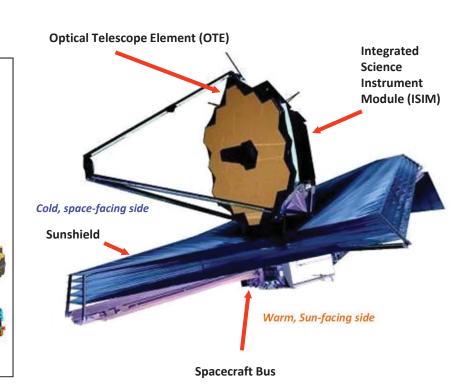

James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Testing at GSFC

Calinda Yew 28th Space Simulation Conference NASA Goddard Space Flight Center (GSFC)

Topics

- JWST Mission Overview
- ISIM CV Test Campaign at GSFC
- Test Configuration
- CV1 Test Summary
- CV1 Chamber Performance
- Improvements in Path Forward to CV2 & CV3
- Summary


JWST Mission Overview

Mission Objective

 Study the origin and evolution of galaxies, stars & planetary systems: Optimized for infrared observations (0.6 – 28 μm)

Organization

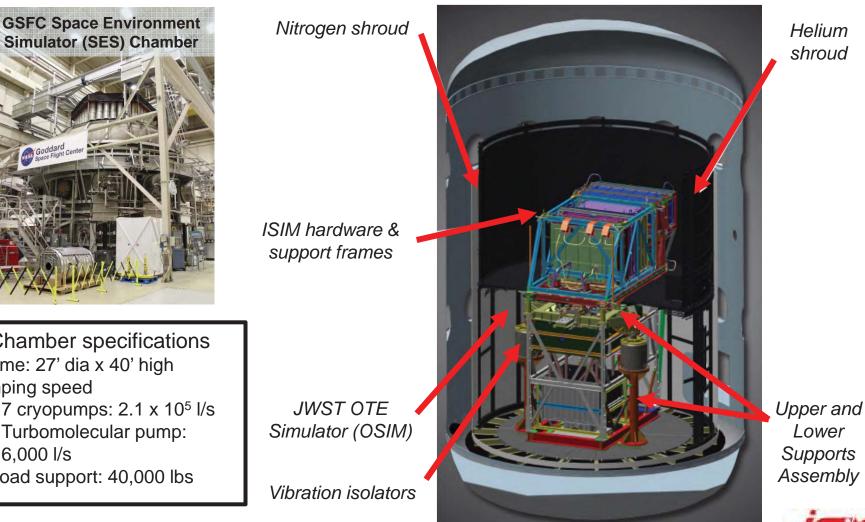
- Mission Lead: Goddard Space Flight Center
- International collaboration with ESA & CSA
- Prime Contractor: Northrop Grumman Space Technology
- Instruments:
- Near Infrared Camera (NIRCam) Univ. of AZ
- Near Infrared Spectrograph (NIRSpec) ESA
- Mid-Infrared Instrument (MIRI) JPL/ESA
- Fine Guidance Sensor (FGS) CSA

Description


- Deployable telescope w/ 6.5m dia segmented adjustable primary mirror
- Cryogenic temperature telescope and instruments for infrared performance
- Launch Oct 2018 on ESA-supplied Ariane 5 ECA rocket to Sun-Earth L2
- 5-year science mission + 2 years of data analysis



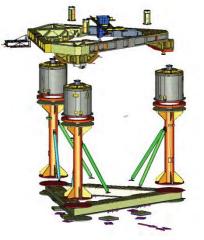
ISIM CV Test Campaign at GSFC



ISIM CV Overall Test Configuration

Chamber specifications Volume: 27' dia x 40' high Pumping speed

- 7 cryopumps: 2.1 x 10⁵ l/s
- Turbomolecular pump: • 6,000 l/s Payload support: 40,000 lbs

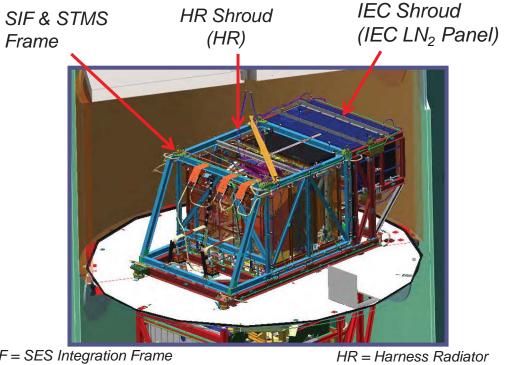


Nitrogen Volume Test Configuration

N₂ Volume Support Hardware Components GSFC Equipment Support Hardware Assembly (GESHA): triangular Al structure to alleviate motion between two aligned systems

- Upper GESHA held at around 90K (-183°C)
- Lower GESHA: held at ambient temperatures to alleviate CTE induced strains

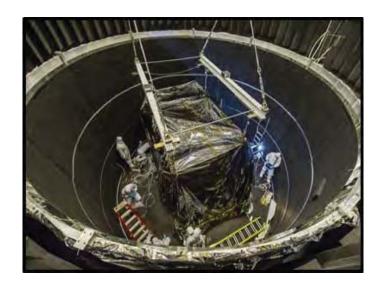
Vibration Isolators System (VIS): pneumatic system isolates test articles from chamber induced jitter sources

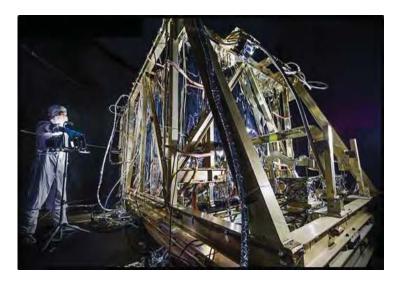

- Chamber vibration measured amplitudes of 1 milli-G in all axes at 20 Hz – VIS provides minimum attenuation of 40 dB to these levels
- VIS vertical natural frequency is 1.0-1.3 Hz
- VIS horizontal natural frequency is 0.4-0.6 Hz

Helium Volume Test Configuration

SIF = SES Integration Frame STMS = Surrogate Thermal Management System IEC = Instruments Electronics Module

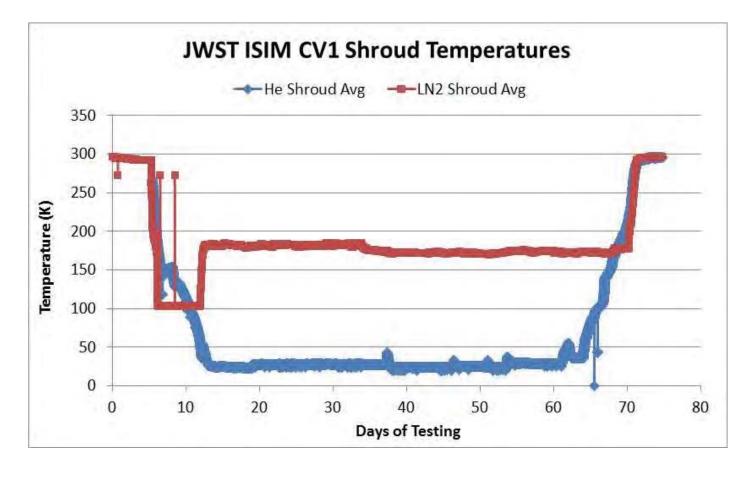
HR = Harness Radiator DSR = Deep Space Radiator


He Shroud Specifications


- Dimensions 26' dia x 15' tall
- Provide 1000 W cooling capacity
- Cooling between 80K (-193°C) and 20K (-253°C)
- Five independently controlled shroud zones
- The other five helium zones are allocated to various parts of ISIM structure

ISIM CV1 Test Summary

- Pump-down: 08/29/2013 ~21:00
- Warm-up: 10/29/2013
- Open chamber: 11/11/13
- Total days under vacuum = 73 days
- Total consumables
 - $LN_2 = 520K$ gallons
 - Helium = 20 bottles



Shrouds Temperature Performance

At steady state: Helium shroud achieved 24K ±1K

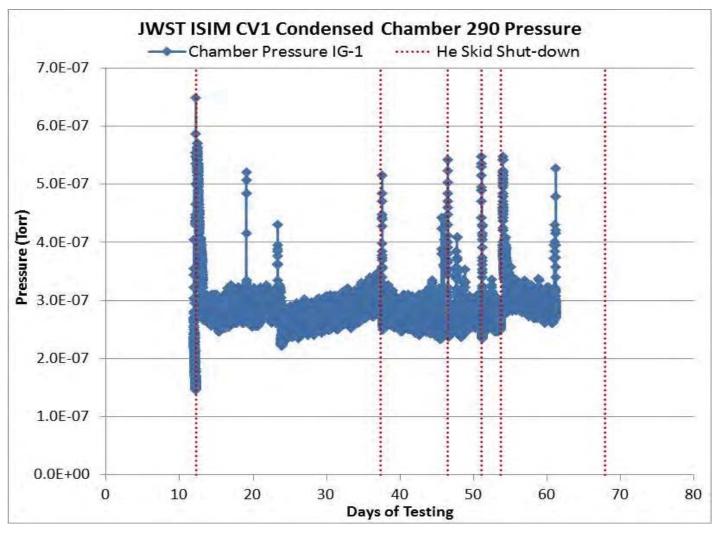
LN2 shroud maintained 182K ±3K (switched LN2 to GN2 Day 11: 9/10/13)

Chamber Vacuum Performance

- High vacuum was achieved using:
 - (qty 6) 65000 liter/sec cryopumps
 - (qty 1) 5000 liter/sec turbopump
- 1 (of 6) cryopumps left in reserve at all times

Pressure (Torr)	Time since start
5.0 x 10-5	29 hrs (1.2 days)
1.0 x 10-5	35 hrs (1.5 days)
5.0 x 10-6	46 hrs (1.9 days)
1.0 x 10-6	108 hrs (4.5 days)
5.0 x 10-7	128 hrs (5.3 days)

Chamber Vacuum Performance


Chamber pressure from pump-down to back-fill JWST ISIM CV1 Full Pressure Data for Chamber 290 ······ He Skid Shut-Down 3.0E-04 Start Warm-I 2.5E-04 2.0E-04 Pressure (Torr) 1.5E-04 Pump-down Cool-dowr 1.0E-04 5.0E-05 0.0E+00 0 10 20 30 40 50 60 70 80 **Days of Testing**

Chamber Vacuum Performance

With cool-down, warm-up, & He skid shut-down pressure spikes omitted, normally 3 x 10⁻⁷ Torr

Improvements for CV2 & CV3

- Helium skid reliability needed to be improved in order to reduce risk to flight hardware and to schedule
- Detection of helium leaks needed to be more stringent in order to verify MIRI head loads

Helium Skid Reliability: Summary of Helium Skid Shutdowns

Total of six (6) helium skid shutdowns:

- Cause #1: low turbine bearing gas temperature alarm
- Cause #2: compressor oil level/temp alarm

#	Date	Cause	Action (back online)	Pressure Spike	Duration*	He Temp (Temp rise)	Duration**
1	09/10/13	#1	Re-start skid (<1 hr)	4.1 x 10 ⁻⁶ Torr	4.0 hrs	52K (+16K)	11.2 hrs
2	10/05/13	#1	Re-start skid (<1 hr)	2.8 x 10 ⁻⁴ Torr	5.3 hrs	42K (+15K)	8.5 hrs
3	10/15/13	#2	Re-start skid (<0.5 hr)	1.1 x 10 ⁻⁴ Torr	1.1 hrs	33K (+9K)	14.0 hrs
4	10/19/13	#2	5-sec interlock to delay shutdown command	9.3 x 10 ⁻⁵ Torr	1.1 hrs	32K (+8K)	6.5 hrs
5	10/22/13	#2	Override compressor load/unload status	9.2 x 10 ⁻⁵ Torr	6.1 hrs	37K (+13K)	N/A
6	11/05/13	#2	Re-start skid (~1 hr)	6.8 x 10 ⁻⁶ Torr	2.1 hrs	N/A (warm-up)	N/A (warm-up)

*Duration for pressure to return to 5×10^{-7} Torr

**Duration for helium shroud average temperature to return to temp before shut-down

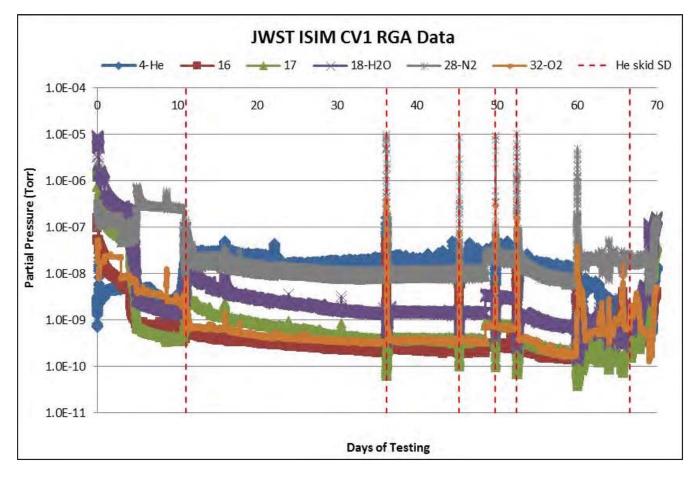
Replace Dunham Busch Compressor 6 to 10 week delivery Successfully installed & checked out May 2014

New

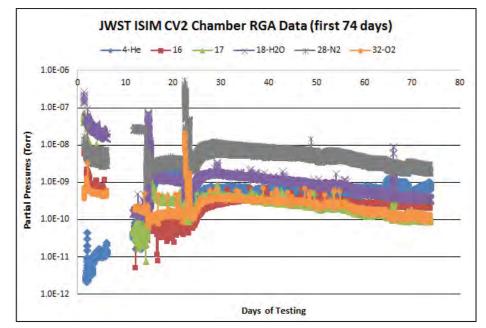
Helium Leak Detection Improvement

RGA

- MIRI requirement: 6.2 K (-266.8°C) at the instrument
 - 2-stage cooler system
 - Accurate heat map required during environmental testing
- Issues encountered during CV1
 - Measured heat loads to cooler from MIRI higher than expected
 - Presumed cause is higher levels of helium in chamber
- Actions
 - Add RGA in STMS volume a
 - Implement more stringent leak checking requirements



JWST ISIM CV1 RGA Data

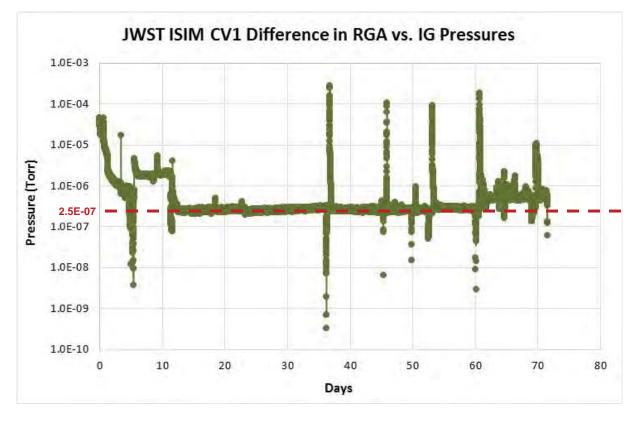

The chamber RGA detected helium levels of 5.0 x 10⁻⁷ Torr

JWST ISIM CV2 RGA Data Preview

Helium levels consistently detectable to levels of 1.0×10^{-9} Torr (as opposed to 5.0×10^{-7} in CV1)

JWST ISIM CV2 Helium Volume RGA Data (first 74 days) 1.0E-04 10 20 30 40 50 60 70 80 1.0E-05 1.0E-06 Partial Pressures (Torr) 1.0E-07 1.0E-08 1.0E-09 1.0E-10 1.0E-11 1.0E-12 Days of testing

Helium levels in ISIM volume slightly higher than in the N₂ chamber volume: consistently $<1.0 \times 10^{-8}$ Torr


The MIRI predicted thermal loads matched the measured within the prediction and measurement uncertainties

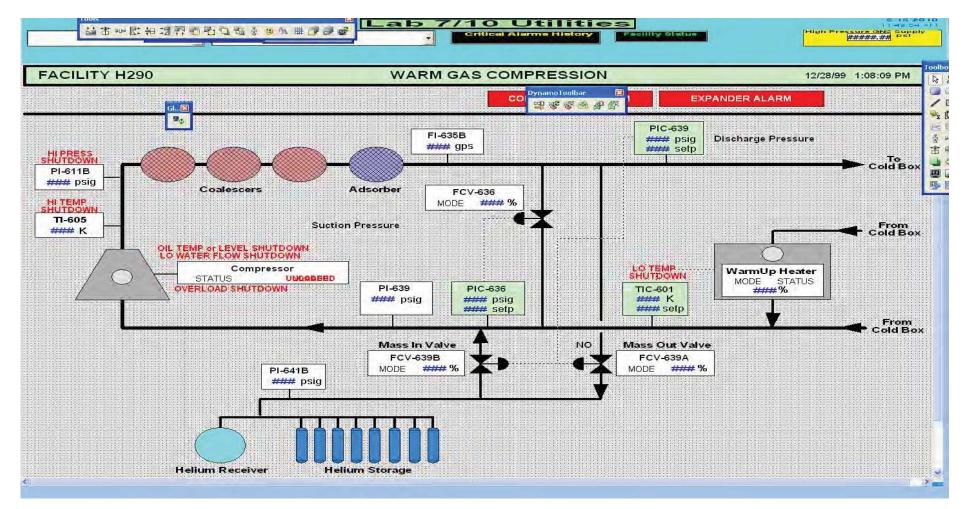
JWST ISIM RGA Data Reliability

- The need for a calibrated RGA is being investigated for CV3 testing as the total RGA pressure does not match the chamber ion gauge pressure readings: chamber RGA was ~2.5 x 10⁻⁷ Torr higher
- Currently, qualitative statements can only be made using the RGA data

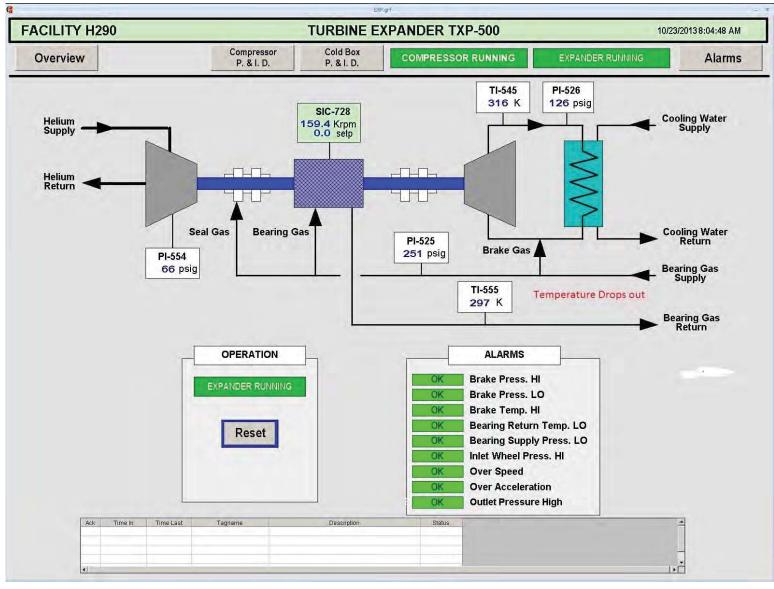
Summary

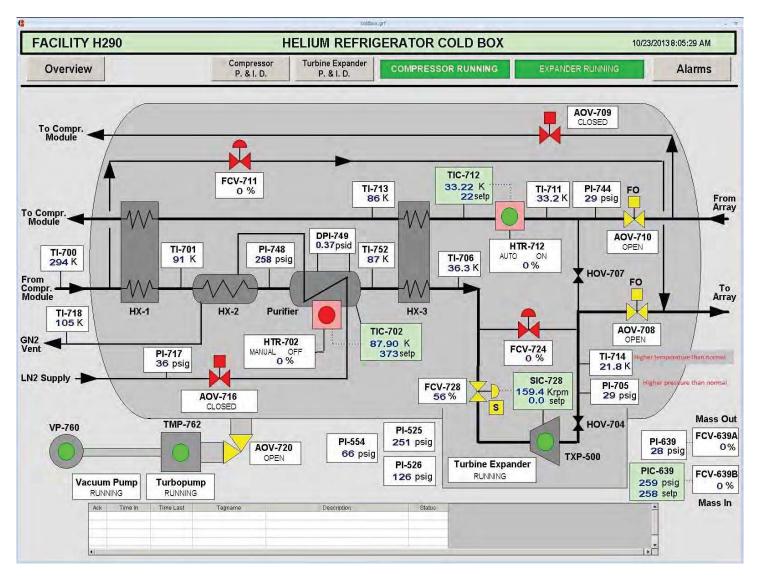
- Successful CV1 test
 - Dry run of test procedures and processes
 - Achieved thermal requirements
 - Identified facility performance improvements necessary
- Two notable facility improvements
 - New helium skid compressor
 - Additional helium shroud RGA
- Future investigation into improving confidence in RGA readings

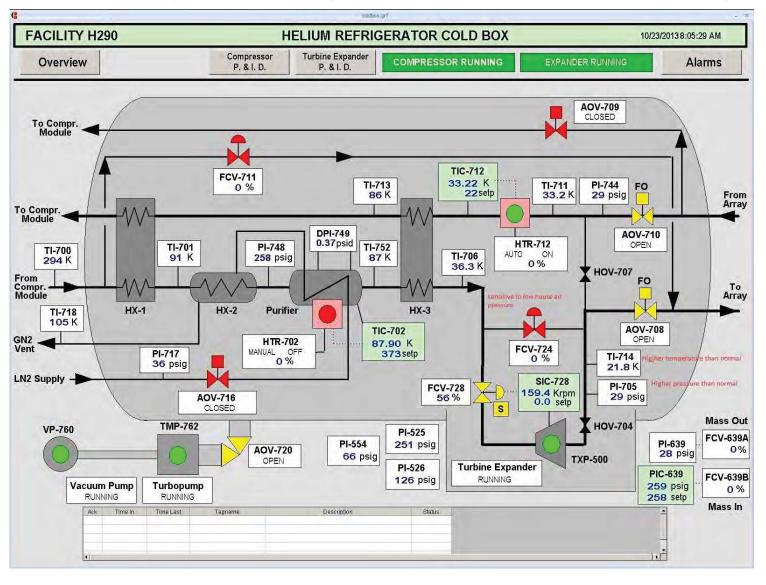
Questions?


Back-Up Slides

22


Helium Skid Shutdown Cause #1: Low & high oil temperature interlocks (false readings)

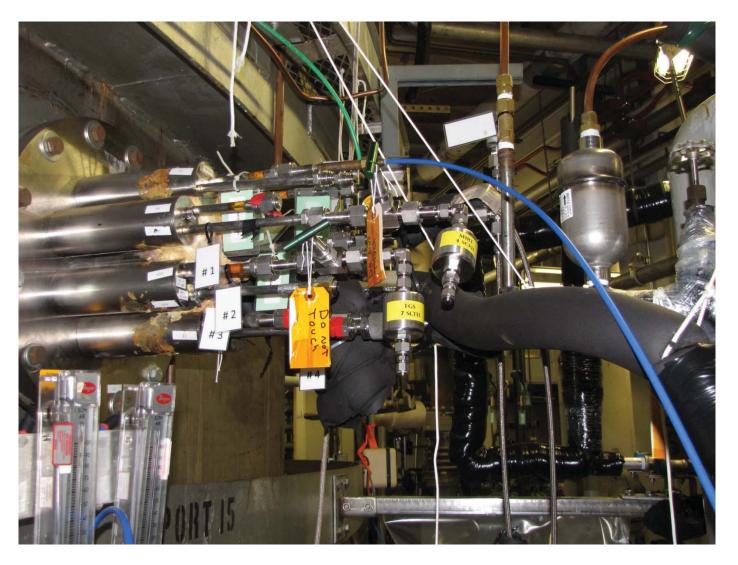

Helium Skid Shutdown Cause #2: Low turbine bearing return temperatures


Helium Skid Issues #3: Unable to achieve 20K on refrigerator due to compressor loading mechanism malfunction

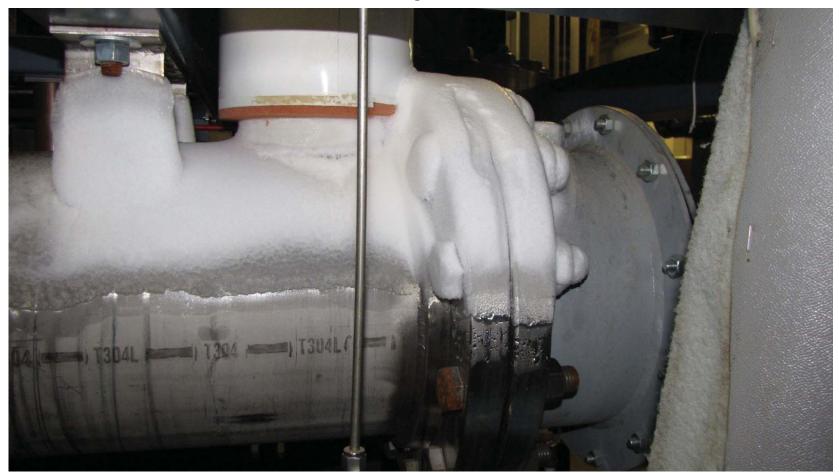
Helium Skid Issues #4: In-house air pressure fluctuations House air pressure drops cause helium skid to warm up

Power Supply Operation

- All heater racks functioned as required for entire test duration
 - 9 heater racks
 - 14 LS-336s
- Only issue: heater circuit 8-2
 - Control sensors failed
 - Placed in local mode during the test
 - Resolution: Fix broken wire


Power outages: Generators & UPS

- # of power outages: 1
- Operated seamlessly. B10 generator & Helium skid UPS
- Short commercial power outage experienced on 09/21/2013 (approx. 21:43).
 - Several heater racks needed to be manually reset, but no significant impacts to test hardware.
 - He skid operation not impacted.
 - After coming back online, CQCM heaters came on full power and CQCMs achieved >350K.


MIRI Air Leak

Helium Skid Issues #5: LN₂ purifier needed to be cleaned Warm up heater begins to leak when cold Causes differential pressure to increase

Updated Predict

Thermal Load	Thermal Model Predict *	ISIM CV2 Measured (7/15/14 12:00PM UTC)	ISIM CV2 Measured (7/21/14 8:46AM UTC)	ISIM CV2 Measured (7/28/14 1:02PM UTC)	ISIM CV2 Measured (7/29/14 5:30PM UTC) **	
MIRI Thermal Shield	9.5 mW ± 2 mW	8.1 mW ± 7.5 mW	$7.2 \text{ mW} \pm 7.5 \text{ mW}$	6.14 mW ± 7.5 mW	5.26 mW ± 7.5 mW	
MIRI OM	17.6 mW ± 6 mW	25.9 mW ± 2.8 mW	30.6 mW ± 2.8 mW	23.12 mW ± 2.8 mW	19.27 mW ± 2.8 mW	
Boundary Conditions	Assumed Thermal Model (7/15/14 at 12:00PMUTC)	ISIM CV2 Measured	ISIM CV2 Measured	ISIM CV2 Measured	ISIM CV2 Measured	
ISIM Conductive Temp at HSA feet (ISIM HKT- 14)	35.91 K	35.91 K			34.74 K	
ISIM Conductive Temp at MIRI feet (ISIM HKT- 35/36/37)	32.79 K	32.79 K	Delta between 7/15 & 7/21 = 4.7 mW		Delta between 7/28 & 7/29 = 3.85 mW	
ISIM Radiative Temp (STMS T^4 * Area Weighted Avg)	Used actual measured STMS panel temps and includes other actual instrument temperatures	I measured 34.65 K accounting for detector dissipation			accounting for MIRI CQCM dissipation	
MIRI Shield Temp (Avg of Rails)	29.53 K	29.53 K			30.5 K	
MIRI OM Temp	6.31 K	6.31 K		6.2 K	6.27 K	
MIRI Detectors	OFF	OFF	ON	OFF	OFF	
MIRI CQCM	OFF	ON	ON	ON	OFF	

Steady State Predict Versus Measured

* See presentation note field for details on changes in predicted loads.

wst

** At equilibrium on MIRI OM load however this is not the officially declared steady state data point.

