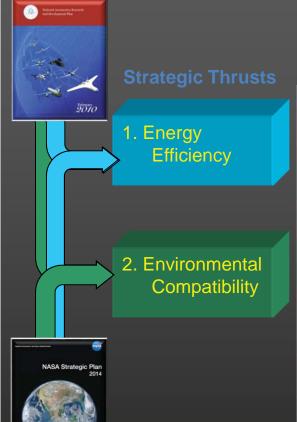
National Aeronautics and Space Administration


NASA N3-X with Turboelectric Distributed Propulsion

James L. Felder NASA Glenn Research Center Cleveland, Ohio

Fundamental Aeronautics Program Fixed Wing Project

NASA Subsonic Transport System Level Metrics

TECHNOLOGY	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)				13.1
BENEFITS*	N+1 (2015)	N+2 (2020**)		N+3 (2025)	
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB		-52 dB	
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%		-80%	
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%		-80%	
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%		-60%	

^{*} Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

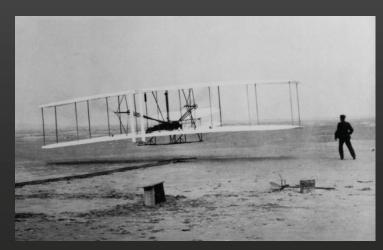
Research addressing revolutionary far-term goals with opportunities for near-term impact

^{**} ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

[‡] CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel and/or energy source used

Reference Aircraft – The Boeing 777-200LR

- Passengers: 300
- Payload: 118,000 lbs (53.500 kg)
- Range: 7500 nm (14000 km)
- Cruise speed: Mach 0.84 @ 35k ft
- Fuel: 279,800 lbs (126.900 kg)

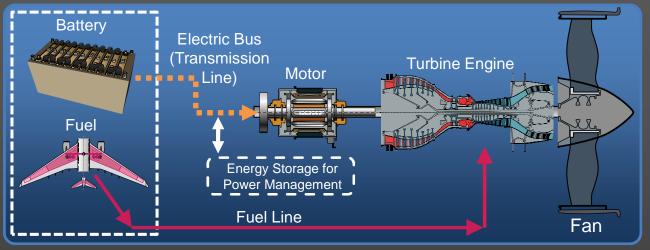


NASA

Many Approaches to Distributed Propulsion

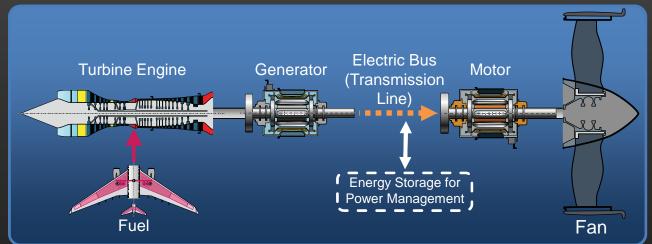
Gas-Driven:

Chain-Driven:


Individual Engines:

Types of Electric Propulsion

Hybrid Electric



Both concepts can use either non-cryogenic motors or cryogenic superconducting motors.

Turbo Electric

Fundamental Aeronautics Program Fixed Wing Project

N+3 Technology Cycle Design Values

Propulsor Electrical System (N3-X/TeDP)

Fan Pressure Ratio = 1.3

Fan Efficiency = 95.3% (podded)

= 94.3% (embedded)

1% embedded distortion efficiency penalty

Inlet Total Pressure Loss = 0.2%

Turboshaft Engine

Polytropic Efficiencies:

LPC/HPC = 0.9325

LPT/HPT = 0.93

PT = 0.924

Temperature Limits:

T3 = 1810 R (1006 K)

T4 = 3360 R (1867 K)

Cooling (Uncooled CMC rotors/stators):

HPT = 4% (nonchargeable)

LPT = 2% (nonchargeable)

PT = 1% (chargeable)

BSCCO Motor Eff = 99.94%

Generator Eff = 99.93%

Tmax = 50 K

MgB2 Motor Eff = 99.97%

Generator Eff = 99.98%

Tmax = 30 K

Inverter Efficiency = 99.93%

Tmax = 100 K

Cryocooler % of Carnot Eff = 30%

Tsink = Tamb

TeDP Cycle Results

		RTO		тос		
		BSCCO	MgB ₂	вѕссо	MgB ₂	
	Total Vehicle Thrust - Ibf	94,200	85,800	35,500	33,400	
	Specific Fuel Consumption - Ibm/hr/lbf	0.236	0.217	0.341	0.313	
	Specific Energy Consumption - BTU/s/lbf	1.216	1.194	1.761	1.727	
	Effective bypass ratio	35	36	29	30	
	Overall pressure ratio	57	57	84	84	
	Max compressor exit temperature -R	1,800	1,800	1,680	1 ,680	
	Maximum turbine inlet temperature - ℃	3,360	3,360	3,26 0	3,260	
	Fan nozzle exit velocity - ft/s	610	600	990	990	
	Turboshaft nozzle exit velocity - ft/s	760	750	1,370	1,360	
R	RTO (sea level, M0.24, ISA+27 R) TOC (3 4,000 ft, M0.84, ISA)					

Electrical System

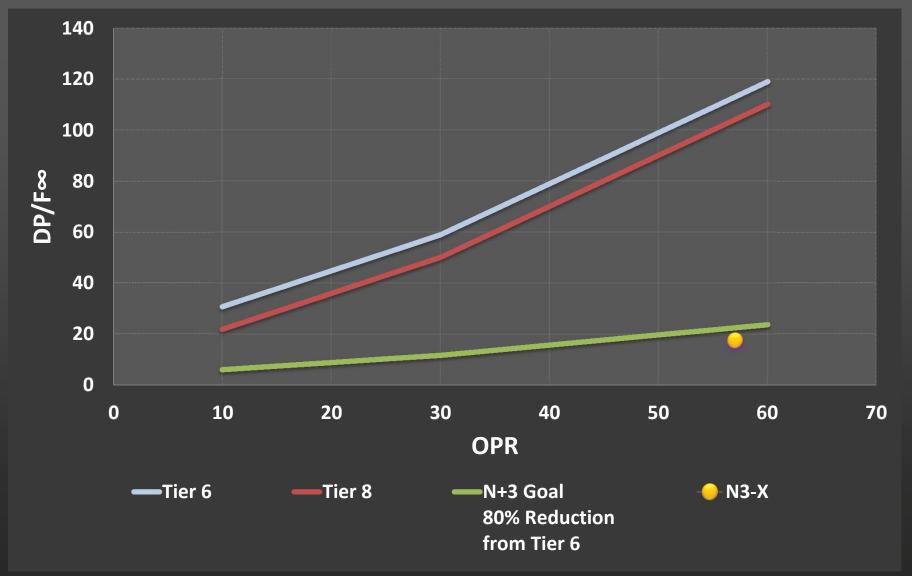
		BSCCO	MgB ₂
Compreter	Power – hp (MW)	41080 (30,6)	37840 (28,2)
Generator	Power/Weight – hp/lb (kw/kg)	35 (57)	35 (57)
X 2	Weight – Ibs (kg)	1180 (536)	1090 (494)
	Power – hp (MW)	5920 (4,42)	5280 (3,94)
Motor X 14	Power/Weight – hp/lb (kw/kg)	14 (23)	14 (23)
	Weight – Ibs (kg)	410 (186)	365 (166)
Inverter	Power/Weight – hp/lb (kw/kg)	18 (30)	18 (30)
X 14	Weight – Ibs (kg)	323 (147)	299 (136)
Cooling	Total Cryocooler Wt – lbs (kg)	5130 (2327)	
System	LH2 Tank Wt – lbs (kg)		1510 (685)
Grid	Cable + Protection – lbs (kg)	3570 (1619)	3290 (1492)

Fixed Wing Project

a.gov

National Aeronautics and Space Administration Propulsion System Weight

		BSCCO	MgB ₂
	Turboshaft Engine & Nacelle – lbs (kg)	4310 (1955)	4070 (1846)
Turbogenerator	Generator – Ibs (kg)	1180 (535)	1090 (494)
	One Turbogenerator – Ibs (kg)	5491 (2491)	5157 (2339)
	Fan + Nacelle – Ibs (kg)	1562 (709)	1424 (646)
Propulsor	Motor + Inverter – Ibs (kg)	733 (332)	664 (301)
	One Propulsor – Ibs (kg)	2295 (1041)	2088 (947)
Cooling	Total Cryocooler Wt – lbs (kg)	5130 (2327)	
System	LH2 Tank Wt – Ibs (kg)		1510 (685)
Grid	Cable + Protection – lbs (kg)	3570 (1619)	3290 (1492)
Total Custom	2 TurboGen + 14 Props + Cooling +	51,820	44,335
Total System	Grid	(23.505)	(20.110)
777-200LR	2 GE90-115 "Dry" + Nacelle + Pylon	47,300 (2	1.455)



Mission Fuel/Energy Consumption

	Weight Ibs (kg)	Mission Fuel Consumption Ibs (kg)	Mission Energy Consumption BTU(MJ)	Mission Energy Reduction	
777-200LR Class	768,000	280,000	5.2E+09		
Aircraft	(348.400)	(127.000)	(5.5E+06)		
N3-X	515,000	85,000	1.6E+09	700/	
BSCCO/Cryocooler	(233.600)	(38.560)	(1.67E+06)	70%	
N3-X MgB ₂ /LH ₂	496,000 (229.800)	76,000 (34.470)	1.5E+09 (1.55E+06)	72%	

N3-X LTO NOx Comparison

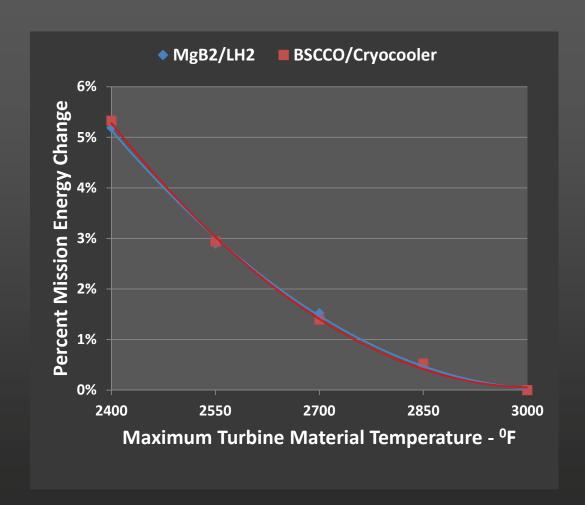
Noise Reduction

- Exposed Turboshaft Engine
 - Primary Noise Source
 - Inadequate nozzle length for Noise Treatment
- Flush Vectoring Propulsor Nozzle
 - Eliminates Scrubbing Noise
 - Aft Fan Noise Much Smaller Than Turbomachinery and Approach Flap Noise
- Estimated 32 EPNdB Cum Below Chapter 4

- Buried Turboshaft Engine
 - Moved to wing root
 - Leading Edge S-Duct Inlet
 - Upper Wing Surface Exhaust
- Setback Propulsor Nozzle
 - Eliminate Vectoring Nozzle at Price of Some Scrubbing Noise
- Low-noise Slotless Flaperons
- Estimated 64 EPNdB Cum Below Chapter 4

Comparison of N3-X to FW Metrics

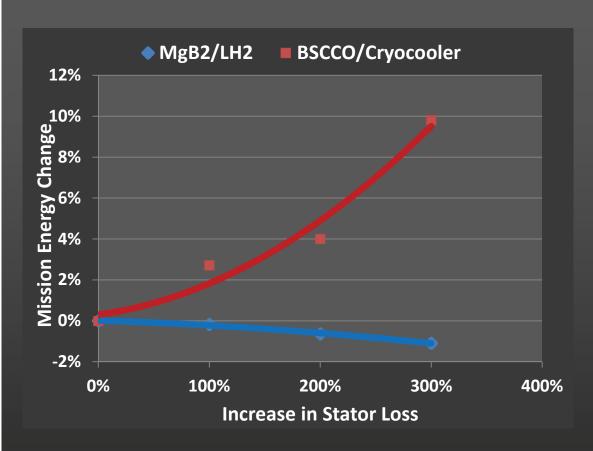
Metric	N+3 Goal	N3-X	
Noise (Cum Margin Rel to Chapter 4)	-52 db	-32db/-64 db	
LTO NOx Emissions (Rel to CAEP Tier 6)	-80%	-85%	
Cruise NOx (Relative to 2005 best in class)	-80%		
Aircraft Fuel/Energy Consumption (Relative to 2005 Best In Class)	-60%	-70% / -72%	


Mission Energy Sensitivity to Propulsion System Parameters

Parameter	Change	Mission Energy Sensitivity	
TSFC	+1.15%	+1.0%	
Propulsion System Weight	+10%	+0.8%	
Inlet Total Pressure Loss	+1.0%	+3.0%	
Fan Efficiency	+1.0%	+1.0%	
Fan Pressure Ratio	+0.05	+2.0%	
Compressor Discharge Temp	-50 ⁰ R	+1.0%	
LPC Polytropic Efficiency	-1.0%	+0.81%	
HPC Polytrophic Efficiency	-1.0%	+0.43%	
HPT Polytrophic Efficiency	-1.0%	+0.72%	
LPT Polytrophic Efficiency	-1.0%	+0.43%	
PT Polytrophic Efficiency	-1.0%	+0.27%	

Fixed Wing Project

www.nasa.gov


Sensitivity to Turbine Rotor Inlet Temperature

- Current SOA CMC
 Temperature Limit is 2400 °F
- Technology development roadmap to get to 2700 ⁰F has been defined
- 300 °F reduction from baseline only increases mission energy by 1.5%
- Using cooled metallic blades for the HPT rotor one blades could allow TIT to remain at 3000 °F with CMC in subsequent rotors

Sensitivity to Stator Loss

- Stator Loss Effected By Superconducting Filament Size
- Assumed 10 micron
- SOA is 40-50 micron which results in 200% higher loss
- Addition loss in BSCCO/Cryocooler results in increased cryocooler size and power yielding 4% increase in mission energy
- Counterintuitively MgB2/LH2
 Mission Energy DECREASES
 with increasing stator loss.
- This is due to more LH2
 required for cooling which
 REDUCES total fuel weight
 which reduces mission energy

