time step and limiter values directly from the flow solver.
The implementation results in only a slight increase in memory usage
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over the flow solver due to the storage of the converged flow solution and
its gradient. Moreover, the face-based data structures and the domain
decomposition scheme of the flow solver are reused with only minor
modifications, see [34] for details.

4 Error Estimation

With flow and adjoint solutions in hand on the working mesh H, we
return to Eq. 10 to estimate the functional on the embedded mesh h.
The embedded mesh is constructed explicitly and contains about 8N
cellsd. Computation of the residual Rh(Q

H
h ) involves the reconstruction

of the flow solution on the embedded mesh from the working mesh data
QH

h = PQH (recall Eq. 6). The value in each embedded cell is obtained
from its parent cell by linear reconstruction, Eq. 16. This is denoted
by QL = PLQH , where PL represents the linear prolongation operator.
No special treatment is performed at mesh refinement boundaries and
cut cells, where irregular stencils pollute the residual on the embedded
mesh. Instead, we rely on the adjoint weights to attenuate the residuals
together with filters that compensate for these numerical artifacts when
tagging cells for refinement (described in Sec. 5.3).

Several studies [62, 15] show that higher-order reconstruction is more
accurate for evaluating the residual on the embedded mesh. Nevertheless,
we find that it is difficult to match the robustness of linear reconstruc-
tion in practical applications with shocks and other strong non-linearities.
Moreover, the implementation is straightforward since we can reuse func-
tions from the existing flow-solver code.

An estimate for ψh in Eq. 10 is obtained through use of the adjoint
solution from the working-mesh. Similar to QH

h , let ψH
h represent a

reconstructed adjoint solution of Eq. 12 and rewrite Eq. 10 to obtain

Jh(Qh) ≈ Jh(Q
H
h )− (ψH

h )TRh(QL)︸ ︷︷ ︸
Adjoint Correction

− (ψh − ψH
h )TRh(QL)︸ ︷︷ ︸

Remaining Error

(32)

This manipulation yields a computable adjoint-correction term that is
generally non-zero in finite-volume methods. It can be used directly to
obtain a better estimate of the functional or to obtain an error estimate
via Eq. 11, as long as the last term, the remaining error, is small. This
is likely, because the remaining error is a higher-order term. Moreover,
its magnitude can be controlled with adaptive mesh refinement. Note
that we tacitly assume that all higher derivatives of the functional and
residual equations are also small. The crux becomes finding a reliable
estimate of ψh − ψH

h to formulate a robust adaptation criterion.
We use a trilinear interpolant for constructing ψH

h and a triquadratic
interpolant for approximating ψh. These interpolants are based on shape

dNested subdivision of a hexahedron creates eight embedded hexahedra, but at cut
cells some children may be inside the geometry.
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functions for “brick” elements commonly used in finite-element methods.
The use of interpolation for ψh is a compromise between accuracy, cost,
and factors related to implementation and maintenance. On the one
hand, interpolation reduces the quality of the remaining-error estimate
because it models the solution error ψh −ψH with an interpolation error
that primarily detects solution non-linearity. On the other hand, this
approach maximizes speed since the number of arithmetic operations on
the embedded mesh is relatively small. Furthermore, in contrast to the
flow reconstruction, the adjoint reconstruction is not followed by residual
evaluation, which relaxes robustness constraints in the implementation.

Before constructing the interpolants, the adjoint solution is linearly
reconstructed from the centroid to the vertices of each cell on the working
mesh (including cut cells). We adopt Eq. 16 and each vertex receives con-
tributions from all its coincident cells. The average of all contributions
determines the vertex solution value. Put another way, this is a data
smoothing step. Special logic is implemented at mesh refinement bound-
aries, where the hanging vertices of small cells need additional updates
from their big-cell neighbors. The solution at the eight vertices of each
working-mesh hexahedron is used to form a unique trilinear polynomial

ψTL = c0 + c1x+ c2y + c3z + c4xy + c5xz + c6yz + c7xyz (33)

The triquadratic reconstruction operator is given by

ψTQ = c0 + c1x+ c2y + c3z + c4xy + c5xz + c6yz + c7xyz + c8x
2

+ c9y
2 + c10z

2 + c11x
2y + c12x

2z + c13xy
2 + c14xz

2 + c15y
2z

+ c16yz
2 + c17x

2yz + c18xy
2z + c19xyz

2 (34)

To determine the 20 unknown coefficients, we use the eight solution
values (from the trilinear case) in conjunction with the solution gradient
at the vertices. The gradient value at a vertex is determined by the
arithmetic average of all gradients from cells common to the vertex. The
Barth-Jespersen limiter [63] is used to prevent oscillatory reconstruction.
The resulting over-determined system of 32 equations is solved in a least-
squares sense. A well-behaved triquadratic interpolant is ensured by the
addition of safeguards. These involve monitoring solution differences
between the triquadratic, trilinear and cell-centroid values, and using the
lower-order values when large differences are detected.

We split Eq. 32 into an estimate for the corrected functional

Jc = Jh(QL)− ψT
TQRh(QL) (35)

and a cell-wise estimate of the remaining error in each cell of the working
mesh

ηH =
∑
j∈Vi

(ψTQ − ψTL)
TRh(QL)j (36)
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where j denotes the jth child of parent cell Vi and ηH = [η1, η2, . . . , ηN ]T.
Note that triquadratic reconstruction is used both in the functional cor-
rection and remaining error, Eqs. 35 and 36, which is a slight departure
from Eq. 32. This is based on the assumption that the triquadratic in-
terpolant is our best estimate of the embedded-mesh adjoint. Hence it is
used not only to compute the remaining error but also to get an improved
functional estimate.

Substituting Eq. 35 into Eq. 11 gives a computable estimate of dis-
cretization error on the working mesh

E ≈ C|Jc − JH(QH)| (37)

To define a local quantity suitable for driving adaptive mesh refinement,
the remaining error, Eq. 36, is localized to form an error indicator |η|H =
[|η1|, |η2|, . . . , |ηN |]T. The sum of the error-indicator values over the cells
of the working mesh gives a bound on the estimate of the remaining error

η =
N∑
i=1

|ηi| (38)

Since the absolute value operator prevents cell-wise error cancellation,
this bound is quite conservative. In fact, when dealing with difficult
simulations containing non-smooth flow and arbitrary geometry, η is
typically more conservative than the value given by Eq. 37.e We return
to this topic in the examples of Sec. 7.

An alternate approach involves the use of the adjoint correction term,
|(ψH

h )TRh(Q
H
h )|, as an error indicator [64, 18]. However, the remaining

error term converges at about double the rate of the correction and is
more conservative at sonic and stagnation lines, where adjoint variables
vanish but their derivatives do not. Moreover, since the flow and adjoint
equations are solved on the same mesh, there is an open question regard-
ing the error indicator maintaining consistency of the adjoint solution
as the mesh is refined. Although |η|H is sensitive to non-linearities in
the adjoint solution, other implementations [15, 5] use a complementary
remaining-error term that involves an inner product of the flow solution
with the adjoint residual. This term makes the mesh more suitable for the
adjoint solution, but our numerical experiments did not show significant
benefits.

There are several extensions of the present approach for handling
multiple outputs. In principle, each output requires its own adjoint,
which significantly increases simulation cost. One way to reduce the
cost is to form a discrete error equation that is solved in conjunction
with a modified adjoint system [16]. In this work, a simpler approach is

eSince η estimates the bound on the remaining error with respect to the embedded
mesh, Cη can be used to extrapolate toward the exact value, similar to Eq. 37.
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Figure 5. Near-body cell-wise error indicator for Cd (log10 |η|H) of airfoil
in subsonic flow (left) and corresponding error histogram (right)

used, where the solution of only one adjoint system is required. Multiple
outputs are combined using a weighted-sum formula

J =

K∑
i=1

wiJi (39)

where K is the number of outputs and w is an array of user-specified
constants. In practice, outputs are frequently projections of wall pressure,
for example aerodynamic forces and moments, for which the weighted-
sum of axial, normal and side forces works well.

5 Mesh Adaptation

5.1 Equidistribution of Remaining Error

While error estimates are critical for assessing solution quality, automatic
error control requires additional procedures that identify regions of high
error and modify the mesh to drive the error below desired tolerances.
Unlike traditional error indicators, such as feature detection and estimates
of local truncation error, |η|H is a direct (point-wise) estimate so there is
no ambiguity regarding the selection of an indicator variable, its relation
to the functional error and its convergence rate.

To introduce the concept of error equidistribution, consider an ex-
ample error map shown in Figure 5. The values of |η|H for Cd in the
near-body region of a Joukowski airfoil in subsonic flow (M∞ = 0.4 and
α = 1◦) are shown in the left frame. A logarithmic scale is used to
emphasize the rapid variation of the error indicator near the airfoil, with
highest errors at the leading and trailing edges. The corresponding error
histogram for the entire domain is shown on the right. The horizontal
axis contains bins of the error-indicator values. High error cells lie to the
right. The vertical axis is the percentage of cells in each bin.

The histogram provides insight into how well the mesh fits the sim-
ulation. In this case, the histogram is skewed, with most of the cells
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Figure 6. Near-body adapted mesh colored by log10 |η|H in Cd for airfoil
in subsonic flow (left) and corresponding error histogram (right)

contributing little error. This indicates that the mesh is inefficient, which
is expected because the near-body mesh is uniform. The high-error cells
are close to the airfoil and, in particular, near regions of high curvature.
The highest errors (above 10−5) dominate η. This is reflected by the
location of the mean-error value, η/N , shown as a dashed line in Fig. 5.
The majority of cells have error of several orders below the mean, thus the
mean is well to the right of the peak (the mode of the histogram). Hence,
most of the computational work associated with this mesh is unnecessary.

The basic strategy for controlling cell-size to minimize error is to
equidistribute the error as the adaptation advances. The principle of error
equidistribution has been demonstrated in [1, 3], among others. The goal
is for each cell to contribute equally toward improving the accuracy of the
simulation. Intuitively, any departure from a uniform error distribution
implies that the mesh points could be redistributed to obtain a lower
average error. Historically, error equidistribution has been sought in
global error estimates, such as truncation errors or energy norms. These
error estimates, however, tend to significantly increase computational
cost because they may trigger refinement of all flow features everywhere
in the domain. In contrast, adjoint error estimates seek equidistribution
of the functional error and consequently focus only on regions (cells)
important for predicting the functional. In other words, the adaptation
seeks to refine cells that make |η|H uniform and η small.

Figure 6 illustrates the main idea, where an adapted mesh is generated
for the airfoil example of Fig. 5. The adapted mesh is shown on the left
and its histogram on the right. The histogram is nearly symmetric with
little spread. The value of the error indicator varies less than an order
of magnitude in over 80% of the cells. Comparing to Fig. 5, the adapted
mesh reduces the error variation by seven orders of magnitude. All high
error cells have migrated to the left and are clustered close to the mode of
the histogram. Moreover, the mean is also close to the mode, suggesting
that little computational work is wasted on low-error cells. The grading
of the mesh is achieved through a series of adaptations and is a direct
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reflection of the error map in each cycle, such as the one shown in Fig. 5.
In the limit, the ideal histogram is a delta function. In practice, the
discrete subdivision of Cartesian cells and cell-wise non-uniform error
convergence, as well as overall computational cost, limit the tightness of
the histogram.

5.2 Error Control

Efficiency of the adaptation procedure is driven by the amount of com-
putational work needed to transform the error histogram of the initial
mesh to a delta function and position it sufficiently far left in the region
of low error. This can be controlled by carefully selecting refinement
and coarsening thresholds above and below which cells are marked for
refinement and coarsening, respectively. Choosing refinement thresholds
where only the highest-error cells are refined yields tight histograms but
requires many adaptation cycles to shift the mode into a region of low
error. Therefore, the procedure should also minimize the number of cy-
cles and, in particular, avoid solving on similar meshes when close to the
final mesh.

For simulation verification, perhaps the most common approach is to
prescribe a tolerance TOL on the remaining error or directly on E . For
example, the goal may be to construct a mesh with η < 0.0001 in CD.
This results in thresholds proportional to TOL/N (or TOL/Nmax) that
drive the mesh toward error equidistribution. In earlier work [35, 36], we
evaluated this approach and modified it to accommodate a“worst-errors-
first” strategy. This reduces computational cost by avoiding the problem
of generating too many cells early in the adaptive process, before the error
map is accurate, and then paying for these cells on every intermediate
mesh until the highest-error cells are finally addressed in the closing
cycles. The threshold is set to λ · TOL/N , where λ ≥ 1 is a user-specified
array of constants that typically decrease as the adaptation advances.

Use of the tolerance-driven approach in practice reveals several prob-
lems. Specifying a meaningful TOL is awkward for functionals such as
line sensors, where there is little intuition guiding reasonable choices
of desirable error level. In addition, λ is problem dependent and the
resulting mesh growth is hard to control in difficult simulations, where
occasional poor convergence of the flow or adjoint solver may occur and
cause spurious error estimates in some region of the domain. An alter-
nate approach is to minimize the error for a given cell budget, e.g., the
goal is to construct a mesh with one million cells that predicts CD most
accurately. Cells are sorted on their level of error and a threshold is
determined such that a fraction of the highest error cells is refined. The
threshold in each cycle can be determined from statistics of the error
distribution [65, 66, 37], such as the mean and standard deviation, or set
to meet a user-specified mesh growth.
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5.3 Implementation

The main steps of the simulation are given by Procedure 1.

Procedure 1: Adaptive Mesh Refinement

Input: Surface triangulation T and refinement parameter array τ
Termination Criteria: TOL, or maximum number of cells Nmax,

or number of cycles M , or maximum
level of refinement Rmax

H0 ←− InitialMesh(T ) // Generate initial mesh

for i ← 1 to M do
QH ←− FlowSolve(Hi−1)
ψH ←− AdjointSolve(Hi−1,QH)
h ←− EmbedMesh(Hi−1) // Uniform refinement

ηH ←− CellwiseErrorEstimate(h,Hi−1,QH , ψH)
η ←− ∑

Hi−1
|η|H

Hi ←− AdaptMesh(τi, |η|H , Hi−1, TOL)
break if (η < TOL || N > Nmax|| R > Rmax)

end
QH ←− FlowSolve(HM ) // Optional solve

Result: {JH , Jc, η}i, i = 0, . . . ,M

While the steps are standard, we note several places where we specialized
the procedure:

1. The surface triangulation T is held fixed. Consequently, it is impor-
tant that the surface triangulation is sufficiently fine to support the
final volume mesh, particularly in regions of high surface curvature.

2. The exit criteria of the adaptation loop are positioned such that
only the flow solution is computed on the final mesh. This is
optional but effective in practice, because the primary outputs of
the simulation come from the flow solver and it is sensible to use the
already computed error map. In terms of simulation verification,
the procedure is conservative because we expect η to decrease on
the final mesh.

3. Except for the final adaptation, only one level of refinement is
added per adaptation cycle. We allow more levels on the final
cycle because the final error map should be close to asymptotic.
Coarsening is not considered, which improves robustness without
significantly impacting the efficiency of steady simulations.

4. Once the cells are marked for refinement, the tags are processed to
enhance mesh smoothness. This includes filtering out refinement
islands and voids, buffering tags (usually by one layer of cells) and
enforcing 2 : 1 cell ratios.
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Figure 7. Supersonic-vortex model problem (Mi = 2.25, ri = 1, and
ro = 1.382)

The main results of Procedure 1 are the functional value, its correction
and remaining error for the sequence of meshes generated during the
simulation. Convergence analysis of these quantities is used to verify the
simulation.

6 Code Verification

An analytic supersonic vortex provides a model problem with a known
solution [67] to verify the performance of the error estimation framework.
We also verify the accuracy of the adaptive mesh refinement procedure to
establish a benchmark for automatic simulation verification. The problem
involves isentropic flow between concentric circular arcs at supersonic
conditions, as shown in Fig. 7(a). The exact solution is given by

ρ = ρi

{
1 +

γ − 1

2
M2

i

[
1−

(ri
r

)2
]} 1

γ−1

u = aiMi

(ri
r

)
sin θ, v = −aiMi

(ri
r

)
cos θ, p =

pi
ργi

ργ (40)

where ai = ρi = 1, pi = 1/γ, Mi = 2.25, ri = 1, and ro = 1.382. The
output of interest is the integral of pressure over a portion of the outer
arc

J =

∫ 5πro
14

0
pro dl =

5πro
14

pro ≈ 4.39262683 (41)

as sketched in Fig. 7(a). This choice permits validation of the quadratic
adjoint interpolant described in Sec. 2, which models the adjoint solution
on the embedded mesh. Figure 7 shows that while the flow is smooth,
the adjoint is not.

All simulations are initialized with the analytic solution and solved to
steady state without limiter. Dirichlet boundary conditions at the inlet
are prescribed from the analytic solution; the wall boundary conditions
are specified via Eq. 19.
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6.1 Uniform Mesh Refinement

A uniform mesh refinement study is performed that involves a sequence
of six nested meshes. Figure 8 shows the initial mesh, which contains
47 cells. The final mesh contains 33,069 cells. Note that the boundary
discretization changes non-smoothly with refinement, e.g., on each mesh
the cut-cell area fractions varied by at least five orders of magnitude.
Consequently, convergence rates are obtained via linear regression of the
finest four solutions.

Figure 8 shows that the solution error (point-wise L1 norm of ρ− ρH)
is O(h2) when measured over the entire domain. This is consistent with
the second-order accurate discretization and smooth analytic solution.
The second line in Fig. 8 shows that the convergence rate is reduced to
slightly below O(h3/2) when confined to include only the boundary due
to the irregular discretization stencils in the cut cells.

Despite the slower convergence of the solution along the boundary,
the first line in Fig. 9(a) shows that error in JH is O(h2). The second
line shows the convergence rate of error in the corrected functional Jc.
As expected, its convergence parallels JH , but the error improves by
about a half-order of magnitude. The third line in Fig. 9(a), labeled “Jc
Exact ψh”, is obtained by solving the adjoint equation on the embedded
mesh and using these values in Eq. 35 when computing the corrected
functional. This is referred to as an exact correction, which we use to
validate the triquadratic interpolantf. Except on the initial mesh, the
quadratic correction performs as well as the exact correction.

Figure 9(b) examines the accuracy of the corrected functional Jc in
detail. The correction should capture the dominant part of the func-
tional’s value on the embedded mesh Jh relative to the working mesh
value JH , as sketched in Fig. 1 and expressed by Eq. 4. We examine

fRecall that the cost of an embedded-mesh adjoint solution is prohibitive in practice.
It is roughly equal to that of a flow solution on the embedded mesh.
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Figure 9. Convergence of functional (JH) and its correction (Jc) for
the uniform mesh refinement study of the supersonic vortex. Error is
measured with respect to the exact value (left) and the value on the
embedded mesh (right).

the accuracy of the corrected functional using both the quadratic adjoint
interpolant and the embedded-mesh adjoint, labeled as “Exact ψh” in
Fig. 9(b). Both corrections are superconvergent; the exact correction
attains almost O(h3) when measured in this relative-error metric. The
quadratic mimics the exact correction at a slightly slower rate and with
about a half-order offset starting from the coarsest mesh. These results
show that the adjoint field on the embedded mesh is accurately predicted
with the limited tri-quadratic interpolant (described in Sec. 4).

The ability to compute relative error accurately suggests that the
true error should also be predicted reliably as H tends to zero. Since the
convergence rate of the functional is second-order, Eq. 37 with C = 4

3
estimates the true error. The first line in Fig. 10(a) shows convergence of
the true error |J − JH |, which is copied from Fig. 9(a) for reference. The
second line (squares) is the error estimate E using Eq. 37. The estimate
is sharp; the ratio of the estimate to the true error (effectivity) is close
to one on all but the coarsest meshes, i.e., the lines essentially over-plot.

The vanishing gap between the estimated and true error is quantified
by the first line in Fig. 10(b), labeled “Exact”. We use this error gap
to test the accuracy of the remaining error term of Eq. 32. This is
done by evaluating Eqs. 36 and 38 without localization, i.e. by omitting
the absolute value operator in Eq. 38. The second line in Fig. 10(b),
labeled “Estimate”, shows the value of 4/3η without localizationg. The
estimate is within half-order of magnitude of the measured gap and has a
similar convergence rate. The agreement is excellent considering that the
quadratic interpolant is used in both the correction and remaining error

gThe factor of 4/3 is applied to extrapolate the remaining error to its analytic value
based on the observed second-order functional convergence.
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Figure 10. Accuracy of the error estimate using Eq. 11 (left). Remaining
error and bound estimate (right) for the uniform mesh refinement study
of the supersonic-vortex problem.

terms, and only linear prolongation of the flow solution is used when
evaluating the embedded-mesh residuals. The third line in Fig. 10(b),
labeled “Error Indicator”, shows the effect of localization when forming
the error-indicator bound η using Eq. 38. Recall that the absolute value
operator prevents cell-wise error cancellation. As a result, the bound
is roughly one-order of magnitude larger than the remaining error on
the coarsest mesh and its convergence rate is slower, indicating that the
bound is a conservative estimate of the remaining error.

Having established the accuracy of the error indicator, Fig. 11 shows
histograms of the error indicator |η|H on the initial and final meshes.
The histograms are similar to the ones presented in Figs. 5 and 6 except
we use a log2 scaling of the cell-wise error. This scaling is intuitive for
predicting how far a bin moves to the left once its cells are refined because
the subdivision of Cartesian cells is discrete. For example, we show in
Fig. 10(b) that the convergence rate of the error-indicator bound η is
roughly O(h2), which implies that the mean error should shift four units
to the left after each refinementh. Figure 11 shows that the mean error is
close to 2−12 on the initial mesh and shifts to 2−32 after five refinements.

Figure 11(b) shows that the uniformly refined mesh is not particularly
well suited for the simulation at hand. The error distribution is far from
a delta function and more than a third of the 33,069 cells contribute no
error. The adjoint field shown in Fig. 7(c) provides some insight. The
large variations reveal the influence of point-source mass perturbations,
which include interactions with the inner arc, on J (Eq. 41). Recall that
J is defined over about 2/3 of the outer arc, at which point the adjoint
variable vanishes because any perturbation downstream of this location
cannot influence J in this hyperbolic problem. Hence, cell refinement

hThe mean shifts p+ d units to the left, where p is the order of the error indicator
and d is the spatial dimension.
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Figure 11. Histograms of the cell-wise error indicator |η|H for the uniform
mesh refinement study of the supersonic vortex. Heights are normalized
by the total number of cells. Error indicator values in cut cells are shown
as rectangles with white fill.

outside the functional’s zone of dependence yields many cells with zero-
error contributions. These cells increase cost without improving accuracy
of the simulation.

6.2 Adaptive Mesh Refinement

Accuracy of the adaptive procedure is demonstrated by performing five
adaptive refinements starting from the initial mesh of the uniform study.
The refinement threshold is set to the mean error value, except in the first
two adaptations where it is shifted two log2 bins to the left of the mean
due to the coarse initial mesh. Figure 12 shows the error convergence
of the functional and η, and compares them with those of the uniform
meshes. We observe that after each refinement the functional error and η
nearly match the values obtained from the uniform meshes but use fewer
cells. The final mesh contains 13,929 cells compared to the 33,069 cells
of the finest uniformly refined mesh.

Figure 13 shows the final mesh and its error histogram. The refine-
ment pattern is clearly driven by features of the adjoint solution, recall
Fig. 7(c). Essentially no mesh refinement occurs past the functional’s
zone of dependence. An error indicator based on local-truncation errors
would unnecessarily adapt cells in this region. The largest sensitivity
to residual errors occurs along the inner arc, which may seem counter-
intuitive. This is due to the nonuniform inlet Mach number and the
number of local Mach wave reflections that can reach the functional from
the inner arc. More importantly, the final mesh appears to strike a good
compromise for accommodating both the flow and adjoint solutions. The
inner product within the error indicator |η|H is dominated by the ad-
joint interpolation error (ψTQ − ψTL), which emphasizes regions of high
adjoint curvature that are captured in the final refinement pattern.
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Figure 12. Convergence of the functional error (left) and error indicator
η (right) on adapted meshes of the supersonic vortex problem.
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Figure 13. The final adapted mesh (left) and the corresponding error-
indicator histogram (right) for the adaptive refinement of the supersonic
vortex problem. The cut-cell percentage is inflated 3× for clarity.
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The histogram in Fig. 13 shows that the final adapted mesh fits the
simulation well and contrasts markedly from that in Fig. 11(b). The
histogram is symmetric with little spread, the mean error is close to
the mode and the adapted mesh has almost no cells with zero error.
Moreover, the histograms of Figs. 11 and 13 show not only the error
indicator values in every cell, but also isolate the errors in the cut cells.
Recall that Fig. 8 shows slower convergence rate of the solution in the
cut cells. To compensate, the error indicators in cut cells are inflated by
a factor of 1.5 before selecting cells for refinement. This value is based
on experience with many problems. Figure 13 shows that mode of the
error distribution in cut cells roughly corresponds to the mode for all
cells, indicating that the adaptation mechanics are not adversely affected
by the non-uniform error convergence.

7 Examples of Simulation Verification

Three examples are presented to demonstrate the effectiveness of Proce-
dure 1 in simulation verification. The examples progressively increase
in complexity, from airfoil simulations to three-dimensional simulations
of a launch abort vehicle. To varying degrees, the examples deliberately
violate the assumptions made in the derivation of the error estimates, in
particular assumptions of smoothness, steady-state and fineness of the
initial mesh. These assumptions rarely apply in practical engineering sim-
ulations and our goal is to characterize the performance of Procedure 1
in such situations.

7.1 Airfoil Performance Database

Figure 14. Near-body view of
initial mesh with inset showing
NACA 0012 airfoil

The first example demonstrates
verification of a model aerody-
namic performance database. The
goal is to predict the drag coeffi-
cient, J = Cd, of the familiar
NACA 0012 airfoil over a range
of freestream conditions. We con-
sider a total of 60 cases involv-
ing six subsonic Mach numbers,
M∞ = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9}
and four supersonic Mach numbers,
M∞ = {1.1, 1.3, 2, 3}, at six angles
of attack, α = {0, 0.5, 1, 2, 4, 8◦}.

Figure 14 shows the near-body
region of the initial mesh, including a closeup of the NACA 0012 airfoili

iThe trailing edge of the airfoil is modified to be sharp, which is accomplished by
modifying the last coefficient of the equation defining its thickness distribution [68].
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Figure 15. Cd for all freestream conditions of the airfoil performance
database example

with a unit chord. The distance to the outer boundary is 64 chords. The
initial mesh contains 16×16 cells with characteristic length H = 8 chords.
The airfoil is intersected by just four cells. The spatial discretization
does not involve a limiter when M∞ ≤ 0.5; cases with M∞ > 0.5 use the
Van Leer limiter.

To construct the database, we set the maximum level of refinement,
Rmax, to 18 and set the adaptation threshold to the mean error. This
is a compromise of the various database strategies we examined in [39],
which contrasted uniform-error and fixed-mesh databases. In general,
specifying a uniform error tolerance, e.g., E < 0.0001 in Cd, for all
cases is not cost-effective. This is because the cost of a constant-error
database is frequently dominated by a few corner cases, for which a less
accurate computation would suffice. Alternatively, specifying the number
of adaptation cycles (M in Procedure 1) and the mesh growth for each
cycle fixes the cost of the database. This strategy, however, restricts the
degree of control over the variation of error across the database. The
current approach achieves a balance by requiring that the final meshes
for all cases contain the same smallest cell-size (H ≈ 0.0002 chords), but
allows the total number of cells to vary.

Figure 15 shows the final value ofCd for all simulations in the database.
Although there are no analytic solutions for the NACA 0012 airfoil in a
finite computational domain, we expect Cd to approach zero in a shock-
free two-dimensional inviscid flow. Reassuringly, Fig. 15 shows that Cd

is essentially zero when M∞ ≤ 0.5. Moreover, while the variation in Cd

with angle of attack is generally mild at fixed M∞, there is a rapid rise in
Cd with respect to M∞ in the transonic regime. The largest values of Cd

are observed when M∞ = 0.9, which is due to a strong expansion over
the aft portion of the airfoil caused by shocks at the trailing edge. As
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Figure 16. Convergence of error indicator η for subsonic M∞ =
{0.1, 0.2, 0.3, 0.5}, transonic M∞ = {0.7, 0.9} and supersonic M∞ =
{1.1, 1.3, 2, 3} cases of the database example

the Mach number increases into the supersonic regime, there is a gradual
decrease in Cd as the bow shock becomes more oblique.

While Fig. 15 demonstrates that the simulation data follows expected
trends, it offers little quantitative evidence for simulation verification.
Since this example involves 60 simulations, we focus the current discussion
only on the error estimate, Eq. 37, and the error indicator, Eq. 38, which
are central to verification and adaptation. The single-point examples in
Subsections 7.2 and 7.3 study these quantities in greater detail.

Error-Indicator Convergence

Figure 16 shows convergence of the error-indicator bound η (Eq. 38).
The cases are divided according to the freestream Mach number into
groups of subsonic, transonic and supersonic flow. Overall, η converges
well. This implies mesh convergence for all cases and demonstrates the
ability of the adaptation to control the magnitude of the remaining error
in Eq. 32. The circle symbols, plotted for an arbitrary case in each plot,
mark adaptation cycles. The error indicator initially increases until the
meshes reach around 1000 cells. This is typical when starting from such
a coarse mesh (recall Fig. 14). Increasing η indicates that new features
of the solution are emerging, which are not yet captured by the error
analysis. Nevertheless, the early error maps are sufficiently accurate to
identify critical regions of the evolving flowfield. When combined with
the incremental h-refinement strategy of Procedure 1, the error maps
reliably handle coarse initial meshes. As the simulations approach Rmax,
in particular over the last four meshes of each case, η is decreasing linearly
indicating that the output is asymptotic.

Figure 16(a) shows that η is reduced by three orders of magnitude
for all but two of the 24 subsonic cases. The convergence pattern is
very similar among the cases, especially once the meshes reach 1000 cells.
The four cases with the sharp error rise at 1000 cells are all at α = 0◦.
The case with the slowest convergence is when M∞ = 0.5 and α = 8◦,
indicated by the dashed line, which corresponds to the onset of transonic
flow. To reach the desired Rmax of 18, the meshes for all subsonic cases
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Figure 17. Final error estimate in Cd for all freestream conditions (upper
left) and samples of Cd convergence on the last four meshes

require 14 adaptationsj.

Figure 16(b) shows convergence of η for the 12 transonic cases. The
meshes, on average, are larger than those for the subsonic cases. The
cases with the smallest values of η and also the smallest number of cells
correspond to the shock-free cases, i.e., M∞ = 0.7 and α ≤ 1◦. The
slowest convergence (largest η) occurs when M∞ = 0.7 and α = 8◦; the
next slowest is M∞ = 0.7 and α = 4◦. These two cases are actually
the slowest to converge in the entire database. We obtained similar
results in [39], where the largest sensitivity of aerodynamic performance
to discretization error was also near M∞ = 0.7. The primary culprit is
the dependence of Cd on the location of the upper surface shock. Once
M∞ reaches 0.9, the shocks migrate to the trailing edge. Figure 16(c)
shows convergence of the 24 supersonic cases. These cases converge well
and are tightly clustered. These meshes require 15 adaptations to reach
Rmax of 18, which is one additional cycle when compared to the subsonic
and transonic cases.

Level of Discretization Error

Having established convergence of the error indicator, we now examine
the level of discretization error across the database. Figure 17 shows the
value of the final error estimate E in the carpet plot at upper-left. The

jThe initial mesh contains four levels of refinement.
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error estimates are computed with C = 4
3 in Eq. 37 for shock-free cases

that do not require a limiter (M∞ ≤ 0.5), otherwise C = 2 is used. The
carpet plot shows that E is small and essentially uniform (E ≤ 2 counts)
over most of the subsonic and supersonic cases. Not surprisingly, the
largest error estimates are obtained in the transonic regime, specifically
when M∞ = 0.7, which corroborates with the slow convergence of η in
Fig. 16(b). There is also an increase in E as M∞ → 0 that indicates
some loss of accuracy in the incompressible regime due to the lack of low
Mach-number preconditioning. This is consistent with results presented
in [39].

Along the perimeter of the carpet plot in Fig. 17, we show convergence
of Cd for the last three adaptations of representative cases. The error bars
denote the value of E . In general, the insets show that Cd changes less
than one count over the final adaptation and E is decreasing by about a
factor of two per cycle and brackets the final solution over at least the last
two cycles. For example, the lower-left inset shows the classic subsonic
case M∞ = 0.3 and α = 0◦, where Cd correctly approaches zero as
H → 0. The error estimate brackets the expected final solution (Cd = 0
to plotting accuracy) on the last three meshes. The case at M∞ = 0.7
and α = 8◦, shown at top-right, is the main exception. The value of
Cd is still changing significantly and the error estimate is just starting
to tighten. More adaptation cycles (smaller cells) would be required
to reduce the error estimate further. Taken together, Figs. 16 and 17
provide the quantitative evidence required for verification of every case
in the database.

Meshing Requirements

Figure 18 shows the number of cells required to achieve the error levels
presented in Fig. 17, as well as snapshots of the final near-body meshes for
selected cases. The carpet plot shows that the number of cells varies by
about a factor of four over the database and peaks when 0.9 ≤ M∞ ≤ 1.3.
To give an indication of the wall-clock time needed to construct this
database, each case requires, on average, about four minutes on one core
of a laptop computerk.

The largest mesh is obtained whenM∞ = 1.1 and α = 8◦ and contains
39,500 cells. The top-left inset shows that the high cell count is primarily
due to a detached bow shock far upstream from the airfoil, which is
indicated by the cluster of small cells along the inset’s left edge. In
contrast, Fig. 18 shows that cases with M∞ ≥ 2 require many fewer
cells. Recall that the refinement pattern is driven by the inner product of
the adjoint interpolation error (ψTQ − ψTL) with the flow residual error,
Eq. 36. Upstream of the bow shock, the flow residuals are zero because
the spatial discretization preserves uniform freestream. Concurrently,

kMacBook Air (2013) with a 1.7 GHz Intel Core i7 processor and 8GB of memory.
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Figure 18. Number of cells for all freestream conditions with samples of
final adapted meshes (near-body views)

the adjoint solution vanishes downstream of the limiting characteristic
intersecting the airfoil’s trailing edge. This is similar to Fig. 7(c) of
the supersonic vortex problem, where the adjoint solution is zero when
outside the functional’s zone of dependence. Consequently, |η|H vanishes
upstream of the bow shock and outside the limiting characteristic, as
indicated in the insets on the right side of Fig. 18 for cases at M∞ = 1.3
and M∞ = 3. This confines the refinement pattern to a “diamond” that
contracts in the cross-flow direction with increasing Mach number. As a
result, the smallest mesh, containing only 8860 cells, is obtained at the
highest Mach number, specifically at M∞ = 3 and α = 4◦.

As M∞ → 0, the carpet plot of Fig. 18 shows a moderate increase
in the number of cells that is consistent with the increase in E shown
in Fig. 17. The inset at lower-left shows a typical mesh in the subsonic
regime. At a given angle of attack, the meshes are self-similar in the
sense that the refinement regions simply enlarge with decreasing Mach
number to compensate for the weakening pressure variations.

Overall, Figs. 17 and 18 offer a convincing demonstration of the
benefits of adaptive mesh refinement and automatic error control for
simulation verification. Even in this simple 2D example, constructing
a single mesh that accommodates all the flow regimes, from smooth
subsonic flow to the disparate shock systems of transonic and supersonic
flow, is a daunting task that requires orders of magnitude more cells.
Moreover, uniform refinement of such a mesh to demonstrate verification
is not practical.
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Figure 19. Delta-wing-body model with a partial view of the wind-tunnel
sting

7.2 Pressure Signature of a Body in Supersonic Flow

This example demonstrates verification of a simulation that predicts the
near-field pressure signature of a lifting configuration in supersonic flow.
Such simulations are used to determine loudness of sonic booms [69, 70].
The key to credible noise analysis is the accurate prediction of the weak
shocks and expansions, and their interactions, that are generated by low
sonic-boom vehicles. These pressure disturbances are highly susceptible
to attenuation by discretization error and consequently, these simulations
hinge on the mesh [71, 38, 23, 72, 43, 73].

The simulation involves a popular wing-body model, originally iden-
tified as “Model 4” in the experiments of Hunton et al. [74] and used
subsequently in many studies, for example [70, 38, 72, 75, 76]. Figure 19
shows the details of the geometry, including an axisymmetric fuselage, a
delta wing with diamond-airfoil cross sections and an approximate wind-
tunnel sting from [38] that forms a step junction at the base and extends
downstream. The surface tessellation contains 1.3 million triangles.

Our goal is to predict the pressure signature on a line located 3.6
model lengths below the model’s centerline and parallel to freestream.
The output functional is given by Eq. 21, where we set n = 2 to emphasize
the importance of accurately capturing the peaks of the signature. The
freestream Mach number is 1.68 and the angle of attack is set to match
a CL of 0.15. This corresponds to one of the experiments performed
in [74]. Monotonicity of the solution is maintained through use of the
Barth-Jespersen limiter [63].

The left frame of Fig. 20 shows the setup for a half-body simulation.
The model and the sensor (solid horizontal line) are shown on the symme-
try plane of the near-field region of the initial mesh. The mesh is rotated
to approximately align the cells with the freestream Mach-wave angle
and the cells are stretched, about 2 : 1 : 2, in the direction of the wave
angle and spanwise to improve computational efficiency. The initial mesh
contains 12×12×8 cells, and the geometry and sensor are intersected by
just five cells. In other words, except for the rotation and cell stretching,
the mesh is not biased to anticipate features of the solution and should
be far from the asymptotic region of the functional. The refinement
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Figure 20. Near-field view of the initial mesh (left), mesh after 12 adapta-
tions (middle) and isobars (right) with inset frame showing isobars close
to the model. Pressure signature example (symmetry plane, isobar range
0.65–0.78 in 0.005 increments, M∞ = 1.68)

threshold for each adaptation cycle is set to the mean error value if the
error indicator is decreasing, otherwise it is set to twice the mean value
to limit over-refinement. The maximum number of cells, Nmax, is set to
20 million cells.

The middle and right frames of Fig. 20 show the mesh and flow so-
lution after 12 adaptations. Before addressing verification, we briefly
discuss the salient features of the refinement pattern. As expected, the
refinement follows the shocks and expansions between the model and the
sensor; however, note the refinement above the model and below the sen-
sor. Similar to the vortex problem of Sec. 6, we visualize the functional’s
zone of dependence through the adjoint solution. Figure 21 shows the
absolute value of the first adjoint variable. The grayscale map is tuned to
indicate where point-source perturbations of the mass-conservation equa-
tion influence the pressure signature. In addition to the region between
the body and the sensor, the plot confirms the dependence on regions
above the model and below the sensor. This is consistent with the ex-
pected propagation of characteristics in this three-dimensional flowfield.
Moreover, no refinement occurs upstream of the leading shock because
the adjoint solution and the flow residual are zerol, which makes |η|H van-
ish. There is also little refinement in the wake. This happens because the
adjoint vanishes downstream of the sensor, since residual perturbations
past the sensor in supersonic flow cannot affect the signature. Lastly, the
sensitivity of the error indicator to changes in adjoint curvature triggers
the refinement near the sensor (middle frame of Fig. 20 and Fig. 21)
to accommodate both the flow and adjoint solutions on the same mesh.
This is similar to the discussion around Fig. 13 in Sec. 6.2.

lThe adjoint is zero due to the quadratic form of J .
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Figure 21. Contours of density-adjoint (|ψ0|, white 0, black 0.012) on
symmetry plane

To demonstrate verification, Fig. 22 presents convergence of the sig-
nature, the functional and its error estimates. Figure 22(a) shows the
classical, qualitative evidence of mesh convergence by examining changes
in the signature as the mesh is refined. The main features of the signa-
ture are captured within ten adaptations and the signal is converged to
plotting accuracy in twelve adaptations. We also validate the signature
using experimental data (∗ symbols) from [74]. The agreement between
the experiment and the simulation is excellent.

Figures 22(b)–22(d) show quantitative evidence of convergence as the
mesh is refined. Figure 22(b) shows convergence of the functional JH
(solid circles) and the corrected functional Jc (open squares). Changes in
these quantities begin to taper once the mesh reaches 200,000 cells, where
the corrected functional begins to predict the value of the functional on
the next mesh with increasing accuracy. Figure 22(c) shows convergence
of the various error estimates. In general, the error increases over the first
five cycles and thereafter decreases. As in the airfoil database example
(recall Fig. 16), the increasing error indicates new features emerging in
the flowfield due to the coarse initial mesh.

The top line (solid circles) in Fig. 22(c) shows convergence of the
error-indicator bound η. The second line (squares) shows convergence
of the error estimate E of Eq. 37 with C = 2. This assumes JH is
O(h), which is conservative and expected because both the flow and
geometry are dominated by non-smooth features. The error-indicator
bound is larger than the error estimate, but both show similar convergence
behavior. The third line (solid triangles) monitors the magnitude of the
functional update (ΔJ = |J i

H − J i−1
H |) for each cycle of the adaptation.

Once the mesh reaches 70,000 cells, the update begins to converge and
becomes smaller than the error estimate. The fourth line (× symbols)
shows the magnitude of the remaining error term, Eqs. 36 and 38 without
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Figure 22. Mesh convergence for the pressure signature example

localization. Localization increases the magnitude of the error indicator
η by about two orders. This is only slightly larger than what is shown in
Fig. 10(b) for the vortex problem despite the significantly more complex
flow. Furthermore, this confirms that the remaining error term in Eq. 32
is small relative to the adjoint correction.

Figure 22(d) combines information presented in Figs. 22(b) and 22(c)
to concisely demonstrate simulation verification. The convergence of
the functional is shown with error bars that represent the estimated
discretization error E (taken from the second line of Fig. 22(c)). The
largest error occurs on the fourth adaptation and the error estimate
sharpens considerably by the tenth adaptation (600,000 cells). Starting
from this mesh, the error estimates reliably bracket the solution obtained
on the finest mesh (29.4 million cells) indicating asymptotic convergence.

Figure 23 shows error histograms and the mean error value for the
initial, fifth and final meshes. The left frame of Fig. 23 shows that most
of the cells of the initial mesh contribute no error, which is due to the
uniform starting mesh. The middle frame of Fig. 23 shows the histogram
after five adaptations (sixth mesh), where the error indicator η reaches
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Figure 23. Histograms showing the distribution of error-indicator values
for the initial mesh (left), mesh after five adaptations (middle) and final
mesh (right) for the pressure signature example.

its maximum value (as shown in Fig. 22(c)). This mesh contains about
11,000 cells and the histogram shows the beginnings of error equidistri-
bution, with the mode of the distribution already close to the mean. The
right frame of Fig. 23 presents the histogram of the final mesh. The
mode moved to the left, the mean stayed close to the mode and the error
distribution sharpened considerably.

In terms of performance, the total simulation (wall-clock) time was
1 hour 42 minutes on 96 Intel Xeon E5-460L cores [77]. The flow and
adjoint solutions on the final mesh (29.4 million cells) required about
20 minutes each. In an engineering setting, Fig. 22(d) indicates that it
would be sensible to terminate the simulation after twelve adaptations
(omit the last two solutions). Convergence of the functional and error
becomes predictable by the tenth adaptation and the level of error is quite
small after twelve adaptations (4.5 million cells). Moreover, Fig. 22(a)
shows that after twelve adaptations there are essentially no changes in
the signature. If the simulation is stopped after twelve adaptations, the
wall-clock time is only 18 minutes, where the flow and adjoint solutions
require about 4 minutes on the final mesh. Additional speedup is possible
by omitting the error analysis on the final mesh, which would reduce the
net wall-clock time to about ten minutes on these CPU’s.

7.3 Launch-Abort Vehicle

The final example involves the prediction of aerodynamic forces for a
launch-abort-vehicle prototype. The example explores the limits of Pro-
cedure 1 when applied to problems that contain regions of separated,
recirculating flow. Referring to Figs. 24 and 25, the vehicle consists of
a crew module with a tower-mounted abort system. During a launch
emergency, the four Abort Motors (AMs) ignite to pull the crew mod-
ule safely away from the rocket stack. Throughout the abort, stability
and control of the vehicle is maintained by differential thrust from eight
Attitude Control Motors (ACMs) near the nose. For this example, we
consider a high-altitude abort case studied previously in [78] at M∞ = 4
and α = 20◦ that involves strong ACM jets.
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Figure 24. Launch-abort vehicle surface geometry
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Figure 25. Close-up view of the nose-cone (shown with triangulation)
and the ACM nozzles. The thrust settings are indicated in the cutaway
view of the right frame.

Figure 26. Near-body view of initial
mesh on symmetry plane

A close-up view of the
nose with the ACM nozzles
is shown on the left side of
Fig. 25. The jet boundary
conditions are applied at the
throat faces of the nozzles,
which are recessed inside the
tower, as shown in the mid-
dle frame of Fig. 25. The
jet boundary conditions match
the exit momentum, pressure and thrust of the ACM performance
data [78]. The right side of Fig. 25 shows the thrust setting for each
nozzle. The largest thrust is generated by the bottom (south facing)
nozzle and five of the eight nozzles are active.

The surface discretization of the vehicle contains roughly 380,000
triangles and is obtained directly from a CAD model. Figure 25 shows
an example of the triangulation for the nose-cone component. Figure 26
shows the initial mesh containing 12,880 cells, with only 580 cut cells.
As in the previous examples, there is no bias to anticipate features of the
flow solution and multiple ACM nozzles are contained within a single
cut cell. The refinement threshold for each adaptation cycle is set to the
mean error value if the error indicator is decreasing, otherwise it is set to
twice the mean value (same as the pressure signature example 7.2). The
output of interest is a weighted sum of normal and axial force coefficients

J = CN + 0.4CA (42)
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Figure 27. Near-body views of the mesh after 12 adaptations (M∞ = 4
and α = 20◦)

and Nmax is set to 50 million cells.
The simulation uses the minmod limiter and runs for 13 adapta-

tions. For the last two adaptations the mesh growth is fixed at 2.5 and
3. Figure 27 shows the near-body mesh after 12 adaptations. The mesh
contains 16.9 million cells with the finest cells located near the nose, in
the windward region near the centerline and at the heatshield shoulder.
The refinement of the wake and above the vehicle is moderate, as shown
in the inset of Fig. 27. Figures 28 and 29 show the solution after 12
adaptations. The Mach number contours reveal the interaction of several
shocks and expansions. The left frame of Fig. 29 shows a close-up of the
nose bow-shock and the south (downward pointing) ACM jet on symme-
try plane. The bow-shock impinges on the ACM jet-shock and creates
a channel of supersonic flow that decelerates through a series of shocks
to subsonic flow just upstream of the ACM nozzle, as shown in the left
inset of Fig. 29. This is a well-known shock-shock interaction pattern
that Edney [79] classified as Type IV interference. The right frame of
Fig. 29 shows the front view of the solution on a plane just behind the
ACM nozzles. Note the distortion of the bow shock due to the ACM jets.

The salient feature of the flow is the interaction of the ACM jets with
the abort motor and crew module surfaces. The jet paths cannot be
determined in advance of the computation, yet they have a significant
influence on forces, moments and heat transfer. In particular, the interac-
tion of the jets with the surrounding flow can adversely affect the ACM’s
authority over pitching moment [78]. Figures 27 and 28 show that the
finest cells track the bow and jet shocks away from the body and the
first transverse cut-plane shows a highly refined mesh for the three main
jets near the nose. Such fine cells are necessary because discretization
errors introduced in this upstream region influence the functional over
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Figure 28. Near-field view of Mach isocontours after 12 adaptations on
the symmetry plane. Contours are compressed using

√
M to improve jet

visualization. The surface of the vehicle is shaded by pressure coefficient
(M∞ = 4 and α = 20◦).

Nozzle

Side-view Front-view

Figure 29. Close-up views near the nose showing Mach isocontours: side-
view on symmetry plane (left) and front-view with a cutting plane just
behind ACM nozzles (right). Inset on left shows details of the ACM
shock interaction (M∞ = 4 and α = 20◦).
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Side Front

Below

Figure 30. Jet paths around the vehicle (M∞ = 4 and α = 20◦)

the rest of the vehicle. Further along the vehicle, the second cut-plane
of Fig. 27 shows the adaptation pattern still tracking the jet paths, but
with less refinement. The final cut-plane through the heatshield shoulder
is nearly symmetric, indicating that at this downstream station the jets
have negligible influence on the functional.

To further investigate the refinement of the jets, we use iso-surfaces
of stagnation enthalpy to visualize the jet paths around the vehicle in
Fig. 30. The jet surfaces are shaded by Mach number. The bifurcation
of the main jet is striking. This is a consequence of the over-pressure
at the ACM nozzle exit caused by the Type IV interference, followed
by downstream interactions of the jet with the supersonic flow. The
bifurcated jet contacts the sides of the crew module as it is swept upward
by the high angle-of-attack flow. The “Below” view of Fig. 30 shows that
the shocks from the abort motor nozzles alter the jet paths away from
the crew module and thereby alter the heating experienced by the crew
module. Lastly, as indicated previously in Fig. 27 and shown in Fig. 30,
the refinement of the jets wanes as the flow approaches the heatshield
shoulder. While in reality the jets persist well into the wake of the vehicle,
the error analysis truncates their refinement once they pass beyond the
heatshield, where they can no longer impact the functional. This is the
same behavior as we observed in the supersonic regime of the airfoil
database example, but here in a much more complex flow.

Figure 31 summarizes the convergence of the functional, the error
estimates and the aerodynamic forces. Figure 31(a) shows the value of
the functional on each mesh along with error bars representing the level of
discretization error E via Eq. 37 with C = 2. As in the pressure signature
example, we assume that JH is O(h) because the flow is dominated by
shocks and contact discontinuities. The large error estimates in the
second and third adaptation are primarily associated with refinement of
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Figure 31. Mesh convergence for the launch-abort vehicle example

the ACM jets. The inset in Fig. 31(a) shows that over the last three
adaptations the error bars bracket the functional and the changes in the
functional are less than 1%. Figure 31(b) shows convergence of the error-
indicator bound η, the error estimate E and magnitude of the functional
update (ΔJ = |J i

H − J i−1
H |). While convergence is not as convincing as

in the previous examples, all three error measures are decreasing once
the mesh reaches about 2 million cells.

Despite the complicated flowfield, especially the recirculations behind
the heatshield and the inactive abort motors, Procedure 1 remains effec-
tive in addressing critical regions of the flow that influence the outputs.
Figure 31(c) shows that there are virtually no changes in the axial and
normal force coefficients over the last two adaptations. More broadly,
this example characterizes the performance of Procedure 1 in verification
of difficult engineering simulations, and demonstrates the benefits of af-
fordable and automatic error control in providing insight into complex
flowfields.
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8 Conclusions

A procedure for automatic control of discretization error in steady simu-
lations of inviscid flow has been presented. The procedure involves error
estimates based on the method of adjoint-weighted residuals in conjunc-
tion with incremental mesh enrichment based on a Cartesian cut-cell
method. We draw the following conclusions from our results:

• The code verification example demonstrates that both the func-
tional JH and corrected functional Jc are O(h2), which is the ex-
pected order of accuracy. The error-indicator bound η converges
at about the same rate due to the discontinuous adjoint field and
localization. This is sufficient for the discretization error estimate
E to be O(h2) with effectivity close to one.

• The simulation verification examples show that once the mesh is
sufficiently fine, E reliably brackets JH and decreases by about a
factor of two per adaptation cycle.

• The error map |η|H reliably identifies critical regions of the mesh.
Consequently, the procedure reliably handles extremely coarse ini-
tial meshes and generates a converging sequence of affordable meshes
that accurately predict the output.

• The procedure offers a practical alternative to the manual gener-
ation of simulation-specific meshes that encompass the knowledge
and experience of specialists and instead automatically delivers
meshes and error estimates that provide significant insight into the
simulation.

• Since a mesh refinement study is intrinsic to every simulation, the
procedure automatically provides convergence histories of outputs
of interest and error estimates. This makes the task of obtaining
verified simulations straightforward and essentially automatic.

• Returning to the opening quote of the Introduction; the results
show that the procedure attains a sufficient level of reliability and
robustness for routine use in simulation verification.

There are many areas for future work. For example, improving the ac-
curacy of the embedded adjoint representation through use of affordable
approximate solutions could improve the sharpness of the error estimate.
Incorporating the procedure within simulation-based design could sig-
nificantly reduce cost of optimization problems. More broadly, since
simulations in practice frequently involve some degree of unsteady flow
(as in the launch abort example of Sec. 7.3), the procedure should be
extended to transition smoothly from steady to unsteady flow, especially
for applications where the time variation in the outputs is relatively small.
Furthermore, the extension of the procedure to handle flows involving
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multiple components, or species, and turbulence is an important area of
future work.

References

[1] Baker, T. J., “Mesh Adaptation Strategies for Problems in Fluid Dynamics,”
Finite Elements in Analysis and Design, Vol. 25, No. 3/4, 1997, pp. 243–273.

[2] Bussoletti, J. E., Johnson, F. T., Bieterman, M. B., Hilmes, C. L., Melvin, R. G.,
Young, D. P., and Drela, M., “TRANAIR: Solution adaptive CFD modeling for
complex 3D configurations,” Recent developments and applications in aeronautical
CFD , Proceedings of the 1993 European Forum, London, United Kingdom, 1993,
pp. 10.1–10.14.
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[12] Süli, E. and Houston, P., “Adaptive Finite Element Approximation of Hyperbolic
Problems,” Error Estimation and Adaptive Discretization Methods in Computa-
tional Fluid Dynamics, edited by T. Barth and H. Deconinck, Vol. 25 of Lecture
Notes in Computational Science and Engineering , Springer-Verlag, 2002.

[13] Giles, M. B. and Pierce, N. A., “Adjoint error correction for integral outputs,”
Error Estimation and Adaptive Discretization Methods in Computational Fluid
Dynamics, edited by T. Barth and H. Deconinck, Vol. 25 of Lecture Notes in
Computational Science and Engineering , Springer-Verlag, 2002.

[14] Barth, T., “Numerical Methods and Error Estimation for Conservation Laws on
Structured and Unstructured Meshes,” Lecture notes, von Karman Institute for
Fluid Dynamics, Series: 2003-04, Brussels, Belgium, March 2003.

[15] Venditti, D. A. and Darmofal, D. L., “Grid Adaptation for Functional Out-
puts: Application to Two-Dimensional Inviscid Flow,” Journal of Computational
Physics, Vol. 176, 2002, pp. 40–69.

43



[16] Hartmann, R., “Multitarget error estimation and adaptivity in aerodynamic flow
simulations,” SIAM J. Sci. Comput., Vol. 31, No. 1, 2008, pp. 708–731.

[17] Dwight, R. P., “Heuristic a posteriori estimation of error due to dissipation in
finite volume schemes and application to mesh adaptation,” Journal of Compu-
tational Physics, Vol. 227, No. 5, 2008, pp. 2845–2863.

[18] Wang, L. and Mavriplis, D. J., “Adjoint-based h-p adaptive discontinuous
Galerkin methods for the 2D compressible Euler equations,” Journal of Com-
putational Physics, Vol. 228, 2009, pp. 7643–7661.

[19] Krakos, J. A. and Darmofal, D. L., “Effect of Small-Scale Output Unsteadiness of
Adjoint-Based Sensitivity,” AIAA Journal , Vol. 48, No. 11, Nov. 2010, pp. 2611–
2623.

[20] Yi, L. Y., Allaneau, Y., and Jameson, A., “Continuous Adjoint Approach for
Adaptive Mesh Refinement,” AIAA Paper 2011–3982, June 2011.

[21] Yano, M. and Darmofal, D. L., “An optimization-based framework for anisotropic
mesh adaptation,” Journal of Computational Physics, Vol. 231, No. 22, 2012,
pp. 7626–7649.

[22] Copeland, S. R., Lonkar, A. K., Palacios, F., and Alonso, J. J., “Adjoint-Based
Goal-Oriented Mesh Adaptation for Nonequilibrium Hypersonic Flows,” AIAA
Paper 2013–0552, Grapevine, TX, Jan. 2013.

[23] Park, M. A. and Darmofal, D. L., “Validation of an Output-Adaptive, Tetrahedral
Cut-Cell Method for Sonic Boom Prediction,” AIAA Journal , Vol. 48, No. 9, Sept.
2010, pp. 1928–1945.

[24] Park, M. A., Lee-Rausch, E. M., and Rumsey, C. L., “FUN3D and CFL3D
Computations for the First High Lift Prediction Workshop,” AIAA Paper 2011–
0936, Jan. 2011.

[25] Hartmann, R., Held, J., and Leicht, T., “Adjoint-based error estimation and
adaptive mesh refinement for the RANS and k-w turbulence model equations,”
Journal of Computational Physics, Vol. 230, No. 11, May 2011, pp. 4268–4284.

[26] Richter, T., “Goal-oriented error estimation for fluid-structure interaction prob-
lems,” Computer Methods in Applied Mechanics and Engineering , Vol. 223–224,
2012, pp. 28–42.

[27] Ceze, M. and Fidkowski, K. J., “Drag Prediction Using Adaptive Discontinuous
Finite Elements,” Journal of Aircraft , 2014.

[28] Aftosmis, M. J., Berger, M. J., and Melton, J. E., “Robust and Efficient Cartesian
Mesh Generation for Component-Based Geometry,” AIAA Journal , Vol. 36, No. 6,
1998, pp. 952–960.

[29] Berger, M. J. and Aftosmis, M. J., “Aspects (and Aspect Ratios) of Cartesian
Mesh Methods,” Proceedings of the 16th international conference on numerical
methods in fluid dynamics, Arcachon, France, July 1998.

[30] Colella, P., Graves, D. T., Keen, B. J., and Modiano, D., “A Cartesian grid
embedded boundary method for hyperbolic conservation laws,” Journal of Com-
putational Physics, Vol. 211, 2006, pp. 347–366.

[31] Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for
high-order discretizations of the compressible Navier-Stokes equations,” Journal
of Computational Physics, Vol. 225, No. 6, 2007, pp. 1653–1672.

[32] Meinke, M., Schneiders, L., Günther, C., and Schröder, W., “A cut-cell method
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