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Joint seismic and gravity inversion

Goal:
Recover seismic velocity and density structure of
the Moon as a function of latitude, longitude, and
depth.

Method:

Jointly invert seismic delay times and gravity data
by relating density to seismic velocity using a
depth-dependent linear relationship. The scaling
coefficient (B) encompasses material properties
that vary with depth, including temperature and
composition. The inversion minimizes (in a least-

squares sense) the difference between the ob-
served and calculated data. = A

- velocity node
* seismic station

[ density block

observed data calculated data

P- and S-wave arrivals
predicted from existing
velocity model

seismic  P-and S-wave arrival
data times read from recorded
seismograms

gravity p-projected radial
data gravity anomaly

D
scalar estimated
point-by-point

from the input layer-
cake density profile

Model parameterization:

The model is parameterized using density blocks and velocity
nodes (nodes are placed in the middle of each density block).
The B-coefficient links density and velocity in each horizontal
layer.

Test study: Earth seismic survey

A seismic survey of the Corinth Rift region in Greece
consisted of 63 portable seismic stations that recorded 177
teleseismic events, resulting in a total of 2319 travel time
residuals. The input Bouguer gravity anomaly, initial density
and velocity profiles, grid parameterization, and ray pierce
points through the model are shown below.
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The inversion results in a map of density and velocity perturbations across the study

the model:
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Lunar core analysis:

A method to enhance and detect subtle

selsm\c arrivals, typically used in terrestrial
is to stack sei that

have been time-shifted to the predicted ar-

rival time of a hypothetical phase of interest.

toll like study
The lunar seismic data are limited by the number of seisi

tions in the Apollo array. When considering well-located deep
moonquakes, there are 71 events recorded on 4 stations, resulting

in 148 data.

The inversion results break down as the number of data in the

Earth test study are reduced to lunar-like conditions. The o

rms reduction in the delay-time data also decreases with decreas-
ing number of data. This breakdown indicates that the model
space is not properly parameterized for the available data.
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Moving forward:

The parameter space shoull
inversion is sensitive to gri
rapidly if the grid size is too|
can also force physically uf

contrasts, concentrating larg

but may produce a sigl
(over-fitting).

For the Moon, seismic ra)
layers are densely clusterg
spacing should be highest
average pierce-point spacin

o€ 9107 1€ Siaded Ie[iliis pue Uoeld elepeisin

\ation density. The
il tends to diverge
itting). A large grid
bnsity and velocity
ithe upper portions
e stable inversion,
n't actually exist

the near-surface
stations. The grid
s, dictated by the

We i applied this array processing
approach to the Apollo lunar seismic data,
providing the first direct constraint on the
size and state of the Moon’s core. This
analysis used 1-D seismic velocity and den-
sity profiles.

We searched for lunar core reflections by
time-shifting deep moonquake cluster
traces according to predictions associated
with different possible layer depths, then
stacking the traces. The approach itera-
tively constrains the best-fit radii and overly-
ing seismic velocities in each layer.
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GRAIL-constrained crustal structure, combined with velocity and den-
sity perturbations constrained by the joint inversion, will introduce
travel-time anomalies that can be summed to refine the seismic struc-

ture resulting from the array processing.
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