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Abstract 22 

This study is concerned with the characteristics of storms exhibiting an abrupt temporal 23 

increase in the total lightning flash rate (i.e., lightning jump, LJ).  An automated storm 24 

tracking method is used to identify storm “clusters” and total lightning activity from 25 

three different lightning detection systems over Oklahoma, northern Alabama and 26 

Washington, D.C. On average and for different employed thresholds, the clusters that 27 

encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of 28 

Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the 29 

clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) 30 

clusters are 80 min (35 min), 14 mm (8 mm), 25 kg m-2 (18 kg m-2) and 0.05 flash min-1 31 

km-2 (0.01 flash min-1 km-2).  Furthermore, the LJ1 clusters are also characterized by 32 

slower decaying autocorrelation functions, a result that implies a less "random" behavior 33 

in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ 34 

provides an estimate of the time remaining to the storm’s dissipation. Depending of the 35 

LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, 36 

with stronger jumps indicating more time until storm decay. This study’s results support 37 

the hypothesis that the LJ is a proxy for the storm’s kinematic and microphysical state 38 

rather than a coincidental value. 39 

1. Introduction 40 

 The advent of ground-based lightning detection networks in recent decades has 41 

made real-time retrieval of total lightning activity (cloud-to-ground, CG and the intra-42 
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cloud, IC) available in both high spatial and temporal resolutions. Although there are 43 

uncertainties in the details (Takahashi 1978; Saunders 1993), it is known that 44 

rebounding collisions between graupel and ice crystals in the presence of super-cooled 45 

water is the primary process for thunderstorm electrification (MacGorman and 46 

Morgenstern 1998; Saunders et al. 2006; Emersic and Saunders 2010). Several studies 47 

have documented a temporal co-variability between updraft mass flux, precipitation ice 48 

mass and overall storm depth with the respective total lightning activity (e.g., Goodman 49 

et al. 1988; Carey and Rutledge 2000; Chronis et al. 2007; Deierling and Petersen 2008; 50 

Bruning and MacGorman 2013). Hence, it would be reasonable to suggest that an abrupt 51 

temporal change of the order of a few minutes in the total lightning activity is 52 

considered as a severe weather indicator (“Lightning Jump", LJ, see Schultz et al. 2009; 53 

2011). Studies by Williams et al. (1999), Gatlin and Goodman (2010), Carey et al. 54 

(2009), Schultz et. al. (2009; 2011) and Rudlosky and Fuelberg (2013) document that 55 

statistics such as lead time, probability of detection and false alarm ratio could be 56 

improved based on the use of total lightning as a metric for storm intensity. Nonetheless, 57 

these methods can be hindered by problems related to uncertainties in severe weather 58 

observations at the surface (Trapp et al. 2006; Keene et al. 2008; Schultz et al. 2011). 59 

This study puts forward an original comparison between the convective characteristics 60 

of storms that did or did not exhibit a LJ throughout their lifetime. This evaluation relies 61 

on radar-derived and lightning properties. 62 

2. Data and Methods 63 
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 2.1 Storm Tracking and Clustering 64 

 The storm identification and tracking have been performed in real-time utilizing 65 

the Warning Decision Support System Integrated Information tracking system (WDSS-66 

II, Lakshmanan et al. 2007). A storm “cluster” is automatically identified by the 67 

reflectivity across the -10°C isothermal layer, following a merger of individual WSR-68 

88D radars.  A combination of watershed segmentation and k-means clustering is 69 

employed to identify the storm clusters (Lakshmanan et al. 2009; Kolodziej Hobson et 70 

al. 2012; Cintineo et al. 2014).  To complete the storm identification, the algorithm 71 

searches for local reflectivity (Z) maxima where Z > 20 dBZ, then incrementally grows 72 

the area until it is at least 200 km2.  The storm cluster is then matched with a separately 73 

identified cluster at the next time step (for our analysis, a 1-min time step was used) 74 

using a cost function, where longer-lived cells are given preference in the case of storm 75 

mergers.  76 

  Each storm (hereinafter cluster) is described by a geolocated polygon (i.e. 77 

footprint). The cluster’s lifespan is determined as the total time a cluster was identified 78 

and tracked by WDSS-II (Lakshmanan and Smith 2009). The Maximum Vertical 79 

Integrated Liquid (VIL, Greene and Clark 1972) and the Maximum Expected Size of 80 

Hail (MESH, Witt et al. 1998; Cintineo et al. 2012) are retrieved for each cluster for the 81 

duration of its lifetime. Both VIL and MESH have been used as radar-derived intensity 82 

metrics for storm properties such as liquid precipitation, updraft strength and hail growth 83 

(Amburn and Wolf 1996; Witt et al. 1998). As with any proxy, there are caveats that 84 
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reflect the imperfect representations of severe weather potential and emanate from 85 

parameters unrelated to the storm dynamics (e.g. distance from the radar, tilted updrafts, 86 

storm speed etc., Stumpf et al. 2004). To mitigate these effects as much as possible, all 87 

available radars in the area are used to retrieve these proxies. Five radars over each of 88 

the three locations are employed, namely, KFDR, KTLX, KVNX, KINX, KSRX for 89 

Oklahoma, KHTX, KGWX, KBMX, KDHX, KFFC for north Alabama and KLWX, 90 

KDOX, KAKQ, KCCX, KDIX for DC (radar acronyms from 91 

https://www.ncdc.noaa.gov/nexradinv/map.jsp). The data for the present study extends 92 

from 1 April 2013 through 14 August 2013. 93 

 2.2 Total Lightning Activity and the Lightning Jump Algorithm 94 

 This study employs three total lightning detection networks: 1) the Lightning 95 

Mapping Array (LMA) networks located in central/SW Oklahoma (MacGorman et al. 96 

2008), North Alabama (Goodman et al. 2005), and Washington D.C (Krehbiel 2008) 2) 97 

the Earth Networks Total Lightning Network (ENTLN, Liu and Heckman 2010) and 3) 98 

the National Lightning Detection Network (NLDN, Cummins et al. 1995,2005, 99 

Cummins and Murphy 2009).  100 

 The LMA networks detect the very high frequency (VHF) radiation emitted 101 

during the elemental processes that compose a lightning discharge (e.g. the initial 102 

breakdown, leader propagation and other K-processes, Uman 1987) with a location 103 

accuracy measured in tens of meters and with a time resolution of 80-100 μs (Thomas et 104 

al. 2004). The LMA detects both IC and CG flashes although the distinction can be 105 
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dubious due to limitations in range. The location accuracy is also range-dependent, 106 

however it is relatively constant between ~150 km radius from the respective center 107 

(Thomas et al. 2004; Koshak et al. 2004). The following analysis relies on the total 108 

lightning flashes occurring within ~120 km of the respective LMA center (Thomas et al. 109 

2003). Lightning flashes are retrieved from the LMAs via grouping at least 10 detected 110 

VHF radiation sources, using time and space constraints (3 km and 150 ms) between the 111 

adjoining points (McCaul et al. 2008).  Only flashes that begin within the storm cluster’s 112 

footprint are counted towards the total flash rate. No classification between CG and IC 113 

flashes is performed using LMA data.  114 

 The ENTLN sensors operate over a wide frequency range, spanning from 1 Hz to 115 

12 MHz. According to Liu and Heckman (2011), electric field waveforms are used in 116 

locating as well as classifying the IC and CG flashes. Multiple strokes (or individual 117 

cloud events) are clustered into a single flash if they are within 700 ms and 10 km of the 118 

first detected stroke. A flash that contains at least one return stroke is classified as a CG 119 

flash, otherwise it is classified as an IC flash. 120 

 Since the late 1980s, the National Lightning Detection Network (NLDN, 121 

Cummins et al. 1995; 1998; 2006) has served as the source for many CG lightning-122 

related studies over the US. The network consists of 113 sensors that combine the 123 

advantages of direction finding and time-of-arrival techniques. The NLDN CG detection 124 

efficiency ranges between 90-95% over the mid latitude continental US, with a median 125 

location error better than 500 m (Cummins and Murphy 2009; Rudlosky and Fuelberg 126 
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2010). Although the NLDN is designed to primarily detect CG flashes, it has been 127 

recently reported that IC flashes are also detected depending on the restrictions applied 128 

to the processed waveforms (peak-to-zero rise time, Murphy and Nag, 2014).  129 

 The present study employs the total flash activity (IC+CG) for all lightning 130 

detection systems. Rudlosky and Fuelberg (2013) use a similar methodology for 131 

compiling lightning and radar data. Both NLDN and ENTLN have national (US) 132 

coverage. Nevertheless, for this analysis the respective total lightning activity is 133 

computed only for the clusters that are identified over a radius around where the 134 

optimum LMA operation is ensured. Further detailed comparison (e.g., relative location 135 

accuracy and detection efficiency) between the lightning detection systems lies outside 136 

the scope of this paper. However, their employment is considered as a preliminary 137 

attempt to demonstrate results pertaining to the LJ properties from lightning detection 138 

networks of different technical specifications (e.g., detection efficiency). 139 

 The 1-min flash rate is computed by adding all the flashes occurring within the 140 

footprint of the identified cluster. The LJ is objectively identified by Schultz et al. (2009; 141 

2011). This technique uses 14 min of the cluster’s most recent flash rate history. Twelve 142 

of the 14 minutes are considered to calculate the minimum jump threshold that must be 143 

exceeded for a LJ to occur.  The remaining two minutes are used to determine whether 144 

the current rate of change in the total flash rate exceeds the LJ threshold. As outlined in 145 

Schultz et al. (2009; 2011), the algorithm is a 5-step process. These steps are as follows: 146 

1) The total flash rate (f min-1) from the 14 minute period is binned into two minute 147 
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segments and the total flash rate is averaged (Eqn. 1)  148 

(1) 149 

2) The rate of change of the total flash rate (DFRDT, f min-2) is calculated by subtracting 150 

consecutive bins from each other (Eqn. 2)  151 

(2) 152 

This results in six DFRDT values (f min-2) 3) The five earliest DFRDT values in time 153 

are used to calculate the standard deviation () of the population 4) If DFRDT > α *  154 

and the flash rate is in greater than a given flash rate threshold (FRT) then a LJ has 155 

occurred. Note that -α- represents a multiplicative factor (i.e. dimensionless) and has no 156 

relation to the standard deviation (). In the original studies by Schultz et al. (2009; 157 

2011) α and FRT were set to 2.0 and 10 f m-1. Also note that α is dimensionless (i.e., f 158 

min-2 /f min-2).  Here we compute the LJ based on a variable α (0.5 - 4, step of 0.5) and 159 

FRT (5-25 f m-1, step of 5 f m-1). The latter is employed in order to define the LJ relative 160 

strength. For example, a weaker LJ1 would have α=1.0 and FRT=10 f m-1 while a 161 

stronger LJ1 would be considered as α=2.0 and a FRT=15 f m-1 5) This process is 162 

repeated every two minutes as new total lightning flash rates are collected until the 163 

storm dissipates. 164 

 We note that the above implemented time-window within which the LJ is 165 

calculated is based on empirical observations of the growth and decay on the convective 166 

time scale (<10-20 minutes). Had we allowed for longer periods (e.g. 40-60 minutes) 167 
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into the thunderstorm’s lifetime we would likely have missed the occurrence of the first 168 

LJ and potentially severe weather occurrence. This is why we’ve empirically tested this 169 

algorithm with over 700 storms in multiple storm environments to help understand the 170 

variability of the algorithm (Schultz et al. 2011). The choice of the 2* (i.e. α=2) in 171 

Schultz et al. (2011) is simply a benchmark to which this study is not tied to. 172 

 3. Analysis and Discussion 173 

3.1 Data and Quality control 174 

As WDSS-II tracks clusters independently of the respective total lightning 175 

activity, the number of the identified LJ0 and LJ1 clusters is considerably different. For 176 

instance more than 2,000 clusters are classified as LJ0 at α=2.0 f m-2 and FRT=10 f m-1 177 

whereas less than 200 are classified as LJ1 for the same α and FRT values. To ensure a 178 

comparable sample size and improve the representativeness of the data, we report on the 179 

LJ0 and LJ1 clusters that exhibit sustained total lightning activity for more than 95% 180 

during their lifespan (e.g., if a cluster is tracked for 100 minutes, the cluster must exhibit 181 

total lightning activity greater than zero for at least 95 minutes). This quality constraint 182 

(QC1) may classify a slightly different number of clusters depending on the employed 183 

lightning detection system. An additional quality constraint (QC2) is applied to the 184 

clusters that start or end at a flash rate that is notably higher than zero (set to >10 f m-1). 185 

Typically, these cases represent merging or splitting clusters or clusters that 186 

entered/exited the effective radius of the LMA with high flash rates.  QC2 also takes 187 

care of potential problems with MESH/VIL repetitiveness due to distance from the 188 
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radar. Given that the study explores aspects such as the storm duration, the clusters that 189 

failed to conform to QC2 are omitted from the analysis. Figure 1 illustrates examples 190 

from a tracked cluster that exhibits a problematic tracking (e.g. cluster entering the area 191 

with already high flash rates, Fig. 1a), a normal tracking (i.e. comply with both QC1 and 192 

QC2, Fig. 1b), a LJ0 cluster (Fig. 1c) and a LJ1 cluster (Fig. 1d) of comparable flash 193 

rates.  194 

 All three lightning detection systems indicate that the number of LJ1 clusters 195 

decreases as the α and FRT values increase (i.e. fewer clusters at higher α and FRT 196 

values, Fig. 2b, d, and f). Unlike the LJ1, the number of tracked LJ0 clusters increases as 197 

the values of α and FRT increase (Fig. 2a, c, and e). The latter should be expected since 198 

a LJ0 at e.g. α=2.0 and FRT=10 f m-1 will also not exhibit LJ at higher α or FRT values. 199 

 3.2 The Autocorrelation function of LJ0 and LJ1 Flash Time Series. 200 

 Autocorrelation is an essential tool for describing the independence of sequential 201 

values in a time series. A slow (fast) decaying autocorrelation function with time (i.e. 202 

lag) indicates a consistent (random) behavior of the variable under consideration 203 

(Bowerman and O'Connell 1979). For example, a slow-decaying autocorrelation 204 

function of lightning activity time-series would signal a coherent behavior in the storm’s 205 

updraft speed and volume (e.g., Schultz et. al. 2009; 2011; Schultz et al. 2014). 206 

Consequently, autocorrelation can elaborate on whether the presence of a LJ relates to a 207 

numerically random increase in the total lightning activity or points to a more persistent 208 

feature of the storm's dynamical evolution. The autocorrelation function is computed for 209 



 

 11 of 45 

the flash rates of LJ0 and LJ1, by introducing a time lag that ranges from 1 to +N/2 210 

minutes, where N is the number of 1-minute intervals during which the cluster is tracked 211 

(i.e., lifespan). The lag at which the Pearson correlation is reduced below the 95% 212 

significance level denotes the “e-folding” time.. Figure 3 illustrates the average e-folding 213 

times for the LJ0 and LJ1 clusters for different α and FRT values. The corresponding 214 

results (Fig. 3) show longer e-folding times for the LJ1 clusters. For example, the e-215 

folding times for the LJ1 at α=2.0 and FRT=15 f m-1 are computed as ~12 min for LMA, 216 

12.7 min for the ENTLN, and 11.5 min for the NLDN. Conversely, the e-folding times 217 

for the LJ0 for the same α and FRT values are consistently less than ~4.0 min for all 218 

three lightning detection systems and any given α and FRT value.   Moreover, the fact 219 

that the e-folding times for LJ1 clusters increase as both α and FRT values also increase, 220 

illustrates a key observation that emphasizes the non-redundant numerical role of both 221 

variables α and FRT in the LJ algorithmic implementation (Schultz et al. 2009; 2011). 222 

3.3 Comparison of storm severity potential and physical characteristics between 223 

the LJ0 and LJ1 clusters. 224 

 The previous section studied the LJ0 and LJ1 clusters exclusively from the 225 

standpoint of the flash rate temporal variation. This section explores the mean values of 226 

storm attributes derived from WDSS-II. As Fig. 4 demonstrates, the LJ1 clusters exhibit 227 

a longer lifespan than the respective LJ0, and this observation is consistent throughout 228 

the three lightning detection systems and all α and FRT values. For example, for α=2.0 229 

and FRT=15 f m-1, the average lifespan is 80 min, whereas the respective LJ0 lifespan is 230 
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approximately 35 min. Similar behavior is evident for the mean flash rate (normalized 231 

by the cluster’s footprint area, f m-1 km-2, Fig. 5), MESH (Fig. 6) and VIL (Fig. 7) 232 

values. 233 

In particular, Fig. 5 indicates that on average, the LJ1 clusters exhibit ~4-5 times 234 

higher flash rates than the respective LJ0. For instance, the average LJ1 flash rates for α 235 

=2.0 and FRT=15 f m-1 are ~0.054 f m-1 km-2 as opposed to ~0.015 f m-1 km-2 for the 236 

LJ0, an observation that is also consistent across all networks. In turn, the MESH values 237 

for the LJ1 clusters range from ~11-18 mm whereas the LJ0 corresponding values range 238 

from ~6.5-10 mm (Fig. 6).  Likewise, the mean values of VIL are ~ 18 kg m-2 for the 239 

LJ0 and ~25 kg m-2 for the respective LJ1 (Fig. 7). As also highlighted in Section 3.2,   240 

higher flash rates, larger MESH and VIL values (Figs. 5-7) are found with increasing α  241 

and FRT thresholds. One could argue that it would be expected to have higher 242 

magnitudes of weather severity proxies (e.g., MESH, VIL etc.) with higher flash rates. 243 

Nevertheless, the previous results also suggest that it is not only the flash rate (i.e., FRT) 244 

that exhibits a fundamental physical tie to storm intensity but also its temporal evolution 245 

(i.e., α). The above results are also in agreement with the findings by Rudlosky and 246 

Fuelberg (2013). 247 

3.4 LJ strength and storm decay time 248 

The results shown in Fig. 4 support that the LJ1 clusters with larger α and FRT 249 

relate to storms with longer durations (Fig. 4). Approaching this from a different 250 

perspective one can raise the following question: “Does the strength of the final LJ 251 
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occurrence relate to the remaining lifespan of the cluster?” To address this question the 252 

time elapsed from the last LJ occurrence to the last time-step that a cluster is tracked is 253 

computed in minutes.  Arguably, the results in Fig. 8 corroborate that both α and FRT 254 

play a role in the storms’ remaining duration which shows to increase from around 30-255 

35 min for LJ1 of α = 1.0 and FRT=10 f m-1 to over 45-60 min for higher α and/or FRT 256 

values.  257 

4. Conclusions  258 

The observations herein indicate that the presence of LJ has implications for the 259 

storm dynamics, intensity and evolution.  The e-folding times are lower for the LJ1 260 

clusters. For example the e-folding times for the LJ1 at α =2.0 and FRT=15 f m-1 are 261 

computed as ~12 min for LMA, 12.7 min for the ENTLN, and 11.5 min for the NLDN. 262 

Conversely, the e-folding times for the LJ0 for the same α and FRT values are 263 

consistently less than ~4.0 min for all three lightning detection systems. Through the 264 

enhanced updraft hypothesis, these findings indicate that the presence of a LJ signals the 265 

storm’s ability to sustain convection.  266 

The study also documents that LJ1 clusters last longer and exhibit higher flash 267 

rates (area-normalized), MESH and VIL values, further corroborating previous studies 268 

that also suggest that the temporal total lightning variability is a dependable proxy for 269 

severe weather risk assessment (Williams 2001; Schultz et al. 2009; 2011; Rudlosky and 270 

Fuelberg 2013). In addition, the MESH values for the LJ1 clusters range from ~11-18 271 

mm whereas the LJ0 respective values range from ~6.5-10 mm (Fig. 5).  The mean 272 
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values of VIL are ~ 18 kg m-2 for the LJ0 and ~25 kg m-2 for the LJ1 clusters.  273 

The results throughout this analysis consistently suggest that there is no 274 

redundancy in the role of α and FRT in the LJ numerical implementation. This is shown 275 

by the increasing magnitudes of the implicated variables (e.g. e-folding time, MESH, 276 

flash rate etc., see Fig.2-7) for LJ1 clusters increase as both α and FRT values also 277 

increase. Finally, the study offers further evidence that the presence and temporal 278 

coincidence of a LJ could be viewed as a proxy of the storm’s expected dissipation. 279 

Typically, these values range between 20-60 min depending on the LJ strength with 280 

stronger jumps indicating more time until storm decay.  281 

 Ongoing efforts explore the value of the LJ as a component in the operational 282 

severe weather watch/warnings issuance (Schultz et al. 2014). The upcoming Geo-283 

stationary Lightning Mapper (GLM) onboard the GOES-R mission (Goodman et al. 284 

2013) will provide continuous monitoring of total lightning activity across the Western 285 

Hemisphere. GLM will provide even greater detail on the linkage between temporal 286 

lightning variability and the storm evolution over areas where currently related 287 

information, including radar, is limited or nonexistent. Importantly, GLM will provide 288 

continuous coverage of total lightning over a large domain to evaluate this study on the 289 

global scale.    290 
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Figure Captions 495 

Figure 1: Tracked cluster that exhibits a problematic tracking (e.g. cluster entering the area with already high flash rates, 496 

Fig.1a), a normal tracking (i.e. comply with both QC1 and QC2, Fig.1b), a LJ0 cluster (Fig.1c) and a LJ1 cluster (Fig.1d) of 497 

comparable flash rates.  498 

 499 

Figure 2: The identified number of LJ0/LJ1 clusters as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-500 

a/b, ENTLN-c/d and NLDN-e/f 501 

Figure 3: Mean e-folding time (min) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-502 

a/b, ENTLN-c/d and NLDN-e/f 503 

 504 

Figure 4: Mean life-span (min) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 505 

ENTLN-c/d and NLDN-e/f 506 
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Figure 5: Mean area-normalized flash rate (f m-1 km-2) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α 507 

(y-axis,), LMA-a/b, ENTLN-c/d and NLDN-e/f 508 

Figure 6: Mean MESH (mm) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 509 

ENTLN-c/d and NLDN-e/f 510 

Figure 7: Mean VIL (kg m-2), for LJ0/LJ1 as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 511 

ENTLN-c/d and NLDN-e/f 512 

Figure 8: Time elapsed until the storm dissipation for LJ1 (min) (LMA-a, ENTLN-b and NLDN-c) as a 513 

function of FRT (x-axis, f m-1) and α (y-axis,). 514 

 515 
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Figure 2: The identified number of LJ0/LJ1 clusters as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-543 

a/b, ENTLN-c/d and NLDN-e/f 544 
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Figure 3: Mean e-folding time (min) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-564 

a/b, ENTLN-c/d and NLDN-e/f 565 
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Figure 4: Mean life-span (min) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 586 

ENTLN-c/d and NLDN-e/f 587 
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Figure 5: Mean area-normalized flash rate (f m-1 km-2) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α 607 

(y-axis,), LMA-a/b, ENTLN-c/d and NLDN-e/f 608 
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Figure 6: Mean MESH (mm) for LJ0/LJ1, as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 630 

ENTLN-c/d and NLDN-e/f 631 
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Figure 7: Mean VIL (kg m-2), for LJ0/LJ1 as a function of FRT (x-axis, f m-1) and α (y-axis,), LMA-a/b, 651 

ENTLN-c/d and NLDN-e/f 652 
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Figure 8: Time elapsed until the storm dissipation for LJ1 (min) (LMA-a, ENTLN-b and NLDN-c) as a 673 

function of FRT (x-axis, f m-1) and α (y-axis,). 674 
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