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A low gravity material science experiment has been prepared 
to be performed in the Low Gradient Furnace (LGF) in the 
Material Science Research Rack (MSRR) on International 
Space Station (ISS).

There are two sections of the flight experiment: 
(I) Investigation toward crystal growth by physical vapor 

transport (PVT): the growth of ZnSe and related ternary 
compounds, such as ZnSeS, ZnCdSe, and ZnSeTe, 

(II) Investigation on the melt growth of CdTe and CdZnTe by 
directional solidification. 

Crystal Growth of Ternary Compound Semiconductors
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Technological significance:
Growth (melt and vapor) and characterization of II-VI 
and IV-VI compounds semiconducting materials, such as 
HgCdTe, HgZnTe (for IR detectors), CdS and ZnO (for 
UV detector), ZnSe, ZnSeTe (for green /blue laser), CdTe
and CdZnTe (for x-ray, gamma ray detectors), PbTe, 
PbTeSe, and PbSnTe (thermoelectrics).

Contributors:
MSFC personnel:
Dr. Sharon  Cobb
Dr. Donald Gillies
Dr. Sandor Lehoczky
Dr. Ching-Hua Su
Dr. Martin Volz
Dr. Dale Watring
Dr. Frank Szofran

On-site contractors:
Dr. Shari Feth
Dr. Chao Li
Dr. Konstantine Mazuruk
Dr.  N. Ramachandran
Dr. Witold Palosz
Dr. Yigao Sha
Dr. Shen Zhu

II

Zn

Cd

Hg

VI

S

Se

Te

O

Crystal Growth Activities at NASA/MSFC

X and gamma    
ray telescope

CdZnTe
FPA

IV

Sn

Pb



4

II-VI semiconducting compounds grown at MSFC

Compounds            HgTe  HgCdTe  CdTe  CdZnTe   ZnTe     CdS    ZnSe    ZnS

Melting
points (oC) 670        700        1092      1130       1292     1397    1526    1718

PVT growth
temperature (oC)

850                     1000      985     1120    1150

Melt growth
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1. To establish the relative contributions of gravity-driven fluid 
flows, both in liquid and vapor, to (1) the non-uniform 
incorporation of impurities and defects and (2) the deviation 
from stoichiometry and (3) the compositional variation 
observed in the grown crystals.

2. To assess the self-induced strain developed during processing 
at elevated temperatures and retained on cooling caused by the 
weight of the crystals.

3. The relation between fluid phase processes and the generation 
of defects in a grown crystal is an outstanding problem in 
materials growth. Studies in microgravity will be compared 
with modeling and will lead to a greater understanding of the 
processes involved.

Scientific Objectives
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Phase Diagram of Zn-Se

(o C
)



Partial pressures along the three-phase curve for ZnSe(s)

At 1156 oC, PZn varies from 8.4 to 1.3x10-4 atm, PSe2 varies from 20 
to 5x10-9 atm and = PZn/ PSe2 varies from 1.7 x109 to 6.5x10-6

PZn
o

PZn (congruent 
sublimation)
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Calculated mass flux of 
ZnSe as a function of 

T and different values 
of (L). The source 
temperature was 
1080 C. Solid lines are 
for (L) > 2 and dashed 
lines are for (L) < 2.

Calculated mass flux of 
ZnSe as a function of 

T under the same 
conditions except a 
residual gas pressure 
of 0.008 atm is present 
in the system. 

Calculated mass flux of 
ZnSe as a function of 
residual gas pressure 
for source temperature 
at 1080 C and different 
values of (L).

One-Dimensional Diffusion model of PVT

Su, et al. (1998); Sha et al. (1995)



Simultaneous measurements of mass flux and partial pressure



balance
T-shape
furnace

spectrometer

lever arm

Simultaneous measurements of mass flux and partial pressure



Simultaneous measurements of mass flux and partial pressure

• PZn measured over the deposit; (deposit) = 17. 
• The measured PZ value was used in the calculation. 



Calculated partial pressure profiles for ZSTO-3 run 2

= 17

= 6.4
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• Four experimentally adjustable parameters, the source 
temperature, the deposition temperature, the partial pressure 
ratio over source and the residual gas pressure, determine the 
diffusive mass flux of a PVT system.

• However, two of these four parameters, the partial pressure 
ratio over source and the residual gas pressure, are more 
critical than the others. As will be shown, these two 
parameters are critically dependent on the proper heat 
treatments of the starting materials for optimum mass flux.

Summary of one dimensional diffusion analysis
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Optimum Heat Treatments of Starting Materials

Su et al. (1998)
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Crystal Growth by Physical Vapor Transport: 
temperature profile and initial ampoule positions

• The growth ampoules can be equipped with optical windows to confirm the 
stoichiometry of the starting material before growth.
• The thermal profile, with a maximum in the middle, was provided by a three-zone 

furnace with an adiabatic zone between central and cold zones.
• Growth was initiated by translating furnace to the right.

Su  (1995)

horizontal
vertical

destabilized
vertical

stabilized

Gravity
direction
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1. Self-seeded growth of ZnSe in vertical (stabilized and 
destabilized) and horizontal configurations

2. Seeded growth of ZnSe in vertical and horizontal 
configurations

3. Self-seeded growth of Cr-doped ZnSe in vertical and 
horizontal configurations

4. Self-seeded growth of ZnSeTe in vertical and horizontal 
configurations

5. In-situ and real-time optical monitoring of seeded growth 
in a horizontal configuration

PVT Growth of ZnSe and Related Ternary Compounds
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GDMS & SSMS on
crystal & source

precision density
measurements

thin film epitaxy

slice crystal
by wire saw

triple crystal
rocking curve

synchrotron
radiation imaging

polishing SIMS

sample
etching

etch pit density
by SEM & optical

microscope
TEM

optical absorption
measurements

WDS & EDS
measurements

photoluminescence

examine interface 
by SEM, AFM and
optical microscope

open
ampoule

growth orientation
by X-ray (Laue)

crystal growth
by PVT

photo
documentation

residual gas pressure
measurements

TCT for mobility
and lifetime

Hall
measurements

Flow chart of sample characterization plan
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Effects were studied by comparing the following 
characteristics of horizontally and vertically grown ZnSe 
crystals in :

• Grown crystal morphology : contactless growth for the 
horizontal configuration.

• Surface morphology of the grown crystals was examined by 
SEM and AFM. (growth was terminated by stopping furnace 
translation, lowering the source temperature by 10 oC and then 
cooling the thermal profile at the same rate)

• Segregation and distribution of defects and impurities in the 
grown crystals was determined by photoluminescence, SIMS 
and precision density measurements.

Gravity Effects on the Grown Crystals
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Gravity Effects on the Grown Crystals

Morphology of the as-grown crystals:

I. Self-seeded ZnSe: Crystals grown in the horizontal configuration grew away 
from the ampoule wall with large (110) facets tend to align parallel to the 
gravitational direction. Crystals grown in the vertical configuration grew in 
contact with the wall to the full diameter.

II. Seeded ZnSe: the as-grown seeded crystals for the horizontal and vertical 
configurations showed similar characteristics in the morphology as described 
above for the self-seeded growth.

As-grown surface morphology:

I. As-grown surface of horizontally grown crystals was dominated by (110)  
terraces and steps (identified to be (221) in one case).

II. As-grown surface of the vertically grown 
(a) Crystals showed granular structure with nanotubes (200nm OD, 75nm ID, 
25nm in height for one case on ZnSe) on the top.
(b) Some crystals showed a network of high plateau with each island 30 –
70mm in diameter and 3.5mm in height. Numerous nuclei were observed with 
diameter 20 - 50nm and height of 1 - 7nm on top of these islands.
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Morphologies of Self-seeded Vertically 
Grown ZnSe Crystals

ZnSe-25: vertically stabilized ZnSe-31: vertically destabilized
ampoule ID: 15mm

x
g

g

g g
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ZnSe-44 ZnSe-43

Morphologies of Self-seeded Horizontally Grown ZnSe Crystals
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• For furnace translation rates higher than the mass flux:
– In the horizontal configuration the crystal maintained the growth surface 

morphological stability by (1) self-adjusting the degree of supersaturation to 
increase the mass flux or/and (2) by reducing the cross section area of the 
grown crystal.

– In the vertical configuration the crystal growth surface became 
morphologically unstable with voids and pipes embedded.

g

ZnSe-47H 7.5 mm/day ZnSe-35V 11.4 mm/day

unstable

Gravity Effects on As-grown crystal morphology

g
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Morphologies of Seeded Vertically Grown ZnSe Crystals

ZnSe(S)-9V ZnSe(S)-12V
g
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Morphologies of the Seeded Horizontally Grown ZnSe crystals

ZnSe(S)-8H

ZnSe(S)-11H

ZnSe(S)-13H

g

xg

g
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I. Results from SIMS mappings :

For the horizontally grown self-seeded ZnSe crystal [Si] and [Fe] showed clear 
segregation toward the bottom on the wafer cut axially along the growth 
axis.

For the vertically grown seeded ZnSe crystal [Si] and [Cu] showed segregation 
toward the edge of the wafer cut perpendicular to the growth axis .

II. Mappings of PL near band edge intensity ratios indicated:

(1) All the horizontally-grown crystals showed the following trends in the 
radial and axial segregation of [Al] and [VZn]:
[Al] segregates radially toward the top and axially toward the first grown 
region and [VZn] segregates radially toward the bottom and axially toward the 
last grown region.

(2) The as-grown surface of the seeded vertically stabilized grown crystal 
showed [Al], [Li or/and Na] and [VZn] segregate radially toward the center.

(3) The as-grown surface of the self-seeded vertically destabilized grown 
crystal showed [Al] and [VZn] segregate radially without an apparent pattern.

Gravity Effects on Impurities and Defects Distribution

Su et al (1999)
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Impurities Distribution by SIMS (horizontally grown)
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Impurities Distribution by SIMS (vertically grown)

x
gravity and

growth direction
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Summary on the Photoluminescence I2 and I1
deep emissions

I2 emission:
• I2, the exciton bound to substitutional donor, emission in our ZnSe samples can be 

attributed mainly to Al impurity, with A(I2)/A(Fx) = 4.88 corresponding to 1700 ppb, 
atomic, or 7.46x1016 cm-3.

• Isshiki et al. (1991) gave the expression between intensity ratio (I2)/(IFx) and ND:
log10(I2/IFx) = -22.0775 + 1.46268 log10ND(cm-3)

• Therefore,        (I2/IFx) = 82 [A(I2)/A(Fx)]

I1deep emission:
• I1deep is related to exciton bound to VZn deep acceptor and [VZn] is proportional to 

A(I1deep)/A(Fx).
• The reaction during Zn vapor annealing:

ZnZn VZn + Zn(g)
K = [VZn] x PZn = K1A(I1deep)/A(Fx) x PZn

• The ZnSe samples were annealed at 1104 oC:
1. A(I1deep)/A(Fx) = 7.52 when sample is in equilibrium with PZn

= 6.1x10-3 atm ( = 6.05)  A(I1deep)/A(Fx) x PZn = 0.0459 atm.
2. A(I1deep)/A(Fx) = 5.18 when sample is in equilibrium with PZn

= 9.0x10-3 atm ( = 19.43) A(I1deep)/A(Fx) x PZn = 0.0466 atm
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gravity growth
direction

[VZn] [Al]

Distribution of [VZn] and [Al] in ZnSe (horizontally grown)
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A(I2)/A(Fx)
11.679          
11.279
10.880          
10.481
10.082          
9.6825
9.2830          
8.8838          
8.4845          
8.0853

39.678
37.448
35.219
32.990
30.761
28.531
26.302
24.073
21.844
19.614

A(I1
d)/A(Fx)

gravity

x
growth 

direction

Distribution of [VZn] and [Al] in ZnSe (horizontally grown)
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Vertical stabilized
configuration

A(I1
d)/A(Fx)

Distribution of [VZn] and [Al] in ZnSe (vertically grown)
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Distribution of [VZn] and [Al] in ZnSe (vertically grown)

Vertical destabilized configuration



Thin twin lamellae (TL) and three sets of (111) slip bands (S) originating 
from the lateral twin boundaries.

g = (313)g = (133)

g = (331)

(diffraction
vector)

Synchrotron X-ray Transmission Topography of ZnSe wafer

ampoule
wall

x gravity



Reflection Topograph of ZnSe-43H as-grown Facet

Reflection SWBXT image on the as-grown facet of ZnSe-43H showed 
areas of twins. The crystalline quality is generally good except that the 
upper region, where the crystal started to grow into full diameter and 
away from the ampoule wall, showed lattice strain.

gravity

T



112097.X04 ZnSe-43  x=+1.25/y=+0.65

Rocking angle (arcseconds)
-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 93.8"

112097.X05 ZnSe-43  x=+1.25/y=+3.65

Rocking angle (arcseconds)
-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 52.9"

112097.X10 ZnSe-43  x=+3.75/y=+0.65

Rocking angle (arcseconds)

-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 56.9"

112097.X03 ZnSe-43  x=+1.25/y=-2.35

Rocking angle (arcseconds)
-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 27.3"

112097.X02 ZnSe-43  x=+1.25/y=-5.35

Rocking angle (arcseconds)
-1800-1200-600 0 600 12001800

Intensity (counts)
100

101

102

103

104

105

106

FWHM = 22.5"

112097.X06 ZnSe-43  x=-5.75/y=-2.35

Rocking angle (arcseconds)

-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 26.2"

112097.X07 ZnSe-43  x=-5.75/y=+0.65

Rocking angle (arcseconds)

-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 56.2"

112097.X08 ZnSe-43  x=-5.75/y=+2.65

Rocking angle (arcseconds)

-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 33.1"

112097.X09 ZnSe-43  x=-2.25/y=+0.65

Rocking angle (arcseconds)

-1800-1200-600 0 600 12001800

Intensity (counts)

100

101

102

103

104

105

106

FWHM = 27.6"

33.1

56.2

26.2
27.6

22.5

27.3

52.9

93.8
Region straddling
twin boundary

Highly distorted
region

gravity

56.9

ZnSe 43H



In-situ optical monitoring during crystal growth

• Optical absorption for partial pressure measurements along 
the length of the growth ampoule to measure vapor phase 
transport species distribution

• Optical interferometry to measure seed thermal etching, 
instantaneous growth rate and the evolution of surface 
topography

• Visual observation of the growth evolution



Ampoule Design for in-situ Optical Monitoring
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Measured Partial Pressure as a Function of Time
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Fringes from Fabry-Perot
Interferometer

Fast/Vai Phase Map of Crystal
Surface, (from Fringes)

Interferometry Results from Seed Crystal Surface 
(Room Temperature)

3.7 (±.5) mm

2.8 (±.5) mm



Fringes from Fabry-Perot
Interferometer

Fast/Vai Phase Map of Crystal
Surface, (from Fringes)

2.0 (±.5) mm

3.3 (±.5) mm

Interferometry Results from Seed Crystal Surface 
(at 1120oC)
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Thermal Expansion Coefficient of ZnSe from Interferometry
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Numerical Modeling of Physical Vapor Transport

• Two dimensional and three dimensional calculations
• Finite element technique - Fidap code
• Thermal and Species induced buoyancy forces
• Compressible or Boussinesq model
• Benchmark -2D  (H2-I2 system - PVT growth)
• ZnSe calculations with residual gas
• Benchmark -3D  (Natural convection in a cylinder)
• 3-D ZnSe calculations with residual gas
• Ongoing and future work

Ramachandran et al. (2000) 
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The Physical Model
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Benchmark          the H2-I2 System

• benchmark calculations by Rosenberger et al. (J. Crystal 
Growth 51 426 1981; 67 241 1984; 118 49 1992) 

• source temperature Ts=370.5 K
• crystal temperature Tc=358.1 K
• ampoule pressure : 100 torr
• I2 (M=254) is the deposited species and H2 (M=2.016) is inert
• 2-d Cartesian system
• linear wall temperature
• quasi-compressible and Boussinesq calculations
• Peclet number analysis, Pe ~ 1 for diffusive flow
• growth rate results
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3-D Computational Grid and Code Validation Results

Experiment* Present   Ra

* Schiroky and Rosenberger (1984)
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Parameters of ZnSe System with Residual Gas 

• density, 1.2x10-5 g/cm3

• dynamic viscosity, 4.3x10-5 Pa-s
• kinematic viscosity, 36 cm2/s
• diffusivity, Zn in N2, 64.59 cm2/s
• diffusivity, Se2 in N2, 71.46 cm2/s
• thermal expansion coefficient, 7.1x10-4 K-1

• Prandtl number, 0.439
• Schmidt number, Sczn= 0.557
• Schmidt number, Scse= 0.503

= 2.9
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Velocity Difference Plots - procedure

• calculations for pure diffusion limited conditions, 0g
• calculations for other g conditions, a conditions, etc.
• calculate differences in axial (u) and transverse (v) 

velocities at all identical grid locations between previous 
steps; e.g. U(0g) - U(1g) and V(0g)-V(1g)

• contour the velocity differences and plot
• determine g-sensitivity
• Note: all calculations were using the Boussinesq approx. 

source crystal
y,V

x,U

g

horizontal
vertical stabilized

vertical destabilized

conventions:

c ; [T=T(y)]Ts
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Gravity Effect on Velocity Difference (horizontal case)

- g-effects with constant crystal temperature , Tc.
U~ 0.3 mm/s; V~ 50 m/s

- g-effects with crystal temperature variation, Tc = Tc(y).
U~ 0.3 mm/s; V~ 43.75 m/s

- g-sensitivity (horizontal case) based on max. buoyancy
driven flow normal to growth direction is 10% of crystal
growth rate (3mm/day or 0.035 m/s)

transverse acceleration requirement: ~ 1x10-4 go

Y

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

4.376E-05
9.045E-06

-8.312E-06
-4.303E-05
-7.774E-05
-1.125E-04
-1.472E-04
-1.819E-04
-2.166E-04

v velocity (m/s); (1 go - 0 go)

0.0

v (m/s)
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- g-effects with crystal temperature variation, Tc = Tc(y). 
Stabilized orientation: U~ 23.1 m/s; V~ 9.4 m/s

- g-effects with crystal temperature variation, Tc = Tc(y).
Destabilized orientation: U~ 18.1 m/s; V~ 9.4 m/s

As far as transverse velocity difference is concerned both 
vertically stabilized and destabilized orientations have 
similar effects

- g-sensitivity (vertical case) based on max. buoyancy
driven flow normal to growth direction is 10% of crystal
growth rate (3mm/day or 0.035 m/s)

longitudinal acceleration requirement: ~ 2.7x10-3 go

Gravity Effect on Velocity Difference (vertical case)
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ZnSe with Residual Gas - 3D Calculation Results

• significant flow observed along the ampoule axis (z-direction) 
indicative of more deposition in the central area than near the 
walls 

• velocity contours in the cross planes(x-y)  show appreciable 
variation only near the end walls (source and crystal)

• species (Zn and Se2) show fairly uniform distributions in the 
cross planes

• predicted crystal growth rate from 2-D and 3-D calculations 
are in fair agreement
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Summary of Theoretical Calculation

• 2D and 3D calculations performed for ZnSe system
• Residual gas effects considered
• Calculations show that shear flow velocities of 10 to 50 

microns/s are induced by buoyancy effects (290 to 1400 
times growth rate)

• g-level requirements established based on time scale analysis 
required transverse g level: < 1.2x10-4go
required longitudinal g level < 8.5x10-3 go

• It is noted that the Boussinesq model used in the calculations 
tend to underpredict velocities



Flight Experiments on International Space Station

• The flight experiments will be 
conducted in the Low Gradient 
Furnace (LGF) in the  Microgravity 
Science Research Rack (MSRR) on 
International Space Station (ISS)

• Nine different growth runs will be 
performed for ZnSe, Cr-doped 
ZnSe, ZnSeTe, ZnSeS and ZnCdSe
materials with different growth 
parameters.

• The flight experiments are 
scheduled to commence in late 
2015.
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