Biomechanics of the Optic Nerve Sheath in VIIP Syndrome

C. Ross Ethier¹, Julia Raykin¹, Rudy Gleason¹, Lealem Mulugeta³, Jerry Myers², Emily Nelson², Brian C. Samuels⁴

¹Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA; ²NASA Glenn Research Center, Cleveland, OH; ³Universities Space Research Association, Houston, TX; ⁴Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL

Disclosures and Acknowledgements

Disclosure: None

Funding

- NASA (CRE)
- Georgia Research Alliance (CRE)

Visual Impairment and Intracranial Pressure (VIIP) Syndrome

 Permanent changes in visual function after long-duration space flights

 41.7% incidence in U.S. astronauts

Structural Changes in the Optic Nerve

Kramer et al. Radiology, 2012.

Cephalad Fluid Shifts

humanresearchroadmap.nasa.gov

Increased CSF pressure drives remodeling of the posterior eye and the optic nerve sheath

Goal

Study the biomechanical response of the optic nerve sheath and posterior eye to elevated CSF pressures

 Eventually, understand visual disturbances that occur during longduration space travel

Optic Nerve Sheath: Anatomy

Killer et al. Brain, 2006.

Hansen et al. Acta Ophthalmologica, 2011.

EXPERIMENTS

Experimental Protocol: Inflation Test

1. Sheath is peeled away from the nerve proper

2. Nerve proper is cut away

3. The optic nerve sheath is cannulated and connected to a pressure control system

Optic Nerve Sheath

Experimental System

System Components:

- 1 Specimen bath/mounted porcine eye
- 2 Syringe pump
- 3 Pressure transducers
- 4 CCD camera

Pressure-Diameter Tests

Modulus Increases at Higher Pressures

Permeability - Experimental Setup

Permeability - Results

Permeability (μL/min/cm²/mm Hg) 0.79 ± 0.12 (mean ± SEM; n=17)

Implication for Humans:

Outflow Rate = $K \cdot P \cdot A = 125 \frac{mL}{day}$ at 7 mm Hg 20% of daily CSF production

 $A = 2 \cdot (\pi DL)$

Geeraerts et al. Critical Care, 2008.

Collagen Structure

Post Mortem Porcine Optic Nerve Sheath

Arterial Adventitia Beal et al. Journal of Surgical Research, 2013.

Collagen Orientation Changes with Pressure

0 mm Hg 30 mm Hg Circ Axial 100 µm 100 µm

Experimental Summary

- Optic nerve sheath exhibits typical soft tissue behavior:
 - Preconditioning effect, with repeatable behavior after 4th pressure cycle
 - Nonlinear stiffening
 - Anisotropic collagen orientation
- Structure and behavior appears to be similar to the adventitia
- High permeability suggests CSF drainage could play an important role in fluid transport in the optic nerve sheath

Limitations

- Peeling back the meninges could cause structural damage
- Lack of availability of long human optic nerves

• Post mortem effects on permeability?

MODELING

Basic Modeled Geometry

Hansen et al. Acta Ophthalmologica, 2011.

Adopted from Ekington et al. 1990

Basic Modeled Geometry

Two dura mater geometries considered

Optic Nerve Head (ONH) Geometry

• Based on models of Sigal et al., 2005

Material parameters

- Linearly elastic
 - Sclera 3.0 MPa
 - Peripapillary Sclera 3.0 MPa
 - Lamina Cribrosa 0.3 MPa

- Pia Mater 3.0 MPa
- Dura Mater 1.0 MPa
- Retinal Vessel Wall 0.3 MPa

Loading

1. Baseline (Standing or walking)

IOP – 15 mmHg ICP – 0 mmHg RVP – 55 mmHg

2. Supine

IOP – 15 mmHg ICP – 12 mmHg RVP – 55 mmHg

3. Elevated ICP

IOP – 15 mmHg ICP - 30 mmHg RVP – 55 mmHg

von Mises Stress

von Mises Stress Distributions

Expanded Dura

Y-displacement

Scale:

+ y <

Z-displacement

Scale:

+ y <

1st Principal Strain

Scale:

+ **y** -

2nd Principal Strain

3rd Principal Strain

Displacements

Increase ICP: 0 to 30 mmHg

Regions of Interest

Principal Strain Distributions

Schematic Description

Schematic Description

Future Directions

- Quantify collagen microstructural changes during mechanical loading
- Incorporate collagen microstructure into computational models of VIIP syndrome
- Study possible static instability in ONS

Acknowledgements

- DeVon Griffin
- Ian Sigal
- Andrew Feola

Summer Biomechanics, Bioengineering & Biotransport, Conference

Snowbird Resort, Utah, June 17-20, 2015

Key dates: • January 16, 2015: abstract submission deadline

mechanics.

bioengineering. biotransport.

- Mid-April, 2015: early bird registration
- June 17-20, 2015 : SB³C Meeting at Snowbird, Utah

Your summer meeting is evolving: bigger, broader, better

www.sb3c2015.com