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Land surface albedo has been recognized by theGlobal Terrestrial Observing System(GTOS) as an essential climate
variable crucial for accurate modeling andmonitoring of the Earth's radiative budget.While global climate studies
can leverage albedo datasets fromMODIS, VIIRS, and other coarse-resolution sensors,many applications in hetero-
geneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously
developed a “MODIS-concurrent” approach for the 30-meter albedo estimation which relied on combining post-
2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we
present a “pre-MODIS era” approach to extend 30-m surface albedo generation in time back to the 1980s, through
an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over represen-
tative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain
information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created
for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observa-
tions for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire dis-
turbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a
priori information, spectralwhite-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios
as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative
transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We
evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux sta-
tions in the PNWregion, and examine the consistency of the surface albedo generated by this approach respective-
ly with that from the “concurrent” approach and the coincidentMODIS operational surface albedo products. Using
the towermeasurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an
absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A
further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the
“pre-MODIS era” LUT approach is highly consistent (R2 = 0.988, the scene-averaged low RMSE = 0.009 and
bias = −0.005) with that generated by the earlier “concurrent” approach. The Landsat albedo also exhibits
more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS
operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the “pre-MODIS” LUT
and “concurrent” approaches provide a practical way to retrieve long-term Landsat albedo from the historic
Landsat archives as far back as the 1980s, as well as the current Landsat-8mission, and thus support investigations
into the evolution of the albedo of terrestrial biomes at fine resolution.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Surface albedo, defined as the ratio of radiant flux reflected from the
Earth's surface to the incident flux, has been documented by the Global

Terrestrial Observing System (GTOS) as one of the essential climate var-
iables governing Earth's surface energy budget (Pinty et al., 2008;
Schaaf, Cihlar, Belward, Dutton, & Verstraete, 2009; Schaaf et al.,
2008). The radiative forcing intercepted by the land surface is perhaps
the most important initial energy source for biophysical processes,
through a further conversion into latent, sensible, and stored heat
terms and input to the soil–vegetation biophysical system (Betts,
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2000; Lyone, Jin, & Randerson, 2008; Ollinger et al., 2008; Peckham, Ahl,
Serbin, & Gower, 2008; Randerson et al., 2006; Sellers, Los, et al., 1996;
Sellers, Randall, et al., 1996; Zhang et al., 2009). Studies have shown
that land cover change (and ecosystem disturbance) may have a signifi-
cant influence on regional albedo, and hence long-term climate forcing
(Bala et al., 2007; Betts, 2000; Claussen, Brovkin, & Ganopolski, 2001;
Randerson et al., 2006). Terrestrial albedo varies enormously in space
and time as a result of both natural events (e.g. weather disaster, insect,
disease, wild fire, season-shifts, and vegetation phenological phase) and
human activities (e.g. forest-thinning & clearing, crops-sowing & harvest-
ing, urbanization, and other land use management methods) (Jin & Roy,
2005; Ju, Roy, Shuai, & Schaaf, 2010; O¡¯Halloran, et al., 2011; Shuai and
Schaaf, 2010; Shuai, Schaaf, et al., 2013; Shuai, Xie, Wang, & Wu, 2013;
Xu et al., 2013). As strategies emerge for managing ecosystem carbon in
order to mitigate global warming, several studies have pointed out the
potential risk of ignoring the physical consequences of land cover change,
including changes to land surface albedo (Betts, 2000; Lyone et al., 2008;
Peckham et al., 2008; Randerson et al., 2006).

Albedodatasetshavebeenderived fromexistingcoarse-resolutionsatellite
sensors to parameterize global land surface and climate models. Compared
withprevioussingle-anglemodels,modernalbedoalgorithmsrelyonmultiple
directional reflectancemeasurements to first estimate a Bi-directional Reflec-
tanceDistributionFunction (BRDF)model of the target, then integrateover in-
cident and viewhemispheres to calculate albedo. Studies have concluded that
relative errors can reach up to 45% without the consideration of direction/
angle effects in the albedo estimation (Kimes & Sellers, 1985; Kimes, Sellers,
&Newcomb, 1987). Becausemost satellite sensors cannot collectmultiple ob-
servations of a target in a single pass, the sequential accumulation of data over
multiple days (for sun-synchronous orbit) or multiple hours (geostationary
orbit),may be adopted as a relevant solution to achievemulti-anglemeasure-
ments sampling the full sun–target–sensor geometry. Global surface albedo
has been mapped from the Advanced Very High Resolution Radiometer
(AVHRR) (Csiszar & Gutman, 1999; Key, Wang, Stroeve, & Fowler, 2001),
Earth Radiation Budget Experiment (ERBE) radiometer data (Li & Garand,
1994), and the Along Track Scanning Radiometer (ATSR). With the advent
of routine albedo products retrieved from Polarization and Directionality of
the Earth's Reflectances (POLDER-I and II) (Bicheron & Leroy, 2000;
Hautecoeur & Leroy, 1998; Leroy et al., 1997; Maignan, Breon, & Lacaze,
2004), Multi-angle Imaging SpectroRadiomenter (MISR) (Martonchik, Pinty,
& Verstraete, 2002; Martonchik et al., 1998), Clouds and the Earth's
Radiant Energy System (CERES) (Rutan et al., 2009), Meteosat Visi-
ble and Infrared Imager (MVIRI)/Meteosat and Meteosat Second
Generation (MSG) (Carrer, Roujean, & Meurey, 2010; Geiger,
Carrer, Franchisteguy, Roujean, & Meurey, 2008; Pinty et al., 2000),
SPOT4/VEGETATION (Franchistéguy, Geiger, Roujean, & Samain,
2005), and the recently launched Visible Infrared Imager Radiometer
Suite (VIIRS) (Justice et al., 2013; Liang, Yu, & Defelice, 2005), albedo
mapswith spatial resolutions of 500-m to tens of kilometer and tempo-
ral frequencies of daily tomonthly are now available to serve for climate
model refining and inter-annual exploration (Schaaf et al., 2008).

While global climate studies can utilize the coarse-resolution surface
albedo datasets described above, there remains a need for consistent,
fine-resolution albedo products for specific applications. Several publi-
cations have highlighted the importance of land cover change, including
deforestation, afforestation, agricultural expansion, urbanization, and
other human-induced land surface alteration, to the terrestrial carbon
cycle and climate changes (Goward et al., 2008; Masek & Collatz,
2006; Pan et al., 2011; Randerson et al., 2006). However, spatial resolu-
tions coarser than 250-m may be insufficient to capture patch-scale
vegetation changes associated with human land use and forest distur-
bance (Townshend and Justice 1988;Masek et al., 2013). Fine resolution
imagery (~30 m or better) can more accurately quantify the areas and
rates of these anthropogenic land changes. In addition, for climate
change investigations, long time series of albedo products are required.
Although operational albedo datasets covering the last 30 years have
been assembled from different sensors covering different periods,
the merging of multiple records raises issues of data consistency and
quality. Because of the differences among sensors (wavelength of spectral
bands, orbit geometry, spatial resolution, and geographic region), the de-
rived albedo products may differ depending on the specific product, the
data source, and the production strategies (Schaaf et al., 2009). Therefore,
datasets derived from a single continuous acquisition program offers a
greater potential for consistency in data quality. Despite differences in
sensor design over time, the Landsat program has acquired a 42-year re-
cord of Earth Observations that captured global land conditions and dy-
namics through six successful missions since 1972. With the launch of
Landsat-8 in February 2013 (Loveland & Dwyer, 2012), this record has
the potential of reaching 50 years. The opening of the Landsat ar-
chive for free distribution in late 2008 has invigorated the push for
creating long-term biophysical and land cover products from new
and archived Landsat data (Woodcock et al., 2008; Wulder, Masek,
Cohen, Loveland, & Woodcock, 2012). It includes this effort to devel-
op the long-term, consistent surface albedo products from the
Landsat program.

In a previous study, we developed a “concurrent” approach for gen-
erating 30-m resolution albedo products for the post-2000 (MODIS) era
by combining Landsat surface reflectance with MODIS surface anisotro-
py information (Shuai, Masek, Gao, & Schaaf, 2011). In this study, we
propose and validate a new approach to generate Landsat albedo prod-
ucts for the pre-MODIS era, by using albedo-to-nadir reflectance ratios
(Shuai et al., 2011) and an a priori anisotropy Look-Up Table (LUT)
that has been built up from the high quality MCD43A BRDF retrievals
over representative homogeneous regions. This approach yields
both spectral and broadband albedos, and a quality assessment (QA)
map based on the quality of MODIS anisotropy and Landsat surface re-
flectance. In this paper, we first address the theoretical basis of the
“pre-MODIS-era” LUT approach, creation of the BRDF-LUT, and then
demonstrate its application over more than 100 Landsat scenes in the
Pacific Northwest of the United States where simultaneous ground
measurements are available for validation.

2. Albedo definition

The spectral Directional–Hemispherical Reflectance (DHR) of a plane surface is defined as the ratio of radiant energy scattered upward from the
surface in all directions to the down-welling incident irradiance on the surfacewithin the target spectrum regime (λ1, λ2). It equals the integral of the
BRDF over the view hemisphere for an incident beam at a given wavelength, as shown in formula (1). Under the extreme condition that no diffuse
radiation but only the direct beam arrives from the solar incidence angle (θ,φ) defined by zenith angle θ, and azimuth angle φ (L(θ, φ)), the albedo is
referred to as “Black-Sky Albedo” (BSA) R θi;φi;λð Þ in the MODIS product series (Lucht, Schaaf, & Strahler, 2000; Strahler et al., 1999). Under the as-
sumption that all irradiance is isotopic (purely diffuse skylight), a further integral over illumination hemisphere provides the Bi-Hemispherical Re-
flectance (BHR) R λð Þ, or “White-Sky Albedo” (WSA) formulae (2) and (3) (Lucht et al., 2000; Strahler et al., 1999). The spectral BHR under actual
atmospheric conditions (known as the “blue-sky albedo”, or “actual albedo”) can be approximated through a linear combination of BSA and WSA,
weighted by the fraction of actual direct to diffuse skylight (Lewis & Barnsley, 1994; Lucht et al., 2000; Román et al., 2010). Because the upwelling
radiance depends on not only the BRDF properties of the observed surface, but also atmospheric conditions, R λð Þ may change with the variation
of the instantaneous cloud cover and aerosol loading, as well as over the course of the day as the solar geometry changes even for constant atmo-
spheric and surface conditions (Lucht et al., 2000). In addition, multiple scattering between surface and atmosphere affects the angular distribution
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of sky radiance. Therefore, bi-hemispheric reflectance (i.e. albedo) is not a true surface property, but rather a function of solar beam direction,
atmospheric state, and surface anisotropic features.

R θi;φi; λð Þ ¼
Z2π
0

Zπ=2
0

f r θi;φi; θv;φv;λð Þ cosθv sinθvdθvdφv

¼ 1
π

Z2π
0

Zπ=2
0

R θi;φi; θv;φv; λð Þ cosθv sinθvdθvdφv

ð1Þ

where R θi;φi; λð Þ = Spectral black-sky albedo (Directional–Hemispherical Reflectance, DHR) as a function of the solar incidence angle (θi, φi)
(Strahler et al., 1999), and fr(θi, ϕi; θv, ϕv; λ) = Bidirectional Reflectance Distribution Function (BRDF) describing the behavior of surface scattering
as a function of a parallel incident beam from one direction (θi, ϕi) in the illuminating hemisphere into the reflected direction (θv, ϕv) in the viewing
hemisphere, at a particular wavelength λ. Further elaboration is presented in Nicodemus, Richmond, Ginsberg, and Limperis (1977) and Schaepman-
Strub, Schaepman, Painter, Dangel, and Martonchik (2006). The terms “BRDF” and “anisotropy” in this paper refer to this underlying property.
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Strictly speaking, for natural targets, BRDF or any other nominal directional-related metric is not a measurable quantity, as it requires perfectly
collimated beams of illumination and observation, while actual sunlight is partly diffuse and themeasurements involve conical geometries. Thus, in-
dividual satellite measurement provides only an approximation of the directional reflectance.

For most of the applications involving energy balance, the reflectance quantity of interest is not the spectral reflectance but rather reflectance in-
tegrated over a broad spectral interval (λ1, λ2), see formula (4), to capture the overall radiative forcing. The spectral integrals for the hemispherical
reflectance are functions of the down-welling solar spectrum as defined in the above formulae. The visible regime (0.3–0.7 μm) known as
photosynthetically-active radiation (PAR) is of special interest to carbon cycle modelers for the estimation of carbon fixation via photosynthesis
(Dorman & Sellers, 1989). In contrast, the total shortwave regime (0.3–3.0 μm), as well as visible and near-infrared bands, are typically required
by surface energy balance studies. Note that the generic term “albedo”, without any specification of the sun-view geometry and integral wavelength,
often implies the bi-hemispheric broadband albedo of the whole solar irradiance domain.
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3. Algorithm

The initial impetus to develop a “pre-MODIS era” approach flowed
from the desire to understand albedo consequences of specific types
of forest disturbance and recovery at a fine resolution. To extend 30-m
surface albedo generation in time back to the 1980s, we first build
an a priori anisotropy Look-Up Table (LUT) from the high quality
MCD43A BRDF estimates over representative homogenous regions,
then calculate the albedo-to-nadir reflectance ratios for each entry
and apply these ratios to the 30-m Landsat nadir reflectance. Finally,
we use narrow- to broad-band conversion factors to derive broadband
Landsat albedos. Fig. 1 outlines the overall workflow of this approach
into three main functional components: surface reflectance calculation
and assessment (Fig. 1A), BRDF-LUT creation (Fig. 1B), and Landsat sur-
face albedo generation (Fig. 1C). The aim of “surface reflectance calcula-
tion and assessment” is to retrieve terrain and atmosphere corrected
surface reflectance (that is defined in Masek et al., 2006) from the

Landsat Thematic Mapper and Enhanced Thematic Mapper Plus
(TM/ETM+) L1T, and remove pixels contaminated by cloud and
snow from further analysis. The aim of “BRDF-LUTs creation” is to
build up the a priori anisotropy information for each defined land
surface category from the operational MODIS 500-m high quality an-
isotropy products (i.e. MCD43A) over representative homogeneous
land surface structure regions. The aim of “Landsat albedo generation”
is to obtain the narrow-band spectral albedo by combining Landsat di-
rectional surface reflectance with the specific a priori anisotropy infor-
mation stored in the BRDF-LUTs, and then convert narrow to broad
band albedos for the visible (0.3–0.7 μm), NIR (0.7–3.0 μm), and short-
wave (0.3–3.0 μm) regimes.

3.1. Surface reflectance assessment

Landsat surface directional reflectance at each spectral band of The-
matic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) has
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been produced from orthorectified Landsat level 1 T raw images
downloaded from USGS EROS, using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) (Masek et al., 2006). The level 1
raw radiometry data ingested by LEDAPS were calibrated to at-sensor
radiance, converted to top-of-atmosphere reflectance, and then atmo-
spherically corrected to surface reflectance using the second simulation
of satellite signal in the solar spectrum (6S) model (Masek et al., 2006;
Vermote, Saleous, & Justice, 2002; Vermote et al., 1997). LEDAPS dem-
onstrated good performance through comparisons with ground-based
AERONET optical thicknessmeasurements (Masek et al., 2006), concur-
rentMODIS Terra reflectance (Feng et al., 2012; Masek et al., 2006), and
other approaches for Landsat surface reflectance generation (Ju, Roy,
Vermote, Masek, & Kovalskyy, 2012). To mitigate the cloud effect on
the surface radiometric accuracy, pixels contaminated by cloud, cloud
shadow, and adjacent clouds were screened from this study using the
LEDAPS-derived cloudmask. An additional screening for snowwas per-
formed based on the operationalMODIS snowmapping algorithm (Hall,
Riggs, Salomonson, DiGirolamo, & Bayr, 2002), through the Normalized
Difference Snow Index (NDSI) calculated from reflectance at Landsat
green (0.53–0.61 μm) and shortwave infra-red (1.55–1.75 μm) bands.
Further thresholds for green band reflectance (N0.10) and NDVI were
applied to reduce the erroneous classification of very dark targets
(such as black spruce forests), as well as the thermal mask to eliminate
the spurious snow cover possibly induced by residual cloud cover, aero-
sol effect and snow/sand confusion on coastlines (Hall, Riggs, &
Salomonson, 1995; Hall et al., 2002).

3.2. BRDF Look-Up Tables

The most direct way to obtain anisotropy information of any land
surface target at the pixel scale is to collect a representative sample of
reflectance observations at multiple directions, over a short interval of
time. However, because of the narrowfield of viewof Landsat (±7.5 de-
grees) and the limited number of acquisitions offered by the 16-day re-
peat cycle, it is not feasible to obtain target anisotropy information

directly from multiple Landsat directional reflectance observations. In-
stead, we need to obtain target BRDF estimates from other sources,
such as MODIS, or MISR.

For this study, the Collection V005 MODIS 8-day anisotropy dataset
(MCD43A) was used to create the BRDF-LUT because of its wide range
of sun and view angles, the broad spectral coverage of MODIS for simul-
taneous atmosphere correction, frequent acquisition for the potential
daily adjustment of BRDF retrieval, the 500-m moderate resolution,
and especially the continuity of global products since 2000. The opera-
tional MODIS albedo and reflectance anisotropy products make use of
the kernel-driven, linear algorithm that relies on the weighted sum of
an isotropic and two additional kernels (respectively called Ross-thick
and Li-sparse-reciprocalmodels, RTLSR) of viewing and illumination ge-
ometry to estimate the BRDF model (Li & Strahler, 1992; Lucht et al.,
2000; Ross, 1981; Roujean, Leroy, Podaire, & Deschamps, 1992). The re-
trieved kernel weights (also called BRDF model parameters) are those
that best fit an adequate angular sample of the high quality cloud-
cleared, atmospherically corrected surface reflectances available for
each pixel over a 16-day period (Lucht et al., 2000; Schaaf et al.,
2002, Schaaf, Liu, Gao, & Strahler, 2011; Shuai, Schaaf, Strahler, Liu,
& Jiao, 2008; Shuai & Schaaf, 2010). This model combination has
been shown to be well-suited to describe the surface anisotropy of
the variety of land surfaces distributed worldwide (Privette, Eck, &
Deering, 1997). The absolute accuracy of MCD34A albedo at local
solar noon (LSN) derived from the estimated BRDF model has been
established by comparison with ground measurements from avail-
able international Baseline Surface Radiation Network (BSRN) and
Fluxnet sites (Cescatti et al., 2012; Román et al., 2009; Wang et al.,
2014). This algorithm assumes that the land surface does not experi-
ence significant structural changes during the 16-day observation
period, which is reasonable except in circumstances of abrupt distur-
bance or conversion.

The creation of a BRDF LUT is based on the identification of land sur-
face intrinsic anisotropic features which make one object distinguishable
from others. Numerous studies have demonstrated unique anisotropic

Fig. 1. Flow chart of the “pre-MODIS era” LUT approach composed of three functional components (A. surface reflectance assessment; B. BRDF-LUT creation; and C. Landsat albedo
generation).
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features among distinct landscape attributes (Bacour & Bréon, 2005;
Bicheron & Leroy, 2000; Lovell & Graetz, 2002; Maignan et al., 2004;
Shuai & Schaaf, 2010; Strugnell & Lucht, 2001), biome components
(Chen & Leblanc, 1997), vegetation life-cycle and seasonal stages
(Kimes, 1983; Shuai et al., 2011), and classes of disturbance induced by
natural or human activity, as well as significant effects from terrain
(Schaaf, Li, & Strahler, 1994). Thus, the attributes defined in Table 1 are
adopted to build the overall conceptual structure of BRDF-LUT. Each
entry in the LUT reflects a unique combination of land surface type, ter-
rain, time of year, limited disturbance age and type, and Landsat spectral
bands.

Several ancillary datasets provided the basis for this stratification.
First, the 30-m 2006 NLCD (National Land Cover Database, Vogelmann,
Sohl, & Howard, 1998) classification maps with high overall and user's
accuracy (Wickhamet al., 2013)were used to determine local landscape
attributes, and to identify representative homogenous land surface re-
gions when aggregated to the MODIS 500-m resolution. Then, two
datasets giving the timing and location of ecosystem disturbance were
used to quantify the BRDF evolution of disturbed landscapes. The annual
30-m Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al.,
2007) dataset has mapped the low/medium/high burn severity of
fires (greater than 1000 acres in the west and 500 acres in the east)
that have occurred since 1984 across all lands of the United States. The
30-m NAFD (North American Forest Dynamics, Masek et al., 2008;
Masek et al., 2013; Huang et al., 2010) dataset identified other forest
non-fire disturbance events (such as harvest, storm damage, or disease)
over the same time period.While the NAFD dataset targets rapid distur-
bance events that remove substantial canopy cover,more subtle or grad-
ual declines in live biomass (e.g. selective tree removal, gradual insect
outbreaks)may not be captured. BothMTBS and NAFD datasets are gen-
erated from Landsat spectral signatures before and after the disturbance
events. While the MTBS dataset uses independent confirmation of fire

timing (from the National Interagency Fire Center), the NAFD dataset
may have one or two year bias on the timing of disturbance if a cloud-
free image or composite was not produced for a given year. Since both
datasets cover the period since 1984, any fire and non-fire disturbance
events encountered before the Landsat TM/ETM+ era (1980s) are not
be defined in the maps. In addition, the Shuttle Radar Topography Mis-
sion (SRTM)DEMdata (Farr et al., 2007)was utilized to differentiate the
quality of BRDF shapes affected by mountainous terrain. Due to the
study in Schaaf et al. (1994) in terrain effects on the anisotropy feature,
the MODIS estimated BRDFs were qualitatively graded into two strata
(flat to moderate with slope ≤ 15°; and steeper mountainous with
slope N 15°). An example is shown in Fig. 2 for individual undisturbed
evergreen needle leaf forest patches respectively in a flat region and a
high-slope mountainous region.

Thus the a priori BRDF LUTs for the Pacific Northwest (PNW) region
of United States were created from MCD43A products and ancillary
datasets (seemodule B in Fig. 1) in terms of the above conceptual struc-
ture of the BRDF LUT. The PNW was selected for this initial prototype
due to its range of ecosystems, prevalence of both fire- and non-fire
forest disturbances, and range of topography. In order to minimize the
effect of biome mixtures, MODIS 500-m pixels were labeled as repre-
sentative “pure” pixels if they were composed of at least 85% of a single
land surface type when aggregated from the 30-meter NLCD land cover
map. In addition to being stratified by NLCD land cover, the LUT of BRDF
was also stratified by disturbance type (“undisturbed”, “fire disturbed”,
“non-fire disturbance”), disturbance severity (from the MTBS fire dis-
turbance product), topographic slope (greater or less than 15°), time
since disturbance (0–26 years corresponding to the NAFD and MTBS
coverage of 1984–2010), andmonth of the year (Table 1). For each com-
bination of these attributes, the BRDF shapes for Landsat (and MODIS)
reflective bands were extracted from the operational V005 8-day
MCD43A1 (BRDF parameters) and MCD43A2 (QA flags) 11-year prod-
uct (Schaaf et al., 2002; Shuai et al., 2008). The time dimension
(month for the undisturbed LUT, and age of disturbance), was used to
depict the seasonality, growth phase, and growth evolution since distur-
bance, in the BRDF shapes over for a given land surface scenario. If no
high quality BRDF was available for a given month (for a seasonal char-
acterization) or year (for characterizing post-disturbance evolution), a
backup BRDF shape was established through linear interpolation of
the BRDF model parameters from available time periods. To document
the quality of BRDF shapes in the LUT, each was assigned a quality flag
denoted as “high quality” for the original MCD43A estimation and
“low quality” for those interpolated ones.

As an example, Fig. 3 shows the BRDF shapes in the principle plane
with solar incident at 30° zenith angle, averaged over disturbed ever-
green forest regions in the PNW. The snow-free time series of BRDF
shapes from September illustrate the evolution of evergreen forest sig-
nature over two decades in the green, NIR, and SWIR bands. It is seen
that BRDFs of both fire and non-fire disturbance types have systematic
temporal variations in shapes and magnitudes. The evolution of this
generalized BRDF-shapemay be associatedwith regrowth and recovery
of canopy greenness and structure for the disturbed forest land, indicat-
ed by the gradual sharpening or flattening of the hot-spot. There are
strong temporal signatures of green vegetation in both examples of
the disturbance types, firstly displayed as a clear enhanced hot-spot in

Table 1
Structure of the BRDF LUT.

Type Land cover class # Disturbance age Disturbance severity Month DEM QA Bands (1–5, 7) RTLS-R parameters

Range of value NLCD classification scheme 0–30 Low, medium, or high 1–12 Flat or mountainous 0–5 Landsat 1–5, 7 Isotropic, volumetric, and
geometric kernel weights

Un-disturbed ✓ NA NA ✓ ✓ ✓ ✓ ✓

Fire-disturbed ✓ ✓ ✓ ✓ NAa ✓ ✓ ✓

Nonfire-disturbed ✓ ✓ NAa ✓ NAa ✓ ✓ ✓

a Limited by the lack of current ancillary data community.

Fig. 2. Example of the difference in MODIS BRDF shape estimated for non-disturbed ever-
green forest (in principle plane at 30° solar zenith angle) obtained fromamountainous re-
gion (slope N 15°, dot-line) and a relatively flat region (slope ≤ 15°, solid line) at NIR
(upper), SWIR (middle), and Red (lower) bands from the Pacific Northwest region of
the United States.
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the NIR band with the increasing of greenness, and a suppression of
the hot-spot at the SWIR with the augmentation of canopy water
content accompanying the forest regrowth. In contrast to the mono-
tonic decrease in brightness following non-fire disturbance, the
high-burn-severity fire disturbed forest presents a complicated trajec-
tory of anisotropy development in the green band, with a multiple-
year (~7–12 years since disturbance) reduction during the increase of
the hot-spot. It may be explained by the different recovery trajectories
of the post-fire residual structures. These post-fire residual transition
rates will vary among fires, with a high rate in the first two years from
tree to snag (i.e. tree mortality), and a late peak after several years
later for the tree-to-downed wood and snag-to-downed wood change
depending on the species and tree size of the burned forest region.
Once the green signature from the re-grown forest and understory veg-
etation (such as grass or shrub) becomes dominant, a continuous grad-
ual increasing can be captured generally 10 years after severe fires, as
shown in Fig. 3. Some small fluctuations found in the gradual evolution
of each BRDF shape could be due to uncertainties in the mapped timing
of disturbance, poorer quality BRDF estimation, variations in atmo-
spheric conditions, and residual cloud and snow effects.

3.3. Surface albedo determination

Once the BRDF shape is determined, surface albedo at 30-meter
resolution can be calculated from the albedo-to-nadir reflectance ratio
(A/N) and Landsat surface reflectance as detailed for the “concurrent”
approach in Shuai et al. (2011). This method assumes that a given sur-
face type has the same BRDF shape at MODIS or Landsat resolution,
and can be scaled to albedo using the 30-meter directional reflectance
from Landsat as shown in (5), with Rlnd and Rmod denoting the corre-
sponding spectral reflectance from Landsat and MODIS, respectively.
Then, the Landsat black-sky albedo with a solar zenith angle at the
Landsat overpass time and white-sky albedo were computed respec-
tively for the six non-thermal Landsat bands. The broadband albedos
for visible (0.3–0.7 μm) αvis, near infrared (0.7–3.0 μm) αnir, and short-
wave (0.3–3.0 μm) αshort bands were produced by a further conversion
from narrow spectral band albedo values (αi) using new conversion co-
efficients for Landsat 5 TM(6–8) and Landsat 7 ETM+(9–11). These co-
efficients were derived from radiative transfer simulations using 245
surface spectra representing different surface types (He, Liang, Wang,
Shuai, & Yu, 2013; Liang, 2000). Finally, a quality assessment (QA)
layer constructed into a 16-bit word was stored for each pixel
(see Table 2) to track the quality of input data, and estimate error prop-
agation through the fusion of multiple data sources.

(
Rmod θmod ¼ θφmod ¼ φi; θv;φv;λð Þ≈Rlnd θlnd ¼ θi;φlnd ¼ φi; θv;φv;λð Þ
f r−mod

θi;ϕi; θv;ϕv;λð Þ ¼ f r−lnd
θi;ϕi; θv;ϕv;λð Þ

⇒
Rlnd λð Þ ¼ Rlnd θi;φi; θv;φvð Þ � Rmod λð Þ

Rmod θi;φi; θv;φvð Þ

Rlnd θi;φi;λð Þ ¼ Rlnd θi;φi; θv;φvð Þ � Rmod θi;φi;λð Þ
Rmod θi;φi; θv;φvð Þ

8>>>><
>>>>:

ð5Þ

αshort ¼ 0:3206α1 þ 0:1572α3 þ 0:3666α4 þ 0:1162α5
þ 0:0457α7−0:0063 ð6Þ

Fig. 3.Twodecades of BRDFevolution following non-fire disturbance (harvest, thinningdominated, toppanels) and high-severityfire disturbance (bottompanels) in the PacificNorthwest
of the United States, for green (left), near-infrared (middle), and shortwave-infrared (right) bands. The original MCD43A BRDF shapes were retrieved from September in the principle
plane with solar incident at 30° zenith angle. The BRDF shapes show a strong hot-spot in the backward (showing as positive view zenith angle—VZA) direction, and systematic changes
in magnitude and shape following disturbance events.

Table 2
Segments of the pixel-based 16-bit QA word for each Landsat albedo map to indicate the
performance of albedo retrieval.

Bit Meaning

b15 Fill value (1 = fill-value)
b14 Cloud flag (1 = cloud contamination)
b13 Snow flag (1 = snow contamination)
b12 Disturbance flag (0 = undisturbed; 1 = disturbed)
b11-10 Disturbance type (00 = fire; 01 = non-fire; 10 and 11 = reserved)
b9–8 Fire disturbance severity (00 = reserved; 01 = low; 10 = medium;

11 = high)
b7 BRDF QA (0 = original; 1 = backup/interpolation)
b6–0 Disturbance age for disturbed pixel or land cover class for

un-disturbed pixel
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αvis ¼ 0:6000α1 þ 0:2204α2 þ 0:1828α3−0:0033 ð7Þ

αnir ¼ 0:6646α4 þ 0:2859α5 þ 0:0566α7−0:0037 ð8Þ

αshort ¼ 0:3141α1 þ 0:1607α3 þ 0:3694α4 þ 0:1160α5
þ 0:0456α7−0:0057 ð9Þ

αvis ¼ 0:5610α1 þ 0:2404α2 þ 0:2012α3−0:0026 ð10Þ

αnir ¼ 0:6668α4 þ 0:2861α5 þ 0:0572α7−0:0042 ð11Þ

3.4. Central Oregon example for the derived Albedo and QA maps

Fig. 4 shows maps of the 30-m Landsat albedo products generated
from the “pre-MODIS era” LUT approach for a scene in central Oregon
(path/row: 45/29) on August 29, 2007. Spectral black-sky albedo
estimates are provided as the composite of shortwave infrared, near in-
frared, and red bands (wavelength centered 1.65 μm, 0.83 μm, and
0.66 μm) (Fig. 4A). Broadband black-sky albedos are available for
the visible (0.3–0.7 μm), near-infrared (0.7–3.0 μm), and shortwave
(0.3–3.0 μm) bands (Fig. 4B and C). At the date corresponding to the se-
lected sample case, a large part of the Central and Eastern region was
dominated by sparse shrubs or barren land. Compared with the forest
region in the central-west part, these areas appear as high values in
the SWIR and Red bands, lower values in the NIR band, with scattered

agricultural fields in the lower-central region and forest stands in the
middle-eastern region in Fig. 4A. In the three-broadband composite
image (Fig. 4B), however, the albedo in the visible regime has higher
values than the other two bands and shows up as brown-red in the cor-
responding areas. For the retrieval of each pixel, one corresponding QA
map (Fig. 4D) provides the possible cloud and snow contamination, and
details of undisturbed or disturbed information.

4. Accuracy assessment of the Landsat albedo products

Three approaches have been used to evaluate the accuracy of albedo
products generated by the “pre-MODIS era” LUT approach presented in
this paper. One is the direct validation of shortwave albedo with actual
ground measurements. The other two methods are cross-comparisons
of surface albedo maps generated by (1) the “concurrent” approach of
Shuai et al. (2011) that uses coincident MODIS products to retrieve
Landsat-scale albedo, and (2) the coincident operational MODIS albedo
products themselves. Comparisonwith groundmeasurements is an inde-
pendent and optimal approach for product validation, but suffers from
the limited availability of ground albedo-meter measurements. Cross-
comparison with other products can be performed on a large volume of
MODIS images, but does not provide a robust estimate of absolute accura-
cy. Utilization of these multiple validationmeansmay increase the ability
to evaluate the algorithm performance thoroughly and objectively.

4.1. Validation with ground measurements

Independent ground or tower albedo measurements are generally
considered to be more accurate than satellite retrievals, and are often
taken as a reference for the validation of satellite products. However,

Fig. 4. Examples of the “pre-MODIS era” approach generated from scene (path/row: 45/29) on day 2007-08-29. (A) The spectral black-sky albedo composite of Landsat-5 bands 5, 4, and 3,
(B) the broadband black-sky albedo composite of visible, near infrared, and shortwave bands, (C) the black-sky albedo for the shortwave band, and (D) the quality assessment maps.
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the validation of satellite-derived products is difficult because the foot-
print of satellite observations differs significantly from that of in-situ in-
struments. Only measurements spatially representing the surrounding
landscape at both in-situ and satellite scales can provide a comparable
basis for validation (Román et al., 2009).

4.1.1. Surface albedo ground measurements
Tower-based surface albedo measurements were acquired from six

available forested sites of AmeriFlux network in the Pacific Northwest
region of the United States (Table 3; Ruehr, Martin, & Law, 2012;
Thomas et al., 2009; Vickers, Thomas, Pettijohn, Martin, & Law, 2012;

Table 3
Forested ground stations in the Pacific Northwest region.Acquired from the network-wide AmeriFlux database.

Site name Vegetation type Locationa Tower height (m) Canopy height (m) Footprint of
observation (m)b

Data period Landsat
retrieval #

US-Me2 ENFc 44°27′8.28″N, 121°33′25.92″W 32.0 ~22 228.6 2005–2007; 2009–2011 32
US-Me3 ENFc 44°18′55.68″N, 121°36′28.29″W 18.0d ~3.11 342.9 2004–2009 4
US-Me6 ENFc 44°19′23.43″N, 121°36′15.69″W 18.6e ~7.0 265.2 2010–2011 7
US-NR1 MFf 40°1′58.31″N, 105°32′49.09″W 26 11.5 331.5 2006–2011g 24
US-GLE Subalpine, alpine 41°21′59.51″N, 106°14′23.82″W 23/30h 12.1 249.2/409.2 2004–2011 24
US-Blk Conifer 44°09′01″N, 103°38′24″W 24 13–15 251.5–205.7 2004–2009 24

a Location of each site is confirmed by their PIs via private communication.
b Diameter of ground measurements footprint in the horizontal plane at canopy height.
c Evergreen needle leaf forest.
d Tower height is 18 m, instrument CNR-1 is mounted at 14 m.
e Tower height is 18.6 m, instrument mounted at 17.7 m.
f Subalpine mixed coniferous forest.
g Currently only post 2005 ground data to be used in terms of data processor's suggestion via personal contact.
h Tower height is 30 m during 1999–2006, and adjusted to 23 m since 2006.

Fig. 5.Distribution of Ameriflux validation sites in the Pacific Northwest region of the United States. For each site, a ground photo (Upper-left), photo of tower surroundings (lower-left),
and high-resolution satellite image (right) are shown. Note: image of tower surroundings for the currently deactivated US-Blk site is not available.
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Wilson &Meyers, 2007). Forested sites were of particular interest since
one of the overall objectives was to understand how forest disturbance
and recovery influenced the albedo trajectories. The field sites sample
forest ecosystems with different species composition, age and distur-
bance regimes (see the distribution and landscapes in Fig. 5), including
sub-alpine forest older than 400 years with dispersed younger trees at
the US-GLE site, subalpine mixed coniferous forest naturally regrown
from extensive logging during 1900–1910 at US-NR1, conifer forest
with scattered herbs and shrubs recovering from logging activity in
the early 1900s at US-Me2, very young ponderosa pine stand disturbed
by fire and harvest in the 1980s at US-Me3, and a reforested 20-year old
ponderosa pine site following fire and salvage cutting at US-Me6.
Both upward and downward broadband shortwave solar radiation
(0.3–2.8 μm) were measured via Kipp and Zonen (CNR1, CM-3, or
CM-6b), or Eppley-PSP tower albedo-meters with 170° effective field
of view. Data series collected from the individual sites were processed
into the 30-minute standard values, and obtained from the Ameriflux
web site: http://ameriflux.ornl.gov. For this study, daily tower albedo
values were retrieved corresponding to the Landsat imaging time of
10:30 AM, as well as local solar noon (LSN), the time corresponding to
the MODIS MCD43A product suite. In addition, the surface albedo data
series (level 2) for site US-NR1 were reviewed for inconsistency during
period pre- and post-2005 as a new CNR1 sensor was installed in the
fall of 2005. The post-2005 data which were measured with the new
well-calibrated sensors were recommended for use by the data
provider-(S. Burns, personal communication). An effort to establish
sensor-to-sensor cross-calibration is underway, and may provide
correctedpre-2005data soon for further validation activities atUS_NR1.

4.1.2. Aggregation from Landsat scale to tower measurement footprint
The disparate spatial scale between satellite and in-situ measure-

ments is one of the barriers to validating satellite-derived products.
Several studies have concluded that direct “point-to-pixel” comparison,
without considering spatial scales, is not sufficient for albedo product
validation, unless the validation focuses on a large and homogenous re-
gions (Liang et al., 2002; Román et al., 2009). The tower based instru-
ment pyranometer is influenced by the “cosine-law” of the response
direction and has a 170° effective field of view. An area of 2h� tan
85�
2

� �
diameter in the horizontal plane at forest canopy height is then de-

fined by the downward-looking sensor mounted on a tower (h meters
above canopy). The calculated diameter of the tower footprint for
each site is listed in Table 3. To facilitate the comparison in this study,
a cosine-law-based up-scaling method was applied to aggregate the
30-m Landsat albedo to the tower footprint for individual sites (Shuai
et al., 2011). The surface albedo corresponding to the tower footprint

αtower  footprint was obtained as the sum of available 30-m retrievals
(αlnd(i)) weighted by cos(θi), where θi is the view angle between the
tower top and the center of pixel i (Fig. 6) for all the N pixels that fallen
in the footprint of ground measurements (Eq. 12).

αtowerUfootprint ¼
XN

i¼1
cos θið Þ � αlnd ið Þð ÞXN
i¼1

cos θið Þ
ð12Þ

4.1.3. Comparison with ground measurement
We derived the surface albedo from the 30-minute tower measured

downwelling and upwelling radiation at 10:30 AM for Landsat and at
local solar noon for MODIS over each site. Note that retrievals from
Landsat as well asMODIS calculate intrinsic surface albedo under two ex-
treme incident radiation situations (“black-sky albedo” corresponding to
purely direct solar illumination and “white-sky albedo” corresponding
to purely isotropic illumination), while the field measurements record
the actual illumination corresponding to a mixture of both direct and dif-
fuse radiation. To obtain comparable metrics with field measurements,
we calculate the actual albedo (also called “blue-sky albedo”) via the in-
terpolation between black-sky and white-sky albedos weighted by the
ratio of direct or diffuse to the total downwelling radiation (Lucht et al.,
2000; Román et al., 2011; Schaaf et al., 2002). Since the in-situ datasets
lack information on direct/diffuse ratios, we simulated the direct/diffuse
ratios for required solar zenith angles using 6S based on the simultaneous
MODIS Terra atmosphere optical depths at the 550 nm band. Errors in-
duced by the difference of definedwavelength interval for the shortwave
band (ground 0.3–3.0 μm, Landsat 0.3–3.0 μm, and 0.3–5.0 μmforMODIS)
are negligible because the solar irradiance beyond 2.5 μmaccounts for less
than1.8% of the total between0.3 and 14.3 μm(Hulstrom, Bird, &Riordan,
1985).

The scatter plot (Fig. 7) compares the Landsat blue-sky albedo aggre-
gated to the tower field-of-view with the in-situ measured albedo at
10:30 AM in the shortwave for the six AmeriFlux network sites. Re-
trievals with snow and cloud contamination were removed from the
analysis using the snow and cloud flags in the QA word of the satellite
products. The Landsat retrievals are in very good agreement with the
tower-based albedo, with a root mean square error (RMSE) less than

Fig. 6. Illustration of the aggregation from Landsat 30-m pixels (dotted gray grids) into the
footprint projected on the ground by albedo meter (FOV = α) mounted on the tower h
meters above canopy.

Fig. 7. Comparison of actual (also called blue-sky) shortwave albedo between ground
measurements (Y-axis) and satellite retrievals (X-axis) at 10:30 AM from Landsat re-
trievals and at local solar noon from operational MCD43A3 (V005) products over six
AmeriFlux forested sites in Pacific Northwest region of United States, both Landsat and
MODIS meet the nominal 0.02 accuracy requirement in root mean square error (Sellers
et al., 1995). The dashed lines represent an absolute accuracy of 0.03 compared to the
ground data.
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0.016 and a bias no more than 0.007. Discrepancy between the Landsat
and ground albedos is confined to within ±0.03 albedo (dotted line in
Fig. 7), which supports the absolute accuracy requirement (0.02–0.05)
established by the climate modeling community (Sellers et al., 1995).
Compared with the operational MODIS (V005) shortwave albedo re-
trievals at local solar noon via the ground measurements as a bridge,
the Landsat retrievals are slightly higher, except for the US-NR1 site.
Thismakes sense if we consider the definition of black-sky albedo as de-
scribed previously. Because values of black-sky albedo depend closely
on the direction of solar illumination (i.e. solar zenith angle or timing
of observation), and black-sky albedo is commonly observed to de-
crease from sunrise to noon, then increase from noon to sunset, as val-
idated for MODIS in Liu et al., 2009.

4.2. Cross-comparison with the “concurrent” approach

As an initial validation, we compared albedo maps generated by the
“pre-MODIS era” LUT approach to those generated by the previously
published “concurrent” approach, which has been validated previously
(Román et al., 2013; Shuai et al., 2011). Fig. 8 shows the shortwave
broadband white-sky albedo maps derived from both approaches for
the identical date 2007-08-29 (fill values excluded in the analysis).
The “pre-MODIS era” LUT approach derieved albedo (left) is consistent
with that from the “concurrent” approach (right) for the spatial varia-
tion of albedo values, from low in the PNW forest region to the high in
the eastern barren land. In general, albedo value extracted by the
“pre-MODIS era” LUT approach is slightly higher than the “concurrent”

Fig. 8. Cross-comparison of shortwave white-sky albedo map on day 2007-08-29 generated from “pre-MODIS era” LUT approach (left) with “concurrent” approach (middle), and the re-
lated scatter plots over all available pixels (right).

Fig. 9. Illustration of the consistency between the “pre-MODIS era” LUT approach and the “concurrent” approach of Shuai et al. (2011). Shortwave white-sky albedo maps generated re-
spectively from “pre-MODIS era” LUT approach (panel A) and “concurrent” approach (panel B), over an undisturbed forest region inMontana (fill value or disturbed regions in black). The
absolute difference maps of white-sky albedo between “concurrent” and “pre-MODIS era” albedo (panel C, fill value or disturbed regions in white) for the overlapping years 2001–2011.
Day of year is indicated for each albedo map (YYYY-DOY).
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albedo in some scattered less homogeneous areas in areas of sparse veg-
etation, whichmay be due to the difficulty in achieving high quality an-
isotropy information in fairly heterogeneous localities. However, the
pixel-value-based scatter plot (Fig. 8, right) exhibits the good agree-
ment between both approaches with a high R2 (0.988), a slightly posi-
tive bias (0.005) and RMSE (0.009), including a small bias from 1-1
line which is mainly induced by the lack of high quality anisotropy in-
formation. The time series of shortwave white-sky albedo retrieved
from both approaches at an undisturbed 30 km by 30 km forest region
in Montana for the years 1985–2011 and 2001–2011 is displayed in
Fig. 9A and B. The consistency over the overlapped summer days of
2001–2011 is displayed in Fig. 9C. The albedo distribution map from
both series varies simultaneously with the fluctuation of day-of-year
(DOY), exhibiting lower values on day 2002–255 than other earlier
DOY. The absolute albedo difference during 2001–2011 for this region
is mostly less than 0.01.

4.3. Cross-comparison with MODIS operational product

To further examine the LUT performance, we compared an albedo
map generated by the “pre-MODIS” BRDF LUT approach to that pro-
duced by the operational MODIS albedo algorithm, which has been ex-
tensively validated (Jin et al., 2003; Liu et al., 2009; Román et al., 2009;
Wang et al., 2014). To perform the comparison, the MODIS 500-m
MCD43A (V005) product was reprojected to the Landsat UTM grid,
and resampled to 30-m resolution. Pixels with fill values in either the
MODIS or Landsat retrievals were excluded from the analysis. The oper-
ational MODIS white-sky albedo for WRS-2 path/row 45/29 was pro-
duced for day 2007-08-29 (DOY 241) using the instantaneous BRDF
estimate inverted from the 16-day directional observations of days
241–256. The resulting shortwave broadband white-sky albedo
(Fig. 10) shows reasonable agreement between the “pre-MODIS era”
LUT approach (left) and the MCD43A operational product (middle).
The higher spatial resolution of the Landsat retrievals provides
greater dynamic range in albedo values. For instance, scattered high
values in upper right and central region may be compensated by the
surrounding dominant lower values when aggregated to 500 m resolu-
tion, resulting in the bright yellowish patch at 500-m resolution. In the
scatter plot, the pixel-by-pixel comparison between the “pre-MODIS
era” approach and MCD43A reveals the reasonable agreement with
dominant points along the one-to-one line, but apparent variation due
to the 30-m versus 500-m resolution. In addition, some variance may
be introduced by the discrepancy of band passes between Landsat
and MODIS.

5. Discussion and conclusions

Our previous study (Shuai et al., 2011) described a “concurrent”
approach to retrieving 30-m albedo by combining Landsat directional
reflectance with contemporary MODIS BRDF information. Here we
have described anapproach to extend the generation of albedoproducts
back to the 1980s (“pre-MODIS era”) via construction of a priori anisot-
ropy Look-Up Tables (based onmodernMODIS data) that may be com-
bined with historical Landsat reflectances. Preliminary LUTs for the
Pacific Northwest (PNW) region of the United States were created,
with BRDF information stratified by the combination of landscape attri-
butes (land surface, terrain slope, season, and disturbance age and type)
for the six non-thermal Landsat-5 and -7. These LUTs provide various
BRDF trajectories for undisturbed landscape types and disturbed forest
scenarios, including recovery trajectories for fire and non-fire disturbed
forest regions. In the future, this approach for the creation of BRDF-LUT
could be used to build up LUTs over other regions. With the assumption
of generally invariant BRDF shapes for similar land cover conditions, the
spectral white-sky and black-sky albedos are derived through albedo-
to-nadir reflectance ratios as a bridge between the Landsat and MODIS
scales, followed by a narrow-to-broadband conversion to produce the
broadband albedos for visible, near infrared, and shortwave spectral
regions.

The accuracy of retrieved Landsat albedos were evaluated using
available ground measurements at forested AmeriFlux stations in the
PNW region and further evaluated through cross-comparison with the
surface albedos generated from the “concurrent” approach as well as
coincident MODIS operational products. The results show that the re-
trieved Landsat 30-m shortwave albedo values meet the absolute accu-
racy of 0.02–0.05 required by climate models at the validation stations
(Sellers et al., 1995), and furthermore are consistent with those pro-
duced from both “concurrent” approach andMCD43A algorithm. An ad-
vantage of the Landsat albedo maps is that the finer resolution results
include more detailed representation of the landscape, and a wider dy-
namic range compared to the 500-m MCD43A product, especially in
heterogeneous regions. This is particularly important given the fine-
scale landscape patterns that result from both ecosystem disturbance
and human modification of land cover.

Future work will expand the validation to structural characteristics
across the full range of theNorth American vegetation regimes by incor-
porating recent Landsat-based disturbance products (Kennedy et al.,
2012; Masek et al., 2013). In addition, with the lengthening MODIS re-
cord and the expansion of the detection of disturbance types in the re-
cent disturbance products, we may be able to separate the non-fire
disturbance BRDF-LUT into individual disturbance categories, and

Fig. 10. Cross-comparison of shortwaveWhite-Sky Albedo (WSA) map on day 2007-08-29 generated from “pre-MODIS era” LUT approach (left) with concident MCD43A3 (middle), and
the related scatter plot over all available pixels (right).
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reduce the need for BRDF interpolations. Equally important is the incor-
poration of soil anisotropy once sufficient understanding of natural
structured soil anisotropy features are obtained from not only laborato-
ry measurements but also satellite-based estimates. Finally, we intend
to develop an approach to retrieve snow-covered albedo at 30-m reso-
lution to further understand the albedo evolution and energy budget
over snow covered forest regions.
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