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Synopsis

Sunlight illuminating the Earth’s atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies,
white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and
the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of
the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology,
and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive
tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.

Introduction

A parallel beam of light, or of any electromagnetic radiation,
propagates in a vacuum without a change in its characteristics.
However, interposing a particle into the beam causes two
fundamental effects. First, the particle may convert some of the
energy contained in the electromagnetic field into other forms
of energy such as heat. This phenomenon is called absorption.
Second, the directional propagation of electromagnetic energy
and its polarization state get modified. This phenomenon is
called scattering.

The scattering and absorption characteristics of an isolated
particle are often complex functions of the particle’s size,
morphology, and composition. They can be determined by
obtaining a numerically exact solution of the Maxwell equa-
tions or by using a suitable experimental technique. Direct
computer solutions of the Maxwell equations become much
more involved and are often impracticable for a compound
object in the form of a cloud of particles. In such cases, one has
to use a physically based asymptotic solution of the Maxwell
equations called the radiative transfer equation (RTE).

Sunlight incident on the Earth’s atmosphere is scattered by
gas molecules and suspended particles, giving rise to blue skies,
white clouds, and various optical displays such as rainbows,
halos, and the glory. By scattering and absorbing the shortwave
solar radiation and the longwave radiation emitted by the
underlying surface, cloud and aerosol particles strongly affect
the radiation budget of the terrestrial climate system. As
a consequence of the dependence of scattering characteristics on
particle size, morphology, and composition, scattered light can
be remarkably rich in implicit informationonparticle properties
and thus provides a sensitive tool for remote retrievals ofmacro-
and microphysical parameters of clouds and aerosols.

Electromagnetic Scattering by a Fixed Particle

To explain the fundamental concept of electromagnetic scat-
tering by a fixed particle, let us assume that the electromagnetic
field is time harmonic, which allows one to fully describe it
at any moment in time everywhere in space as the solution of
the frequency-domain Maxwell equations. Specifically, it is
convenient to factor out the time-harmonic dependence of the

complex electric and magnetic fields: Eðr; tÞ ¼ expð�iutÞEðrÞ
and Hðr; tÞ ¼ expð�iutÞHðrÞ; where r is the position vector of
the observation point, t is time, u is the angular frequency,
and i ¼ (�1)1/2. The actual electric and magnetic fields are
obtained by taking the real part of the respective complex fields.
The field amplitudes E(r) and H(r) can be found from the
following curl equations:

V� EðrÞ ¼ ium0 HðrÞ
V�HðrÞ ¼ �iu31EðrÞ

�
inside VEXT; [1]

V� EðrÞ ¼ ium0 HðrÞ
V�HðrÞ ¼ �iu32ðr;uÞEðrÞ

�
inside VINT : [2]

Here, VINT is the cumulative ‘interior’ volume occupied by the
scattering particle; VEXT is the infinite exterior region, which is
assumed to be homogeneous, linear, isotropic, and non-
absorbing; the host medium and the particle are assumed to be
nonmagnetic; m0 is the permeability of a vacuum; 31 is the real-
valued electric permittivity of the host medium; and 32(r,u) is
the complex permittivity of the particle. Since the first relations
in eqns [1] and [2] yield the magnetic field provided that the
electric field is known everywhere, the solution of the Maxwell
equations is usually sought in terms of only the electric field.
To have a unique solution, eqns [1] and [2] must be supple-
mented by appropriate boundary conditions at the particle
surface as well as by the so-called radiation conditions at
infinity.

Note that although the amplitudes E(r) and H(r) do not
depend on time explicitly, they can fluctuate randomly if the
electromagnetic field is quasimonochromatic. However, such
fluctuations are assumed to occur much more slowly than the
time-harmonic oscillations described by the factor exp(�iut),
which justifies the use of the frequency-domain Maxwell
equations at any given moment.

Let us now assume that in the absence of the particle, the
electromagnetic field is given by the simplest solution of the
Maxwell equations in the form of a plane electromagnetic wave
propagating in the direction of the wave vector kinc:

EincðrÞ ¼ Einc0 exp
�
ikinc$r

�
everywhere in space: [3]

As shown schematically in Figure 1(a), eqn [3] represents the
transport of electromagnetic energy from one point to another
in the absence of the particle and embodies the concept of
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a perfectly monochromatic parallel beam of light. The presence
of the particle modifies the electromagnetic field that would
exist otherwise. It is this modification that is called electro-
magnetic scattering.

It is customary to call the difference between the total field
in the presence of the particle (i.e., E(r)) and the original field
that would exist in the absence of the object (i.e., Einc(r)) the
‘scattered field’ and denote it as Esca(r) (see Figure 1(b)). Thus,
the total field in the presence of the particle is intentionally
represented as the sum of the respective incident (original) and
scattered fields:

EðrÞ ¼ EincðrÞ þ EscaðrÞ: [4]

Of course, one can think of incident fields other than
a plane wave and thereby generalize the concept of scattering.
In this regard, an especially convenient framework is provided
by the so-called volume integral equation which follows from
the Maxwell equations and incorporates the boundary and
radiation conditions:

EðrÞ ¼ EincðrÞ þ k2
Z
VINT

dr0G
$ðr; r0Þ$Eðr0Þ�m2ðr0Þ � 1

�
; [5]

where mðr0Þ ¼ ½32ðr0;uÞ=31�1=2 is the refractive index of the
interior relative to that of the host exterior medium;

k ¼ jkincj ¼ uð31m0Þ1=2 ¼ 2p=l is the wave number; l is the

wavelength; G
$ðr; r0Þ is the free-space dyadic Green’s function;

and Einc(r) is any physically realizable solution of the Maxwell
equations for an infinite homogeneous medium. One can see
that eqn [5] expresses the total field everywhere in space in
terms of the total internal field. The latter is not known in
general and must be found by solving eqn [5] either analyti-
cally or numerically.

Far-Field Scattering

Equation [5] can be used to show that at a distance from
the particle greatly exceeding its size, in the so-called far
zone, the scattered field becomes an outgoing spherical wave
(Figure 1(b)). By placing the origin O of the spherical

coordinate system at the geometrical center of the particle
(Figure 2), we have:

EscaðrÞ /
r/N

expðikrÞ
r

Esca1 ðbnscaÞ; [6]

where r ¼ jrj is the distance from the origin, bninc ¼ kinc=k is
a unit vector in the incidence direction, and bnsca ¼ r=r is a unit
vector in the scattering direction.

The electric and magnetic field vectors of the scattered
spherical wave are perpendicular to the scattering direction,
while those of the incident plane wave are normal to the
incidence direction. It is therefore convenient to denote by E
a two-element column formed by the q- and 4-components of
either electric field vector:

E ¼
�
Eq
E4

�
: [7]

As usual, the polar (zenith) angle 0 � q � p is measured from
the positive z-axis, while the azimuth angle 0 � 4 < p is
measured from the positive x-axis in the clockwise direction
when looking in the direction of the positive z-axis. The use of
this notation allows us to write the scattered field as:

EscaðrbnscaÞ ¼ expðikrÞ
r

S
�bnsca; bninc�Einc

0 ; [8]

where S is the 2 � 2 so-called amplitude scattering matrix
expressing the q- and 4-components of the scattered spherical
wave in those of the incident plane wave. This relation plays
a key role in the theory of electromagnetic scattering.

Optical Observables

The typically high frequency of time-harmonic electromagnetic
oscillations makes it virtually impossible to measure the elec-
tric and magnetic fields associated with the incident and scat-
tered waves using traditional optical instruments. Therefore, in
order to make the theory applicable to analyses of actual
observations, the scattering phenomenon must be character-
ized in terms of derivative quantities that can be measured
directly (i.e., optical observables). The conventional approach to

(a)

(b)

Figure 1 Electromagnetic scattering by a fixed particle. In this case, the
particle is an aggregate consisting of three monomers in contact.

Figure 2 Scattering in the far zone of the particle.
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address this problem is to use four real-valued quantities I, Q,
U, and V, which have the dimension of monochromatic energy
flux (Wm�2) and fully characterize a transverse electromagnetic
wave inasmuch as it is subject to practical optical analysis.
These quantities, called the Stokes parameters, are always
defined with respect to a plane containing the direction of wave
propagation, form the four-element Stokes column vector I,
and carry information about both the total intensity I and the
polarization state of the wave. The Stokes parameters are
intentionally defined such that the rapidly oscillating time-
harmonic factor exp(�iut) vanishes upon multiplication by its
complex–conjugate counterpart: expð�iutÞ½expð�iutÞ��h1,
where the asterisk denotes complex conjugation.

In the case of scattering in the far zone, both the incident
plane wave and the outgoing scattered spherical wave are
transverse. This allows one to define the corresponding sets of
Stokes parameters:

Iinc ¼

2
664

Iinc

Qinc

Uinc

V inc

3
775 ¼ 1

2

ffiffiffiffiffiffi
31

m0

r
2
6666664

Einc0q

�
Einc0q

�� þ Einc04

�
Einc04

��
Einc0q

�
Einc0q

�� � Einc04

�
Einc04

��
�Einc0q

�
Einc04

�� � Einc04

�
Einc0q

��
i
h
Einc04

�
Einc0q

�� � Einc0q

�
Einc04

��i

3
7777775;

[9]

IscaðrbnscaÞ ¼

2
664

Isca

Qsca

Usca

Vsca

3
775

¼ 1
r2

1
2

ffiffiffiffiffiffi
31

m0

r
2
6666664

Esca1q

�
Esca1q

�� þ Esca14

�
Esca14

��
Esca1q

�
Esca1q

�� � Esca14

�
Esca14

��
�Esca1q

�
Esca14

�� � Esca14

�
Esca1q

��
i
h
Esca14

�
Esca1q

�� � Esca1q

�
Esca14

��i

3
7777775: [10]

Then the responses of well-collimated polarization-
sensitive radiometers located in the far zone of the particle can
be described in terms of the 4 � 4 phase and extinction
matrices as follows.

In the absence of the particle (Figure 3(a)), radiometer 2
registers no signal, whereas radiometer 1 reacts to the incident
plane wave:

Signal 1 ¼ DSIinc; [11]

Signal 2 ¼ 0; [12]

where DS is the area of the objective lens. In the presence of the
particle (Figure 3(b)), radiometer 2 reacts only to the scattered
spherical wave, and its polarized reading is fully characterized
by the product of the phase matrix Z and the Stokes column
vector of the incident wave:

Signal 2 ¼ DSIscaðrbnscaÞ

¼ DS
r2

Z
�bnsca; bninc�Iinc; bnsca s bninc: [13]

The elements of the phase matrix have the dimension of area
and are quadratic combinations of the elements of the

amplitude scattering matrix Sðbnsca; bnincÞ: One can see that, in
general, the phase matrix relates the Stokes parameters of the
incident and scattered waves defined with respect to different
reference planes: the meridional plane of the incidence direc-
tion bninc and that of the scattering direction bnsca, respectively.

Unlike radiometer 2, radiometer 1 in Figure 3(b) is facing
the incident light, and, accordingly, its polarized reading
consists of three parts:

1. the one due to the incident wave;
2. the one due to the forward-scattered wave; and
3. the one due to the interference of the incident wave and the

wave scattered by the object in the exact forward direction:

Signal 1 ¼ DSIinc þ DS
r2

Z
�bninc; bninc�Iinc � K

�bninc�Iinc: [14]

The third part is described by minus the product of the
extinction matrix K and the Stokes column vector of the inci-
dent wave. The elements of the extinction matrix also have the
dimension of area and are linear combinations of the elements
of the forward-scattering amplitude matrix Sðbninc; bnincÞ.
Placing radiometer 1 sufficiently far from the particle makes the
second term on the right-hand side of eqn [14] negligibly
small.

In many respects, the measurement situation depicted in
Figures 3(a) and 3(b) embodies the concept of electromag-
netic scattering. Indeed, it demonstrates that in the absence of
the particle, radiometer 2 would measure no signal, while the

(a)

(b)

Figure 3 The readings of well-collimated polarization-sensitive radi-
ometers in the presence of the particle differ from those in the absence of
the particle.
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signal measured by radiometer 1 allows one to measure the
Stokes vector of the incident wave Iinc. In the presence of the
particle, the readings of both radiometers change. The reading
of radiometer 2 is now proportional to the Stokes column
vector of the scattered spherical wave, while the polarization
signal measured by radiometer 1 is modified in two ways.
First, the total measured electromagnetic power is attenuated
as a combined result of the scattering of electromagnetic
energy by the object in all directions and, possibly, the
transformation of electromagnetic energy into other forms of
energy (such as heat) inside the object. Second, the attenua-
tion rates for the four Stokes components of the measured
signal can, in general, be different. The latter effect is typical of
objects lacking perfect spherical symmetry and is called
dichroism.

Thus, to describe far-field scattering means, in effect, to
quantify the differences between the readings of radiometers 1
and 2 in the presence of the object and in the absence of the
object. This quantification can be fully achieved in terms of the
phase and extinction matrices, which depend on object char-
acteristics such as size, shape, refractive index, and orientation.
Both matrices can be readily computed provided that the
amplitude scattering matrix is already known.

In the case of quasimonochromatic fields, eqns [11]–[14]
remain valid provided that now the Stokes column vectors of
the incident and scattered fields are defined as averages of the
right-hand sides of eqns [9] and [10] over a time interval much
longer than the typical period of random fluctuations.

Derivative Quantities

There are several derivative quantities that are often used to
describe various observable manifestations of electromagnetic
scattering. The product of the extinction cross-section multi-
plied by the intensity of the incident plane wave yields the total
attenuation of the electromagnetic power measured by radi-
ometer 1 in Figure 3(b) owing to the presence of the particle.
This means that the extinction cross-section depends, in
general, on the polarization state and propagation direction of
the incident wave and is given by:

Cext
�bninc� ¼ 1

Iinc
�
K11

�bninc�Iinc þ K12
�bninc�Qinc

þ K13
�bninc�Uinc þ K14

�bninc�V inc�: [15]

The product of the scattering cross-section multiplied by the
intensity of the incident plane wave yields the total far-field
power of the scattered wave:

Csca
�bninc� ¼ 1

Iinc

Z
4p
dbnsca�Z11

�bnsca; bninc�Iinc
þ Z12

�bnsca; bninc�Qinc þ Z13
�bnsca; bninc�Uinc

þ Z14
�bnsca; bninc�V inc�:

[16]

This implies that Csca also depends on the polarization state as
well as on the propagation direction of the incident wave. The
absorption cross-section is defined as the difference between
the extinction and scattering cross-sections:

Cabs
�bninc� ¼ Cext

�bninc�� Csca
�bninc� � 0: [17]

All optical cross-sections have the dimension of area. Finally,
the dimensionless single-scattering albedo is defined as the
ratio of the scattering and extinction cross-sections:

~u
�bninc� ¼ Csca

�bninc�
CextðbnincÞ

� 1: [18]

An important particular case of the phase matrix is the
scattering matrix, defined by:

FðQÞ ¼ Z
�
qsca ¼ Q;4sca ¼ 0; qinc ¼ 0;4inc ¼ 0

�
; 0 � Q<p;

[19]

where Q, traditionally called the scattering angle, is the angle
between the incidence and scattering directions. It is easy to see
that the scattering matrix relates the Stokes parameters of the
incident and scattered waves defined with respect to the same
so-called scattering plane (i.e., the plane through the incidence
and scattering directions).

Scattering by a Random Many-Particle Group

Although we have been so far discussing electromagnetic
scattering by a ‘single particle,’ the concept of electromagnetic
scattering and eqns [1]–[5] remain valid irrespective of the
specific morphology of the scattering object. In particular,
they are valid for what a human eye could classify as
a ‘collection of discrete particles.’ Examples of such ‘many-
particle’ objects are clouds, particulate surfaces, and particle
suspensions. In all such cases, the electromagnetic field
perceives a morphologically complex ‘many-particle’ object
at any moment in time as one scatterer in the form of
a specific spatial distribution of the relative refractive index
throughout the cumulative interior volume VINT in eqns [2]
and [5].

However, the numerically exact computer solution of the
Maxwell equations becomes prohibitively expensive when the
size parameter of the object (i.e., the product of the wave
number k and the radius of the smallest circumscribing sphere
of the object) exceeds w100. Furthermore, the concept of far-
field scattering is inapplicable in the majority of practical
situations involving very large many-particle groups such as
clouds. Indeed, radiometers are often positioned inside or
relatively close to the cloud (Figure 4) (i.e., in its near zone). As
a consequence, one has to resort to an approximate computa-
tional technique and often abandon the attractively simple
formulas of far-field scattering.

Two conventional approaches widely used to treat electro-
magnetic scattering by random particle groups are the single-
scattering approximation (SSA) and the radiative transfer
theory (RTT). The SSA is applicable to a relatively small,
‘optically tenuous’ group of N particles viewed from a distance
much greater than the entire size of the group. In this case, eqns
[11]–[14] remain valid provided that (1) the scattering signal is
accumulated over a time interval long enough to establish full
statistical randomness of the group; and (2) the phase,
extinction, and scattering matrices of the entire group are also
averaged over time. Then:



Z
�bnsca; bninc��

t ¼ N


Z
�bnsca; bninc��

x
; [20]
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K
�bninc��

t ¼ N


K
�bninc��

x
; [21]

hFðQÞit ¼ NhFðQÞix; [22]

where hZðbnsca; bnincÞix, hKðbnincÞix, and hFðQÞix are the single-
particle phase, extinction, and scattering matrix, respectively,
averaged over all physically realizable particle states x in the
group. The state of a particle indicates collectively its size,
refractive index, shape, and orientation (i.e., all physical char-
acteristics except the position). Note that it is the assumption
of full ergodicity of the random scattering process that
allows one to replace time averaging by ensemble averaging in
eqns [20]–[22]. Obviously, the time averages of the extinction,
scattering, and absorption cross-sections of the entire random
particle group can be expressed similarly in terms of the
respective ensemble-averaged single-particle cross-sections. The
single-scattering albedo of the group is then given by:

~u
�bninc� ¼



Csca

�bninc��
x

hCextðbnincÞix
: [23]

The RTT is an expressly near-field theory that has recently
been derived directly from the Maxwell equations and allows
one to model the response of a well-collimated radiometer
located inside or relatively close to a random multiparticle
scattering object (Figure 4). Among the conditions of appli-
cability of the RTE are the asymptotic requirement N/N; the
‘low-density’ requirement, according to which every particle
must be located sufficiently far from all the other particles; and
the assumption that the scattering signal is accumulated over
a time interval long enough to establish full ergodicity of the
random scattering process. The integro-differential form of the
RTE reads:

bq$V~Iðr; bqÞ ¼ �n0hKðbqÞix~Iðr; bqÞ
þ n0

Z
4p
dbq0hZðbq; bq0Þix~Iðr; bq0Þ; [24]

where n0 is the average particle number density, dbq0 is an
elementary solid angle centered on the unit vector bq0, and
~Iðr; bqÞ is the four-component so-called specific Stokes column
vector. Unlike the Stokes column vectors [9] and [10], ~Iðr; bqÞ
has the dimension of radiance (Wm�2 sr�1). Thus, knowledge
of the ensemble-averaged single-particle phase and extinction
matrices is also required in order to solve the RTE.

The fundamental importance of the RTT is that its solution,
~Iðr; bqÞ, directly quantifies the response of a well-collimated
polarization-sensitive radiometer oriented along the unit
vector bq at the observation point r (Figure 4). Furthermore,

the integral
R
4pdbqbq~Iðr; bqÞ gives the time-averaged Poynting

vector describing the direction and rate of the local electro-
magnetic energy transport. Thus, the RTT is directly applicable
to solving both remote-sensing and radiation budget
problems.

Symmetries

In general, all elements of the extinction and phase matrices
entering eqns [13] and [14] can be nonzero, which implies
that the intensity I registered by radiometers 1 and 2 in
Figure 3(b) can depend on all four Stokes parameters of the
incident field rather than only on its intensity. This fact
emphasizes the vectorial (rather than scalar) character of
electromagnetic scattering. In particular, dichroism results in
different attenuation rates for different polarization compo-
nents of the incident field. This causes, for example, depolar-
ization of radar signals propagating through precipitation. The
scattered wave recorded by radiometer 2 in Figure 3(b) also
has polarization characteristics different from those of the
incident field, thereby making polarimetry a sensitive particle
characterization technique.

In many cases of practical interest, the mathematical
structure of the ensemble-averaged extinction, phase, and
scattering matrices becomes much simpler. This happens, for
example, when (1) the distribution of particle orientations
in a random group during the measurement is uniform, and
(2) each particle in the group has a plane of symmetry and/
or is accompanied by its mirror counterpart. Then the
average extinction, scattering, and absorption cross-sections
and the single-scattering albedo become independent of the
direction of propagation and polarization state of the inci-
dent field. The average extinction matrix is diagonal and
given by:


K
�bninc��

x
h hKix ¼ hCextix diag½1; 1; 1;1�: [25]

The average phase matrix satisfies certain useful symmetry
relations and depends on only the difference between the
azimuthal angles of the scattering and incidence directions
rather than on their specific values. The average scattering
matrix has a simple block-diagonal structure with only six
independent elements:

hFðQÞix ¼

2
664
hF11ðQÞix hF12ðQÞix 0 0
hF12ðQÞix hF22ðQÞix 0 0

0 0 hF33ðQÞix hF34ðQÞix
0 0 �hF34ðQÞix hF44ðQÞix

3
775:

[26]

Furthermore,

hF12ð0Þix ¼ hF12ðpÞix ¼ 0; hF34ð0Þix ¼ hF34ðpÞix ¼ 0:

[27]

For spherically symmetric particles, the number of inde-
pendent scattering matrix elements reduces to four owing to

Figure 4 A well-collimated polarization-sensitive radiometer is placed
inside a cloud of particles.
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the identities hF22ðQÞixhhF11ðQÞix and hF44ðQÞixhhF33ðQÞix.
As a consequence, measurements of the linear backscattering
depolarization ratio

dL ¼ hF11ðpÞix � hF22ðpÞix
hF11ðpÞix þ hF22ðpÞix

; 0 � dL � 1 [28]

and the closely related circular backscattering depolarization
ratio

dC ¼ hF11ðpÞix þ hF44ðpÞix
hF11ðpÞix � hF44ðpÞix

¼ 2dL
1� dL

� dL [29]

are among the most reliable means of detecting particle
nonsphericity.

Measurement and Computation of Single-Particle
Characteristics

Evaluation of the Earth’s radiation balance and analyses of
remote-sensing observations require accurate quantitative
knowledge of average single-particle optical characteristics as
functions of particle size, morphology, and composition. This
knowledge can be based on theoretical computations or
experimental measurements, both approaches having their
strengths and limitations. Theoretical modeling does not
involve expensive instrumentation and allows switching to
another particle shape, size, or refractive index by changing
a few lines in a computer code. However, numerically exact
computations for realistic polydispersions of morphologically
complex particles are costly, if even possible, and are often
replaced by computations for idealized shapes, whereas
approximate calculations often have uncertain accuracy and
range of applicability. Experimental measurements deal with
real particles, but require complex and expensive hardware and
may be difficult to interpret.

Measurements

Detectors of visible and infrared light are usually polarization
insensitive, so their response is determined by only the first
Stokes parameter of the incoming beam. In order to measure all
elements of the scattering matrix, one must insert into the
beam various optical elements that can vary the polarization
state of light before and after scattering in a controllable way
(Figure 5). The use of high-frequency sinusoidal modulation in
the time of the polarization of light before scattering combined
with intensity normalization and followed by lock-in detection
increases the measurement accuracy and yields several
elements from only one detected signal. The measurement
procedure is repeated at different scattering angles in order to
determine the angular profile of the scattering matrix.

Scattering measurements using visible and infrared light
benefit from the availability of sensitive detectors (photo-
multipliers and avalanche semiconductor photodiodes),
intense sources of radiation (lasers), and high-quality optical
elements. They involve relatively inexpensive and portable
instrumentation and can be performed in the field nearly as
well as in the laboratory. However, they often suffer from poor
advance knowledge of microphysical characteristics of scat-
tering particles, thereby making difficult comparisons of
experimental and theoretical results. The arrangement of the
source of light and the detector precludes measurements at
scattering angles close to 0� and 180�, which makes problem-
atic the absolute measurement of the (1,1) element of the
scattering matrix and the scattering cross-section.

The main idea of the microwave analog technique is to
manufacture a centimeter-sized scattering object with desired
shape and refractive index, measure the scattering of a micro-
wave beam by this object, and finally extrapolate the results
to other wavelengths (e.g., visible or infrared) by keeping the
ratio of size and wavelength fixed. This allows one to determine
so-called scale-invariant characteristics such as the phase

Figure 5 Schematic view of an experimental scattering setup using visible or infrared light. The laser beam passes several optical elements before and
after scattering and is detected by the photomultiplier. The latter is mounted on a circular rail and can be moved around the particle jet in order to cover
a wide range of scattering angles. A, polarization analyzer; M, electro-optic modulator; P, polarizer; PM, photomultiplier; Q, quarter-wave plate.
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function pðQÞ ¼ 4phF11ðQÞix=hCscaix or ratios of the elements
of the scattering matrix. Microwave measurements allow a wide
coverage of scattering angles, including the exact forward and
backward directions, and a much greater degree of control over
the target size, shape, and orientation than do optical
measurements. However, the microwave measurements
require more cumbersome and expensive instrumentation and
large measurement facilities. Furthermore, they are performed
for only one particle size, shape, and orientation at a time,
thereby making ensemble averaging a time-consuming process.

Theoretical Techniques

All of the needs of a practitioner dealing with electromagnetic
scattering by spherical particles may be well served by the exact
and highly efficient Lorenz–Mie theory, which is the result of
applying the separation-of-variables method to the Maxwell
equations in spherical coordinates. There are extensions of the
Lorenz–Mie theory applicable to concentric layered spheres.

For nonspherical particles, numerically exact computations
must resort to more general and complex solutions traditionally
divided into two broad categories. Differential equation
methods compute the scattered field by solving the Maxwell
equations, subject to appropriate boundary conditions, in the
frequency domain or in the time domain. Integral equation
methods are based on the volume or surface integral counter-
parts of the Maxwell equations; the boundary conditions are
included in the solution automatically. Perhaps the most
popular and widely used techniques are the T-matrix method,
the discrete dipole approximation, and the finite-difference
time-domain method. These techniques have somewhat
different ranges of applicability in terms of particle morphology,
refractive index, and size relative to the wavelength.

The practical importance of approximate treatments of light
scattering diminishes as various exact techniques mature and
become applicable to a wider range of problems, and as
computers become ever more powerful. However, at least one
phenomenological approach is unlikely to become obsolete in
the near future because its accuracy can only be expected to
improve as the ratio of the particle size to the wavelength
grows, while numerically exact theoretical techniques for
nonspherical particles cease to be practical whenever this ratio
exceeds a certain threshold. This so-called geometrical optics
approximation assumes that the particle size is much larger
than the wavelength and that the incident plane wave can be
represented as a collection of ‘independent parallel rays.’ The
history of each ray impinging on the particle surface is traced
using Snell’s law and Fresnel formulas (Figure 6). Sampling all
escaping rays into predefined narrow angular bins yields
a quantitative representation of the particle scattering and
absorption properties. The ray-tracing pattern is supplemented
by computation of the Fraunhofer diffraction of the incident
wave on the particle projection.

Solution of the RTE

Based on the specific problem at hand, the RTE [24] must be
supplemented by appropriate boundary conditions. For
example, a standard model of the atmosphere is a multilayer

plane-parallel system illuminated from above by solar radia-
tion and bounded from below by a horizontally homogeneous
reflecting surface. Then the RTE can be solved numerically
using efficient techniques such as the adding and doubling,
discrete ordinate, and invariant imbedding methods. Complex
horizontally and vertically inhomogeneous models can be
handled using the less efficient but more flexible Monte Carlo
technique.

Despite the expressly vectorial nature of electromagnetic
scattering, the RTE [24] is often replaced by a simplified scalar
version in which one keeps only the first Stokes parameter (i.e.,
the intensity) and only the (1,1) elements of the extinction and
phase matrices. Although it is much easier to solve the scalar
RTE, it is important to remember that it has no physical justi-
fication and can result in significant errors in the computed
intensity.

Figure 6 Ray-tracing diagram.
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Figure 7 Scattering efficiency factor versus size parameter for poly-
disperse spherical particles with refractive indices 1.33 and 1.45.
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Examples of Scattering by Clouds and Aerosols

The few following examples serve to illustrate some key
features of electromagnetic scattering phenomena and their use
in remote sensing of aerosols and clouds and in radiation
budget computations. Figure 7 shows the scattering efficiency
factorQsca versus size parameter x for a narrow size distribution
of spherical particles with refractive indices m ¼ 1.33 and 1.45
(typical of water and sulfate aerosols at visible wavelengths,

respectively). The size parameter is defined as x ¼ 2preff=l,
where reff is the effective radius of the size distribution. The
scattering efficiency is defined as the ratio of the average scat-
tering cross-section to the average area of the particle geomet-
rical projection. One can see that for wavelength-sized particles
(x w 5), hCscaix can exceed the particle geometrical cross-
section by a factor greater than 3.5. As the particle size becomes
much larger, Qsca tends to the asymptotic geometrical-optics
value of 2, with equal contributions from the rays striking the
particle and the light diffracted by the particle projection. For
particles much smaller than the wavelength, Qscafl�4, as first
demonstrated by Lord Rayleigh and hence called Rayleigh
scattering. The presence of a well-defined maximum in the
scattering efficiency curve for a relatively narrow polydispersion
(Figure 7) creates the possibility of an infrequent phenomenon
for which aerosol particles of just the right size have a lower
extinction efficiency factor in the blue than that at the larger
wavelengths in the red. Thus, in contrast to the familiar
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Figure 8 Phase functions for water cloud droplets, hexagonal ice
columns, and randomly shaped ice crystals.
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Figure 9 Global albedo of a liquid water cloud relative to that of an
optical-thickness-equivalent ice cloud composed of irregular particles
(dotted curve) and hexagonal columns (solid curve).
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34 Radiation Transfer in the Atmosphere j Scattering



reddening of the setting sun owing to enhanced Rayleigh
scattering, a sufficiently narrow size distribution of aerosol
particles in the atmosphere can produce a blue cast to the sun
or moon and is perhaps responsible for the implied rarity
associated with the phrase ‘once in a blue moon.’

The dotted curve in Figure 8 shows the phase function
typical of spherical cloud droplets at visible wavelengths. The
strong concentration of light at Q ¼ 0� is produced by
Fraunhofer diffraction of light on the particle projection,
whereas the feature at Qw140� is the primary rainbow gener-
ated by rays that have undergone only one internal reflection
(Figure 6). The slight change of the rainbow angle with
wavelength caused by dispersion gives rise to spectacularly

colorful rainbows often observed during showers illuminated
by the sun at an altitude lower than about 40�. The enhanced
intensity atQw180� is called the glory and can be seen from an
airplane as a series of colored rings around the shadow cast by
the airplane on the cloud top.

The dashed curve in Figure 8 depicts the phase function
typical of randomly oriented pristine hexagonal ice crystals.
The concentrations of light at Qw22� and 46� are the primary
and secondary halos attributed to minimum angles of devia-
tion by 60� and 90� ice prisms. These features represent only
two of many optical phenomena associated with regularly
shaped ice crystals. Since cirrus clouds rather often fail to
exhibit halos, the majority of real ice crystals appear to have
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Figure 11 Linear depolarization ratio versus surface-equivalent sphere size parameter for polydisperse, randomly oriented ice spheroids and cylinders.
The refractive index is 1.311. 3 is the ratio of the largest to the smallest axes of a spheroid. The shapes of prolate and oblate cylinders are specified by
length-to-diameter L/D and diameter-to-length D/L ratios, respectively.
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highly irregular shapes and rough rather than flat surfaces. Such
particles are better characterized by featureless phase functions
like the one shown in Figure 8 by the solid curve and computed
for a random-fractal model of ice crystals.

Largenumerical differences between the threephase functions
depicted in Figure 8 can cause significant differences in bidirec-
tional reflectance of optical-thickness-equivalent water and ice
clouds (optical thickness is defined as the average extinction
cross-section per particle times the column particle number
concentration). This, in turn, may lead to significant errors in the
retrieved cloud optical thickness if remote-sensing reflectance
measurements are inverted using an incorrect particle model.

Figure 9 illustrates the effect of particle shape on the global
cloud albedo (defined as cloud reflectance averaged over all
incidence and reflection directions) at visible wavelengths. The
quantity (1 – cloud albedo) determines howmuch solar energy
is absorbed or transmitted by the atmosphere and is an
important climatological parameter. It is seen that for the same
optical thickness, clouds composed of irregular ice crystals have
the largest albedo, whereas those composed of water droplets
are the least reflective. This result can be explained by very large
differences between the respective phase functions at side-
scattering angles, which are well seen in Figure 8.

Figure10 illustrates the ratioPðQÞ ¼ �hF12ðQÞix=hF11ðQÞix
of the scattering matrix elements (called the degree of linear
polarization of the scattered light for unpolarized incident light)
for polydisperse spheres with different refractive indices and size
parameters. The obvious significant variability of polarization
with m and reff (or l) makes it a very sensitive indicator of the
particle microphysical properties. Furthermore, since P is a ratio
of two intensities, it can bemeasured to amuch greater precision
than intensity. These two factors explain the remarkable poten-
tial of photopolarimetry as a remote-sensing tool for aerosol and
cloud particle characterization.

Finally, Figure 11 demonstrates the linear depolarization
ratio [28] for polydisperse, randomly oriented, nonspherical
ice particles. It is well seen that the growth of the size parameter
from 0 to about 10 rapidly changes dL from zero to large values
sometimes approaching the theoretical limit dL,max ¼ 1. This

behavior of backscattering depolarization makes it useful for
sizing aerosol, cloud, and precipitation particles by performing
multiwavelength lidar and radar measurements. It is also
obvious that although backscattering depolarization is a reli-
able indicator of the presence of nonspherical particles, its
magnitude is not always a good measure of the degree of
particle nonsphericity.

See also: Aerosols: Role in Radiative Transfer. Clouds and Fog:
Classification of Clouds; Cloud Microphysics; Contrails. Lidar:
Atmospheric Sounding Introduction. Radar: Precipitation
Radar. Satellites and Satellite Remote Sensing: Aerosol
Measurements.
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