

CCSDS Overview

The Consultative Committee for Space Data Systems
August 2014

Mike Kearney

CCSDS Chair & General Secretary NASA MSFC EO-01 256-544-2029 Mike.Kearney@nasa.gov

Agenda

- ★ CCSDS Background (scope, participation, etc.)
- → CCSDS Architecture, Organization, Processes
- ✦ Focus on WGs of interest to ALTEC
- **★**CCSDS Online Resources
- **♦**Summary

The Essential Message

- → This work must be done before new programs begin.
- → By the time new programs have firm requirements, their path is set, and they will not wait for development of new standards.
- ★ They only adopt standards that are available at their program start.
- → Right now, it is critically important to prepare for upcoming international missions that are not yet formulated.

New missions have new communications needs;

New technology is changing the game rapidly;

Therefore, a responsive standardization program is more important than ever.

CCSDS – Scope and Origins

- → CCSDS = The Consultative Committee for Space Data Systems
- ★ Communications and data systems standards.
- → Since 1982 starting at the lower layers of the protocol stack.
- **♦** Now:
 - ♦ Throughout the entire ISO communications stack
 - → Plus other Data Systems areas (architecture, archive, security, XML exchange formats, etc.
 - ♦ End to end data/comm architecture for any mission.

On CCSDS Standards

MYTH

Standards stifle innovation

FACT

by adopting, adapting, developing and solidifying innovations with exposure to a wider community

When an innovative technology is rapidly brought to the standards community, it is vetted with a larger user base, facilitating widespread adoption of innovative technology.

This <u>reduces the risk</u> of new technology with "more eyes on the problem."

MYTH

Standards delay implementation

FACT

Not if the innovation is brought into the standards process early. Delays result from reluctance to standardize, not from standardization

This <u>spreads the cost</u> of technology development over a larger user base.

This **enables joint missions**, for cost sharing and increased capabilities.

This <u>improves operations</u>, with familiar interfaces and more options for contingency recovery.

CCSDS Overview - Participation

◆ CCSDS – An Agency-Led International Committee

- ♦ Currently 29 Observer Agencies
- ♦ Agencies represent 27 nations (and 3 European orgs)
- ♦ Currently 108 Commercial Associates
- → Also functions as an ISO Subcommittee
 - ♦ TC20/SC13 Space Data & Info Transfer Systems
 - ♦ Represents 20 nations

ASA/Austria BFSPO/Belgium CAS/China CAST/China

AGENCIES

CLTC/China CSIRO/Australia

DCTA/Brazil ASI/Italy DNSC/Denmark

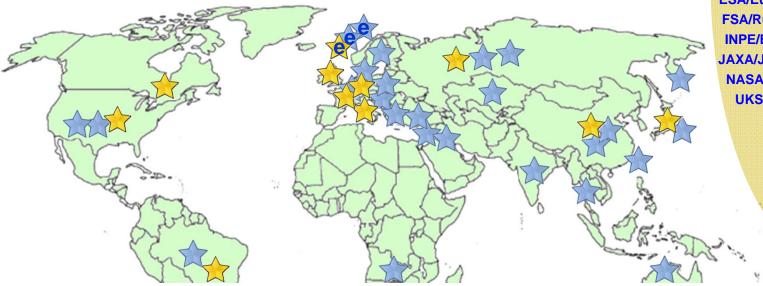
CNES/France EUMETSAT/Europe

EUTELSAT/Europe CNSA/China

CSA/Canada

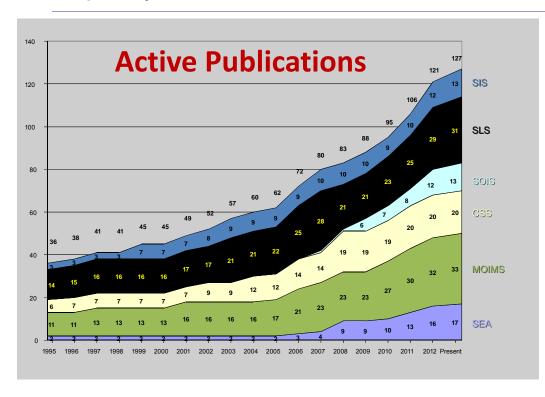
DLR/Germany IKI/Russia

ESA/Europe ISRO/India KARI/Korea


NASA/USA NICT/Japan

JAXA/Japan NCST/USA UKSA/UK NOAA/USA NSARK/Kazakhstan NSPO/Taiwan SANSA/South Africa

KFKI/Hungary

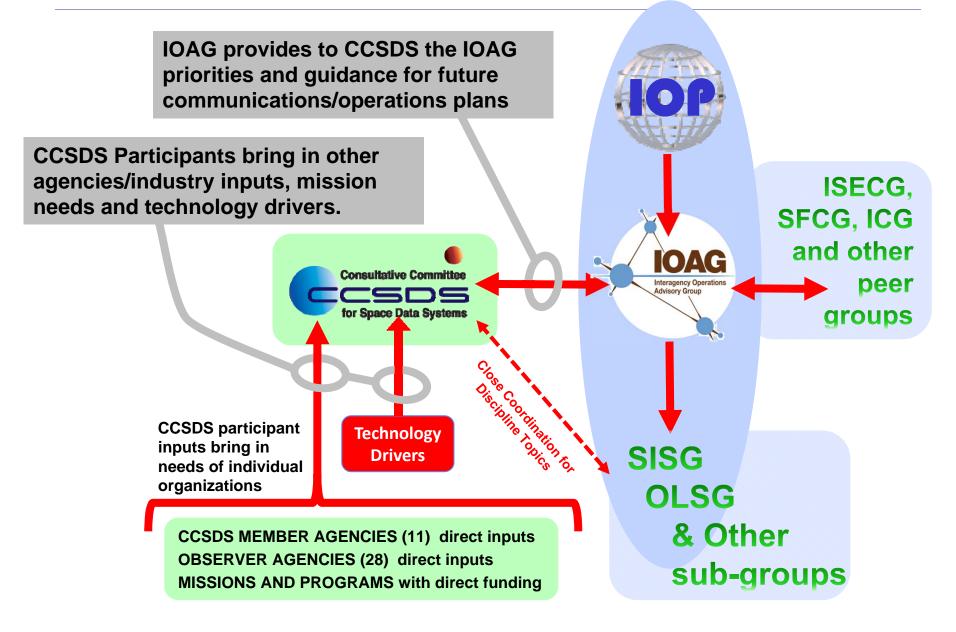

SSC/Sweden SSO/Switzerland

CCSDS Overview

Currently Active Publications: 135

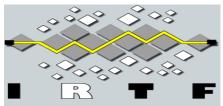
Normative (Blue & Magenta): 85
Informative (Green): 52

Downloadable for free from www.ccsds.org


All major pubs since 1982: ~285 (Some were historical mission needs or superseded technology)

718 space missions have adopted and used various CCSDS standards

CCSDS Overview Organizational Interrelationships


Some Organizational Interrelationships

OMG: Object Management Group

Industry standards for exchange of application information among vendor products

CCSDS/OMG have some common standards and periodic joint meetings

IETF: Internet Engineering Task Force

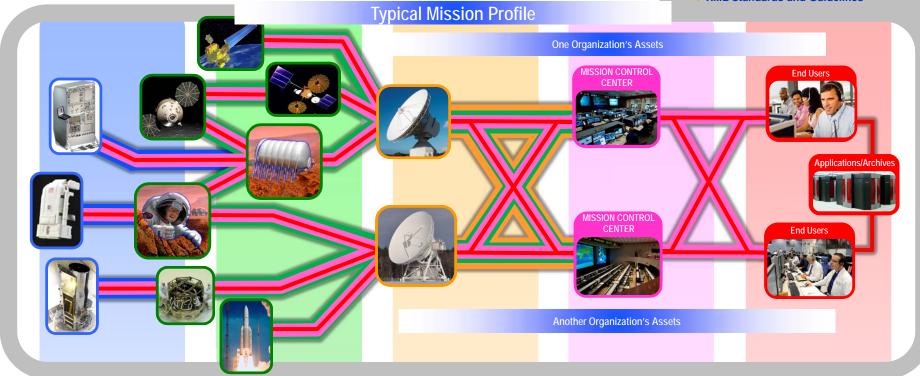
IRTF: Internet Research Task Force

Open international standards for IP suite and DTN

CCSDS uses such industry standards as a basis, whenever possible

ECSS: European Consortium for Space Standards - European regional standards for space mission support CCSDS/ECSS coordinate on compatible standards

AIAA: American Institute of Aeronautics and Astronautics
North American regional standards for space mission support
Regional Standards coordination, and AIAA provides Secretariat
support for CCSDS, ISO TC20/SC13 and SC14


CCSDS Overview End-to-End Architecture

Six Technical Areas, **Twenty-Six Teams ~**

- Working Group (producing standards)Birds-Of-a-Feather stage (pre-approval)
- ◆ Special Interest Group (integration forum)

Systems Engineering

- **♦** Security
- ♦ Delta-DOR
- ◆ Timeline Data Exchange
- XML Standards and Guidelines

Spacecraft Onboard Interface Services

- ♦ Onboard Wireless WG
- ♦ Application Supt Services (incl. Plug-n-Play)

Space Link Services

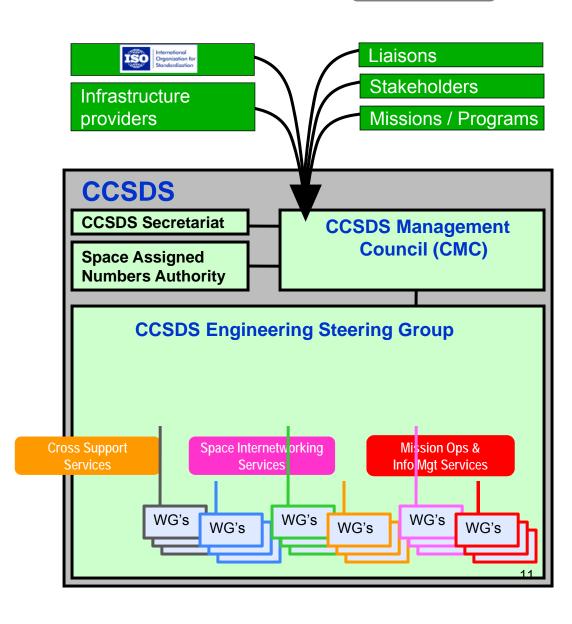
- ♦ RF & Modulation
- Space Link Coding & Sync.
- Multi/Hyper Data Compress. Space Link Protocols
- ♦ Next Generation Uplink
- ♦ Space Data Link Security
- ♦ Optical Coding and Mod

Cross Support Services

- ♦ CS Service Management
- **CS Transfer Services**
- ♦ Cross Supt Service Arch.

Space Internetworking Services

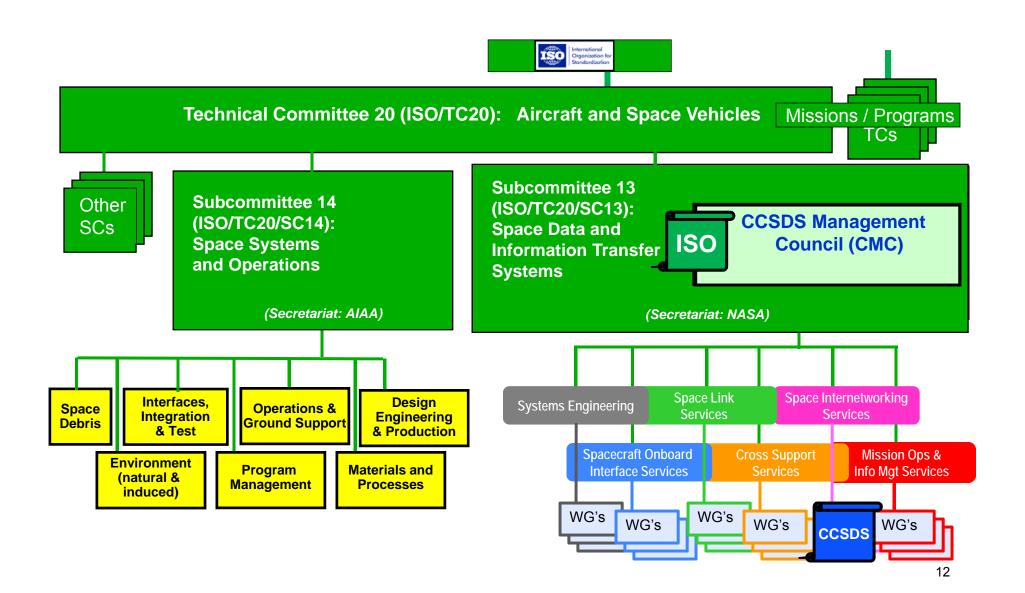
- Motion Imagery & AppsDelay Tolerant Networking
- ♦ Voice
- ♦ CFDP over Encap
- ♦ CFDP Revisions


Mission Ops & **Info Mgt Services**

- ♦ Data Archive Ingestion
- Navigation
- Spacecraft Monitor & Control
- ♦ Digital Repository Audit/Certification
- **♦** Telerobotics

CCSDS Structure and Organization

Systems Engineering



Spacecraft Onboard Interface Services

Space Link Services

CCSDS Relationships with ISO

Security Working Group

- → The CCSDS Security Working Group:
 - Security is a KEY mission concern. This group addresses CCSDS agreements for secure uplink commanding (authentication, integrity, confidentiality), secure downlink telemetry (confidentiality, integrity), and science data privacy (confidentiality, authentication, integrity).

es security advice and guidance to CCSDS working group for security factors and practices in other CCSDS standards.

- → Documents developed and ready for application (10 total):

 - ♦ Security Architecture for Space Data Systems
 - ♦ CCSDS Encryption Algorithms and authentication algorithms
 - ♦ System interconnection guide
 - ♦ Mission planner's security guide
- → On-going work: Key management guide and standard, Threat guide, Network layer security profile
- ★ Key Objectives for upcoming Meetings
 - ♦ Review key management document progress
 - ♦ Discuss Network Layer Security testing progress
 - ♦ Discuss & review changes to Threat Green Book revision

XLM Standards and Guidelines SIG

- ★CCSDS has many WGs issuing XML specifications within their standards
- → Divergence on how it is represented causes confusion to implementers
- ★XSG SIG plans to unify those representation to prevent that divergence.

Data Archive Ingest WG

◆ DAI WG:

- → Develops standardized methods for acquiring, ingesting, preserving, and accessing information in archives with an emphasis on long term preservation approaches.
- ♦ Works closely with Repository Audit and Certification (RAC) WG
- → Recent Documents completed
 - ♦ Reference Model for an Open Archival Information System (OAIS)
 - World-wide the most widely recognized and cited digital archiving standard
 - Most popular CCSDS Document
 - → Producer-Archive Ingest Methodology Abstract Standard (PAIMAS)
 - Checklist of phases and steps to ingest data into an archive
 - ♦ Producer-Archive Ingest Specification (PAIS)
 - Formats used to model and then perform transfers between Producers and Archives
 - ❖ Most recently completed CCSDS standard, ISO equivalent is in balloting, a tutorial to aid users in applying standard is in progress

→ Documents in development

- ♦ Information Curation Process
 - Intends to detail information preservation issues from initial mission planning, through data generation, information development and eventual archiving
 - Building off of work by EU Earth Observation communities Long-Term Digital Preservation project

Navigation WG

- → The CCSDS Navigation Working Group is chartered to develop standards covering exchange of spaceflight dynamics related data
- → Past Progress and Current Work
 - ♦ Orbit Data Messages (version 2.0 published 11/2009)
 - Three standard message formats for exchanging orbit descriptions
 - - Message format for exchanging tracking data; supports widely used tracking data types: Doppler, range, angle, ΔDOR, ancillary information
 - ♦ Attitude Data Messages (version 1.0 published 05/2008)
 - Two message formats for exchanging spacecraft attitude descriptions
 - ♦ Navigation Green Book (version 3.0 published 05/2010)
 - Contains technical background related to the Nav WG Recommendations
 - ♦ Nav Data Messages XML Specification (version 1.0 published 12/2010)
 - Contains XML representations of all above Nav WG standards
 - - Standard message format for informing spacecraft operators of object conjunctions in space (spacecraft/spacecraft, spacecraft/debris, debris/debris)
- **♦** Future work
 - → Pointing Requests Message communicating complex on-orbit cross-support pointing requests (e.g., inertial, limb, terminator, velocity, nadir, track)
 - → Navigation Hardware Message exchanging onboard navigation H/W data between space agencies (e.g., thrusters, accelerometers, star trackers, etc.)
 - ♦ Spacecraft Maneuver Message exchanging information regarding spacecraft maneuvers (requirements, design, reconstructed performance)

Spacecraft Monitor and Control

- ★ Emphasis is on standardizing service interfaces for common functions that are in every mission, at the application level
 - ♦ Early emphasis is for ground-to-ground interfaces.
 - ♦ Starting testing for flight systems interfaces as well
 - ❖ Promises plug-n-play service interfaces, migration of apps onboard
- → Capitalizes on industry-accepted approach of a SOA (Service Oriented Architecture)
 - ♦ Standardizing interactions of providers and consumers of service
 - ♦ Includes discovery of services (auto-configuring interfaces)
 - → Plug-n-play characteristics: Finally allowing operational/management decisions to be independent of software development projects
 - ❖ Provides application portability as well as interoperability
- ✦ Progress to date:
 - ♦ Basic framework (Message Abstraction Layer, etc.) is published.
 - ♦ First applications, Mon/Ctrl (TLM/CMD) in agency review
 - ♦ Alerts (alarm limits, etc.) currently in review cycle
 - ♦ Working on several language bindings and transport bindings
- ★ New Development: IOAG formed MOSSG subcommittee to review CCSDS MO Services approaches and create an IOAG Service Catalog
 - 16 MOSSG = Mission Ops Systems Strategy Group

Telerobotics WG

- ◆ Objectives: For the space telerobotics technology development and operations community, develop a specification for the compatibility layer that permits operators and robotic agents to freely exchange information, enabling the operators to communicate with heterogeneous robots in a uniform fashion.
- ◆Only green (informative) book is in work right now, but work plan is blue (normative) protocol specifications.

Cross-Supt Space Comm Arch WG

- → Developing "big picture" description to guide CCSDS architecture for communications cross-support.
- ★Identifies how many of the CCSDS standards fit together
- **♦** Products:
 - ♦ Completed: Cross Support Architecture Concept and Rationale, Green (informative) Book
 - ♦ In Agency Review Now: Space Cross Support
 Communications Architecture Requirements Document
 - ◆ Magenta (normative) Book Recommended Practice

SOIS Application Support WG

- → Developing standardized layered service interfaces for onboard avionics to promote interoperability
 - ♦ Supports and references lower layer link services, but currently only points to those external standards (SpaceWire, 1553, etc.)
 - ♦ More specifically now, to harmonize the Interface Control Document (ICD) among space components (hardware & software components)

→ Current objectives

- ♦ Standardize XML schema for Electronic Data Sheets (EDS)
 - Required for development of universal components to enable interoperability and ease of integration of components across different vendor suppliers
- ♦ Development of Dictionary of Terms (DOT) book
 - ◆ Required to define common terms for SOIS EDS components
- Recent developments: Some proposals for bringing onboard link (bus) standards into CCSDS for standardization
 ♦ RapidIO

Space Link Protocols WG

- ◆Objective: Adapt or develop link layer protocols for space including near earth, deep space, proximity environments.
- ★ New effort: Advanced space link protocol that will combine and surpass the functions of TM, TC and Prox-1
 - ♦ "Fix" traditional CCSDS protocols for higher capacities
 (optical comm), Cislunar environment, etc.
 - ◆ Next Generation Space Link Protocol
 - Unified Space Link Protocol
- → Next meeting: Get consensus on the Unified SLP green book draft.

Space Data Link Security WG

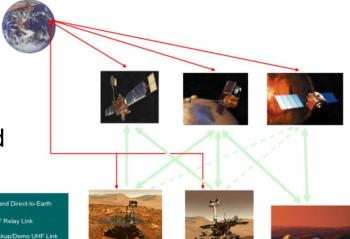
◆Objective: develop a recommendation for a security protocol operating at the data link layer of CCSDS spacelinks. This security protocol should provide authentication and/or encryption both for uplink and downlink, and it should be independent from any specific cryptographic algorithm

♦ Work Plan:

- Develop a CCSDS Link Layer Security standard protocol (Blue Book) to work with existing CCSDS link layer (TM, TC, AOS) as well as future link layer protocols (Unified SLP).
- ♦ In support of that, Green (informative) and Yellow (test) Books will also be developed.
- ♦ Next meeting: work on key management, security control directives, extended procedures

Motion Imagery & Apps WG

- → Objective: Interoperability between cooperating agencies' digital video systems.
 - ♦ Historical problems with NDSC, PALS, SECAM, etc.
 - ♦ Huge variety of new digital video standards. Need to down-select to the subset supporting space operations.
- ◆Supporting Green book (informative) is published
- → Working on Blue (normative) book
 - ♦Will generally point to external standards with commercial implementations, not develop new formats
- → Plans for next meeting focus on completing last review of blue book and developing test report.



Delay/Disruption Tolerant Networking (DTN)

Space Internetworking
Services

- ★ The DTN Working Group is laying the foundation for the Solar System Internet (SSI)
 - ❖ Provides automated routing in space (like terrestrial Internet), but compared to current IP technology:
 - ◆ Adds Delay/Disruption tolerance for deep space environment
 - ◆ Delivers more data, faster in disrupted near-earth environment
- → Past Progress and Current Work
 - ♦ SSI Architecture Document and Rationale Green books are published.
 - → DTN Bundle Protocol (BP) specification and Licklider Transmission Protocol (LTP) Blue Books to be completed soon
- ★ Future work Complete Solar System Internet (SSI) infrastructure with
 - ♦ Network Management

 - → File Delivery Protocol (CFDP) refactoring
- → Breaking News: IETF making DTN a standard for the terrestrial internet

Other New Work Areas

- → Planning Systems (BOF at London meeting)
 - ♦ Seeking to develop standardized interfaces for exchange of Mission Operations Planning Data, for both robotic and human spaceflight programs.
- → Onboard Wireless WG
 - ♦ Wireless onboard comm reduces launch weight.

Online Resources

www.CCSDS.org

Public-Website-

- → Overview info (About tab)
- ✦ Access to published standards (Publications tab)
- ★ Comment on documents in review
- → Meeting info & logistics
- → Commercial implementations
- Missions that have adopted CCSDS
- New Work Items Announcements
- → General Announcements (Blog)

CWE.CCSDS.org

Collaborative-Work-Environment-

- Development environment for developing new standards
- ★ Access to Areas' and WGs' materials (some private areas require ID/PW)
- → Contact info for ADs and WG leads
- Access to schedule/status of current standards development projects

CCSDS Summary

- → Final message: There is still much work to be done
 - Enabling interoperability between international agencies for future missions – both Earth-Orbital and Exploration
 - ↓ Long-range vision automated routing and delay tolerant networking for both earth-orbital and deep space missions. Including crosslinks between spacecraft and surface systems
 - ♦ Near-term need evolutionary approach to sustain cross-support agreements with other agencies.
- ◆ Organizations with a stake in the future of Space Missions and the expertise to contribute to CCSDS should become engaged.

Backup/Alternative Charts

Future Mission Drivers

PAST

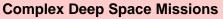
PRESENT

DRIVERS FOR THE

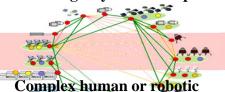
FUTURE

Shuttle/SpaceLab **CCSDS** packets

International Space Station Adv. Orbital Sys (AOS) Early DTN Prototyping



Missions designed for orbital relays, **Longer duration**


- · Long Duration, High Reliability
- Mobile comm protocols
- Voice, Video, Medical handling
- Onboard Autonomy
- Highly integrated ops

- Human or robotic exploration
- Longer Duration
- Mobile comm protocols
- · Fully automated routing
- Network-Managed DTN
- Optical Communications

Asteroid/Surface Exploration Autonomy, High bandwidth **Multi-Agency Mission Ops**

Scenarios for remote surface missions Fully automated Space Internetworking

Brief Recon Flyby,

Short-Lived Probes

Direct-to-Earth links

Single-Spacecraft Survey/Sensors

Spacecraft Constellations and formation flying

Greater Distances Higher bandwidth

Orbital Remote Sensing

- · Long Duration, high bandwidth
- High Spatial, Spectral, & Temporal Resolution
- Low Latency Comm
- Complex link topologies
- SensorWebs for synchronized remote sensing

Multi-Discipline and Multi-Resource SensorWebs

Next Generation Observatories

- More Capability
- · Multiple Spacecraft drive network needs
- · Even Greater Capacities require new coding schemes
- · Located Even Farther from Earth

Next Generation Observatory Complexes

Single-Spacecraft **Observatories in LEO**

Field Guide to CCSDS Book Colors

BLUE BOOKS

Recommended Standards

Normative and sufficiently detailed (and pretested) so they can be used to directly and independently implement interoperable systems (given that options are specified).

ORANGE BOOKS

Experimental

Normative, but may be very new technology that does not <u>yet</u> have consensus of enough agencies to standardize.

MAGENTA BOOKS

Recommended Practices

Normative, but at a level that is not directly implementable for interoperability. These are Reference Architectures, APIs, operational practices, etc.

YELLOW BOOKS

Administrative

CCSDS Procedures, Proceedings, Test reports, etc.

GREEN BOOKS

Informative Documents

Not normative. These may be foundational for Blue/Magenta books, describing their applicability, overall archtecture, ops concept, etc.

SILVER BOOKS

Historical

Deprecated and retired documents that are kept available to support existing or legacy implementations. Implication is that other agencies may not cross-support.

RED BOOKS

Draft Standards/Practices

Drafts of future Blue/Magenta books that are in agency review. Use caution with these... they can change before release.

PINK BOOKS/SHEETS

Draft Revisions For Review

Draft Revisions to Blue or Magenta books that are circulated for agency review. Pink Books are reissues of the full book, Pink Sheets are change pages only.