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ABSTRACT
The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite

corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with

embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard pro-

cessing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements.

Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross

section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as

embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of struc-

ture to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the

plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel

construction, which is typically sized to meet static load requirements. Absorption and transmission loss perfor-

mance improvements attributed to opening the inlets were apparent for some configurations and inconclusive

for others.

1. Introduction

A launch vehicle interior noise control concept currently of interest involves the integration of large wavelength

tuned chamber core resonators within a corrugated core structural sidewall. This concept takes advantage of

the existing core chamber volumes, whereby inlets are introduced at particular locations on the interior face

sheet to create an array of acoustic resonators. A schematic of this structural concept with integrated acoustic

resonators is shown in Figure 1. Noise control is achieved by both reducing the transmission of sound through

the panel and increasing the absorption within the vehicle interior acoustic volume. For a given application, it

is envisioned that the chamber and inlet geometries would be tailored to provide a desired noise reduction (NR)

spectrum while also maintaining load bearing capabilities.

The embedded resonator noise control concept has been a topic of previous interest for space launch vehicle

and commercial aircraft applications. In 1991, Kuntz et al. described the development and testing of add-on

hemispherical resonators to reduce cabin noise in propfan-powered aircraft [1]. In one configuration the res-

onators were installed in the cavity between the sidewall and trim panel to attenuate the double wall resonance

of the system. In this case a noise reduction of more than 10 dB was observed in laboratory experiments. Sub-

sequent work considered the benefit of embedding acoustic resonators into the wall of a space launch vehicle

payload fairing [2, 3]. Specifically, the fairing consisted of two facesheets separated by a hollow core with

long rectangular chambers used as the acoustic resonators. The benefit of this concept is that the double wall

structure is strong and lightweight and includes acoustic resonators without the additional volume or weight
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Figure 1: Corrugated core panel with integrated resonators.

of add-on resonators. Li et al. showed that the integrated resonators could effectively attenuate low-frequency

acoustic resonances [4]. The Space Launch System payload fairing structure has recently undergone a trade

study that included the corrugated sandwich concept [5]. The team ultimately recommended a honeycomb

sandwich architecture as the point of departure design. However, the study was performed without accounting

for the acoustic benefit of resonators within the corrugated sandwich structure. If the embedded resonators can

be used to attenuate low frequency noise, then the corrugated sandwich concept may provide better overall per-

formance than alternative architectures due to weight savings resulting from a reduced need for thick acoustic

foam treatment.

Absorption and transmission loss tests were conducted on several integrated resonator corrugated core test

articles at Riverbank Acoustical Laboratories (RAL) in Geneva, IL from April 9-11, 2014. Due to the expected

narrowband performance of the integrated resonators and their apriori unknown quality factors, time histories

of all tests were acquired for subsequent analysis over band bases narrower than the standard 1/3 octave band

basis. In the following section, the test articles are described. This is followed by a description of the post

processing techniques applied to the acquired time histories, and a discussion of the experimental results.

2. Test Articles

Three types of corrugated core panels with varied thickness and corrugation patterns were initially fabricated.

The panel thicknesses were 25.4 mm, 50.8 mm, and 101.6 mm, denoted as P1, P2, and P4. However, only

P2 and P4 configurations were tested during this investigation due to mid-test reprioritization. Each 1.22 m ×
2.44 m panel was fabricated in three 1.22 m × 0.81 m sections. These subpanels were then placed adjacent to

one another during TL and absorption testing. Geometrical details of the P2 and P4 subpanel constructions are

shown in Table 1. The P2 and P4 inlet diameters were machined to 25.4 mm and 50.8 mm, respectively. The

application of 25.4 mm inner diameter aluminum annular discs to the P4 inlets allowed for an additional P4

configuration with reduced inlet diameters.

Initially the subpanels were not sealed at the ends so that the 0.81 m long chambers within the core could

be visually inspected. However, to be effective as an acoustic resonator, the chambers had to be sealed on both

ends while leaving a single inlet in the top face sheet. This was realized by adhering carbon laminate strips to

either side of the subpanels along the 1.22 m long cross sections with butyl sealant tape. This provided an air

tight seal at the top and bottom of each resonator. The chamber lengths of P2 were reduced during the latter

phase of testing by replacing the taped laminate endcaps with approximately 25.4 mm deep closed cell foam

plugs that inserted into the chambers, conforming to the trapezoidal chamber cross section. The foam plugs

were used to create 356 mm long chambers, as measured from endcap-to-endcap. In hindsight, the closed cell

foam plugs provided a much simpler endcap solution in terms installation, adjustability, and removal.

3. Test Procedures

The RAL facilities that were utilized in this test consisted of a large 291 m3 reverberant room for absorption

measurements (Room 0) and dual 178 m3 (source, Room 2) and 139 m3 (receive, Room 3) reverberant rooms

coupled through (at most) a 1.22 m × 2.44 m opening for the measurement of diffuse acoustic field transmission
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Table 1: Geometric details of P2 and P4 subpanels (unit = mm).

P2

102 

83 

25 

1219 

813 

37 

51 

102 

75° 

P4

202 

83 

5  

1219 

813 

74 

102 

203 

75° 

loss. Each room included a corner located sound source as well as static and rotating diffusers to promote sound

field diffusivity. During testing, pressure signals were acquired with a single 12.7 mm diameter diffuse field

microphone on a centrally located rotating boom.

The absorption tests were conducted in Room 0 in conformance with the requirements of ASTM C423-

09a, whereby the room absorption area is determined by averaging the band limited reverberation decay rates

resulting from a series of microphone-measured noise burst and decay events [6]. The absorption area was then

calculated using the Sabine formula, A = 0.9210(V d/c), where d is the dB/s decay rate after subtracting out

the decay rate due to air absorption and V and c are the room volume and speed of sound, respectively. Ambient

room dry bulb temperature and relative humidity were recorded at the beginning and end of each absorption

measurement and were used to determine air absorption per ANSI S1.26 [7].

The standard absorption test procedure involves the measurements of A with and without the test article

placed on the floor to determine the absorption area attributed to the test article. In this case, however, two

absorption measurements consisting of the panel placed in the room with and without inlets covered were used

to ascertain the performance of the embedded resonator array. The room noise reduction due to resonator

absorption can then be written as

NR = 10log10 (A/A0) , (1)

where A and A0 are the room absorption areas with open and closed resonator inlets, respectively.

Images of the P2 and P4 open inlet absorption test configurations are depicted in Figure 2. To cover the

inlets, 0.18 mm thick aluminum tape was adhered over the inlets. Prior experimental efforts have shown this

method of inlet closing to be adequate. Because this is a resonant noise control concept and because the summed

inlet areas were largely insufficient when considering the C423-09a size and shape requirements, determination

of an absorption coefficient was of little interest and only the room absorption area was considered for the

purposes of performance assessment and model correlation.

The ASTM E90-09 TL tests carried out in Room 2 and Room 3 consisted of measuring the three right hand

side terms of the expression

TL = 〈L1〉 − 〈L2〉+ 10 log10 (S/A2) , (2)

where 〈L1〉 and 〈L2〉 refer to the average sound pressure level in the source and receive room, S is the surface

area of the test panel facing the receive room, and A2 is the receive room absorption area [8]. The receive room

absorption area A2 was measured corresponding to the aforementioned absorption measurement procedure,

although in this case the air absorption effects were not removed from the decay rates. Room levels 〈L1〉
Noise-Con 2014, Fort Lauderdale, Florida, September 8–10, 2014
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(a) P2, 25.4 mm dia. inlets (b) P4, 25.4 mm dia. inlets (c) P4, 50.8 mm dia. inlets

Figure 2: Absorption test cases.

and 〈L2〉 were subsequently measured during serial acquisitions while the source room was ensonified with

steady-state broadband noise. The space and time average room levels were determined from 160 second long

acquisitions corresponding to 5 revolutions of the rotating microphone.

TL tests for each configuration were performed with open and closed inlets to determine the Insertion Loss

(IL) attributed to opening the resonator inlets on the radiating side of the panel. Use of the IL to assess the noise

control capabilities of the embedded resonators avoided the difficulty of accounting for the complex structural

dynamics of the corrugated core construction as well as the uncertain boundary conditions at the subpanel

perimeters. This approach assumes 1) no change in the structure from open to closed inlet configurations, and

2) the vibroacoustic coupling within the resonator is a component of the resonator influence and is accounted

for during performance assessment and model correlation. The assumption of no change between open and

closed TL tests was found to be reasonable given that the only difference introduced between tests was the

addition or removal of aluminum tape covers comprising 1% or less of the total panel mass. Images of the P2

and P4 open inlet TL test configurations are depicted in Figure 3. The subpanels were stacked end-to-end in

the opening between the source and receive rooms during these tests. Only 2 of the 3 subpanels were installed

during the P4 TL tests due to insufficient clearance in the test window.

(a) P2, 25.4 mm dia. inlets (b) P4, 25.4 mm dia. inlets (c) P4, 50.8 mm dia. inlets

Figure 3: Transmission loss test cases.
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Due to the expected narrowband performance of the resonators, time histories were acquired during all tests

for post processing within band bases narrower than 1/3 octave. For example, 160 second steady state noise

time histories were acquired in the source and receive rooms during the E90-09 TL tests. Also, 600 seconds of

burst and decay events were acquired during the C423-09a absorption measurements (and E90-09 TL receive

room absorption measurements). This acquisition length included a sample size of approximately 50 bursts,

which was deemed adequate for the estimation of absorption area mean and confidence intervals. These time

histories were acquired during the standard measurements with a separate data acquisition system (NI USB-

4431) connected to the microphone through a LEMO cable splitter. The introduction of the LEMO splitter

to the existing acquisition system was vetted prior to testing to avoid any undesirable effects on the standard

measurements.

4. Data reduction and results

A. Absorption

A band-limited reverse integration method was applied to the absorption test burst/decay time histories to

estimate the average room decay rate and reverberation time spectra using various band bases. During this

process, the following steps were carried out on the acquired 600 second absorption test time histories:

1) Approximately 50 burst and decay events were segmented and temporally aligned using a window and

gating technique.

2) The burst events were filtered using 1/n octave filter banks of 6th order Butterworth bandpass filters

conforming to at least Class 1 filter shape specifications in ANSI S1.11 [9].

3) Decay envelopes penv(t) were determined from the resulting N -length band limited decay time his-

tories p(t) using a normalized reverse integrated Schroeder decay method expressed as penv(t) =

1− (∑t
s=0 p

2(s)
)
/
(∑N

s=0 p
2(s)

)
.

4) Linear regressions of the dB decay envelopes were performed resulting in sets of band limited decay

rates used to determine reverberation times and absorption areas.
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Figure 4: Empty room 1/3 octave reverberation time

spectra with 95% confidence intervals from processed

burst time histories determined using T30 (�), T20

(�), and EDT (�) curve fitting methods compared with

C423-09a test results (�).
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Figure 5: Empty room EDT reverberation time spec-

tra from processed time histories determined using 1/12

(�), 1/6 (�), and 1/3 (�) octave band bases compared

with 1/3 octave C423-09a test results (�). Confidence

intervals not shown for readability.
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The 95% confidence intervals of the mean absorption area were determined using A ± k
(
s/
√
N
)

with a

coverage factor of k = 2, where s is the standard deviation and N is the burst sample size of approximately 50.

The reverberation times determined this way were initially evaluated on a 1/3 octave band basis using

different methods including EDT, T20, and T30 reverberation times ([0, -10], [-5, -25], and [-5 -35] dB decay

fit ranges, respectively) and compared with results from the C423-09a test results, an example of which is shown

in Figure 4. The EDT results were found to be in much better agreement with the C423-09a results relative to

T20 and T30 results for all absorption test cases, especially at lower frequencies, and were consequently used

for the remaining analyses. The process was then performed using narrower 1/6 and 1/12 octave band bases

as shown in Figure 5, where the effect of room modes becomes more apparent at finer spectral resolutions,

especially at lower frequencies.

The 1/6 octave band absorption results for the three absorption test cases evaluated using equation 1 are

shown in Figure 6. The 1/6 band basis adequately resolved the peak and bandwidth characteristics of the

resonators while avoiding the larger uncertainty (wider confidence intervals) inherent to the 1/12 octave band

results. Peaks in the P2 absorption spectra are evident near 100 Hz and to a lesser extend near 300 Hz and

500 Hz. Although the embedded resonators are not ideal quarter wave resonators, the spacing of the peaks

is representative of the odd multiples of the quarter wave resonator harmonics. Similarly, the P4, 25.4 mm

inlet absorption spectrum exhibits peaks near 70 Hz and 210 Hz. While there was no change in chamber length

between P2 and P4, the larger chamber cross-section and vibroacoustic coupling with the thin laminate chamber

walls likely contributed to a reduced resonant frequency. Slight resonant characteristics near 70-100 Hz and

200-300 Hz were noticed in the P4, 50.8 mm inlet results, although the effects were not substantial and are

inconclusive. This may be due to poor coupling between the low frequency room modes and the embedded

resonators for the given test article placement and natural frequency of the resonators.
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(a) P2, 25.4 mm dia. inlets
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(b) P4, 25.4 mm dia. inlets
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(c) P4, 50.8 mm dia. inlets

Figure 6: 1/6 octave band absorption performance for the three absorption test cases shown in Figure 2. 95%

Confidence intervals shown are the combined open and closed inlet absorption area dB uncertainties.

B. Transmission

As previously described, transmission loss is calculated based on measurements of source room level, receive

room level, and receive room absorption per equation 2. The receive room absorption component was computed

from burst decay time histories measured in the receive room using the previously described method. The

following steps were carried out to process the 160 seconds of steady state room level time histories:

1) The first 5 seconds of data was discarded to allow the room level to reach steady-state.
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2) The data was divided into 5 equal blocks that were each 31 seconds long.

3) The 31 second blocks were filtered using 1/n octave filter banks of 6th order Butterworth bandpass filters

conforming to at least Class 1 filter shape specifications in ANSI S1.11 [9].

4) The band limited room levels were determined from the band limited time history root mean square

pressures calculated as prms =
√

1
N

∑N
s=1|p (s)|2.

The mean and standard deviation of the average sound pressure level in the source and receive rooms were

calculated this way for the 5 blocks of data and the corresponding 95% confidence intervals were estimated.

The mean transmission loss was then calculated using equation 2 and the 95% confidence intervals were found

using Equation A2.5 in ASTM E90-09. The TL determined in this way was initially evaluated on a 1/3 octave

band basis and was found to compare favorably with the E90-09 test results. The process was then performed

using narrower 1/6 octave band bases and the IL due to opening the resonator inlets was determined as shown

in Figure 7.

Unfortunately, the full chamber length P2 and P4 configuration IL results were largely inconclusive. The

P4 results also exhibited consistent negative IL near 350 Hz, which may be due to interactions between the

structural dynamics and resonator acoustic volume. However, a positive IL near 200 Hz was evident in the IL

results from the P2 configuration with reduced chamber lengths.

5. Conclusions

An experimental assessment of the absorption and transmission loss performance of the corrugated core embed-

ded resonator noise control concept has been carried out on test panels including different thicknesses, corru-

gation geometries, and inlet diameters. Post processing of microphone time histories acquired during standard

ASTM E90-09 transmission loss and C423-09a absorption tests were used to resolve resonator characteristics

using band bases narrower than 1/3 octave. The relative performance attributed to opening the resonator inlets

was then evaluated using measures of the dB ratio of absorption areas and change in transmission loss. Reso-

nant characteristics were noticed in the absorption and transmission loss results for some configurations, while

other configurations showed inconclusive results attributable to strong room mode interactions (or lack thereof)

at lower frequencies. Follow-up tests conducted using these test articles are slated for the near future to explore

further panel configurations and different test procedures aimed at improved characterization of low frequency

resonant noise control concepts.
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