TRANSMISSION X-RAY DIFFRACTION (XRD) PATTERNS RELEVANT TO THE MSL CHEMIN AMORPHOUS COMPONENT: SULFATES AND SILICATES. R.V. Morris¹, E.B. Rampe², T.G. Graff³, P.D. Archer, Jr. ³, L. Le³, D.W. Ming¹, and B. Sutter³. ¹NASA-JSC, Houston, TX 77058, <u>richard.v.morris@nasa.gov</u>.

²Aerodyne Industries, Jacobs-JETS, Houston, TX 77058, ³Jacobs, NASA-JSC, Houston, TX 77058.

Introduction and Background: The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Ka radiation source and a $\sim 5^{\circ}$ to $\sim 52^{\circ} 2\theta$ range) where the analyzed powder samples are constrained to have discrete particle diameters $<150 \mu m$ by a sieve [1]. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)) [2-4]. The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals [2-5]. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near $30^{\circ} 2\theta$ and by increasing diffraction intensity (scattering continuum) from ~15° to ~5°, the 2 θ minimum.

Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself [2,4] and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from ~20 wt.% to ~50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO₃) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern [2]. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components.

Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

Samples and Methods: For sulfate experiments, 10 acid-sulfate solutions were prepared from standard reagents (Table 1). Cryoprecipitation (precipitation by removing water as ice) was induced by freezing solutions using liquid N_2 . After freeze drying, the precipitates were stored in closed containers in a glove box purged with dry- N_2 gas. For silicate experiments, silicate liquids having compositions equivalent to representative MER rocks and soils (SO₃- and Cl-free) [e.g., 10, 11] were equilibrated at 1350-1450°C in a 1-atm gas mixing furnace at IW+1 oxygen fugacity and

quenched in water to room temperature. Transmission XRD diffraction patterns were obtained on a CheMin-4 diffractometer which is a laboratory version of the MSL CheMin instrument. Dry N_2 purge gas was used for the sulfate measurements.

Table 1. Compositions of Starting Acid-Sulfate
Solutions for Cryoprecipitation of Sulfates

	Concentration	Volume	Cation
Cation(s)	(M)	(mL)	Ratio
Fe ³⁺	1.00	20	
Fe ²⁺	1.00	15	
Mg ²⁺	1.00	20	
Ca ²⁺	0.015	500	
K⁺	0.50	40	
Na⁺	0.25	100	
Fe ²⁺ , Mg ²⁺	0.5, 0.5	20	1:1
Fe ³⁺ , Mg ²⁺	0.5, 0.5	40	1:1
Fe ²⁺ , Ca ²⁺	0.015, 0.015	500	1:1
Fe ³⁺ , Mg ²⁺ , K⁺, Na⁺	0.2, 0.2, 0.02, 0.02	100	10:10:1:1

Results: Single and mixed cation sulfate solutions of Mg^{2+} , Fe^{2+} , and Fe^{3+} in any proportion are likely capable of forming amorphous products by cryoprecipitation (Fig. 1a,b). Single cation Ca²⁺, K⁺, and Na⁺ sulfate solutions did not form amorphous precipitates (anhydrite plus gypsum, arcanite, and thenardite, respectively, with gypsum the only hydrated sulfate), and neither did a solution with $Fe^{2+}:Ca^{2+}=1:1$ (Fig. 1c,d), although only gypsum was detected. However, a solution with $Fe^{3+}:Mg^{2+}:Na^{+}:K^{+} = 10:10:1:1$ formed an XRD amorphous precipitate (Fig 1b.). Additional experiments will define the compositions over which mixed cation sulfate solutions produce amorphous and mixed amorphous-crystalline precipitates. Especially relevant are sulfate solutions involving Ca2+, because crystalline Ca-sulfates are detected by CheMin [2,4].

In general, amorphous sulfates have a broad intensity maximum near $\sim 30^{\circ} 2\theta$ and another one with less intensity at lower 2θ (Fig. 1a,b). Their overall shapes and 2θ locations (esp. Mg²⁺ and/or Fe²⁺ compositions) are not inconsistent with CheMin results, e.g., compare with basaltic soil glass (Fig. 2a) which was used by [2] for RN amorphous calculations. However, a quantitative analysis has not been done.

With one exception, the silicate glasses were predominantly amorphous with a single broad diffraction feature whose peak position increased from ~25° to ~31° 20 with increasing SiO₂ (Fig 2a). The Mgrich composition (Algonquin) produced forsterite plus the most SiO₂-poor glass as indicated by the maximum

diffraction intensity at ~34° 2 θ (Fig. 2b). The diffraction pattern of the high-SiO₂ residue of acid-sulfate leached terrestrial basaltic tephra (HWMK051) has a diffraction maximum (~26° 2 θ) just longward of that for commercial SiO₂ glass (~25° 2 θ) (Fig. 2c).

Our results show that the shape and position of the amorphous component of MSL CheMin data may, at least semiquantitatively, fingerprint its nature.

References: [1] Blake et al. (2012) SSR, DOI 10.1007/s 11214-11012-19905-11211. [2] Bish et al. (2013) Science, 341, DOI:10.1126/science.1238932. [3] Blake et al. (2013) Science, 341, DOI:10.1126/science.1239505. [4] Vaniman et al., (2013) Science, 343 DOI:10.1126/science.1243480. [5] Treiman et al. (2014) Am. Min., 99, 2234. [6] Morris et al. (2013) LPSC44, abs. #1653. [7] Morris et al. (2014) LPSC45, abs.#1319. [8] Dehouck et al. (2014) JGR, 10.1002/-2014JE004716. [9] Morris et al. (2015) LPSC46, this volume. [10] Ming et al. (2008)JGR, 113, E12S39, doi:10.1029/2008JE003195. [11] Morris et al. (2008) JGR., 113, E12S42, doi:10.1029/-2008JE003201.

Fig. 1 (left). XRD patterns of cryoprecipitated single and mixed cation acid sulfate solutions and rapid dehydration of solid $MgSO_4.7H_2O$ (same as cryoprecipitation).

Fig. 2 (below). XRD patterns of **(a)** commercial SiO₂ glass and MER-composition (SO₃- and Cl-free) silicate liquids quenched from 1350-1450°C and IW+1 oxygen fugacity, **(b)** similarly quenched Algonquin liquid with olivine and glass, and **(c)** high-SiO₂ residue of basalt leached under natural acid sulfate conditions (HWKV051) compared to SiO₂ and Adirondack glasses.

