

Fission Fragment Rocket Engine (FFRE) Technology & Status

PI: R. Werka (MSFC)

Co-I: R. Clark,

Dr. R. Sheldon,

T. Percy

11/17/2014

FFRE Basic Physics

Nuclear Thermal Propulsion Solid Reactor Core

Solid Rods Of
Nuclear Fuel, Cooled
By High Pressure
Hydrogen At High
Flowrate Which, As It
Is Heated, Provides
Thrust

Cloud Of Dust Grains Are Trapped Electrostatically, FF Trajectories Are Controlled Magnetically Dust Plasma Dusty Plasma Fission Fragments (FF) Space Vacuum

Building A FFRE

- ☐ Reactor Core Uses Low-Density, Submicron Fissioning Dust Grains
- ☐ Tiny Dust Grains Are Cooled By IR Radiation Alone
- Moderator Reflects Neutrons To Keep Dust Critical
- ☐ Carbon-Carbon Heat Shield Reflects IR Away From The Moderator.
- Superconducting Magnets Direct FFs Out Of Reactor.
- ☐ Electricity Is Generated From Heat Shield Coolant
- ☐ Reactor Hole Provides: Heat Escape, FF Escape At 1.7% Light-Speed
- ☐ Adding Neutral Gas To FF Beam Trades Exhaust Velocity For Thrust

NIAC Spacecraft Overview

Spacecraft/Typical SLS Packaging

MSFC CIF FFRE Afterburner Study

CIF FFRE Baseline Configuration

Reactor Power: 2500 MW

Mass Flow: FF

0.25 lb_m / hr

H₂:

145 lb_m / hr

Total Thrust:

1046 lbf

Specific Impulse:

32,000 sec

Phoebus 2A operated at 4100 MW for 10 min - 1968

Produces 0.20 inch cube of radioactive material per hour

Raises 10m dia x 300m borehole from vacuum to 0.05psi

Study Vehicle Concept Comparison

CIF: Mars Mission

NIAC: Jupiter Mission

Attributes	CIF	NIAC
Reactor Power (MW)	2,500	1,000
FFRE Mass Augmented	Yes	No
Thrust (lbf)	1046	10
Specific Impulse (s)	32,000	527,000
Nuclear Fuel Mass (mT)	1.5	8.0
Afterburner Gas Mass (mT)	350	0
Total Radiator Area (m²)	22,791	6,076

Attributes	CIF	NIAC
Vehicle Wet Mass (mT)	1082	303
Dry Mass (mT)	566	295
Payload Mass (mT)	170	60
Overall Length (m)	282	120
Overall Span (m)	205	62
Vehicle Acceleration (milli-g)	0.440	0.015
Mission Duration-1 Way (d)	104	2664

To Mars With Mass Augmented FFRE

Mars Architecture Comparison

CONCLUDING REMARKS

- ☐ FFRE is CREDIBLE using today's physics and ordinary engineering
- ☐ Today's FFRE constructs are very inefficient (Ford Model T engine compared to the latest Mustang V-6). MUCH REMAINS TO BE EXPLORED THAT CAN IMPROVE PERFORMANCE.
- ☐ FFRE-propelled spacecraft can carry a heavy payload to any solar system destination and swiftly return with NO REASSEMBLY REQUIRED.

□THIS MAKES FFRE-PROPELLED SPACECRAFT TRULY GAME
CHANGING FOR HUMAN SPACE EXPLORATION.

robert.o.werka@nasa.gov

BUT remember:

USN Admiral Rickover, the "Father of the Nuclear Navy"

• An academic (propulsion system):

- 1. It is simple, small, cheap, light.
- 2. It can be built very quickly.
- 3. Very little development is required. It will use off-the-shelf components.
- 4. The (propulsion system) is in the study phase. It is not being built now.

A practical (propulsion system) can be distinguished by :

- 1. Being complicated, large, very expensive, heavy.
- 2. Being behind schedule.
- 3. Taking a long time due to development problems, esp. on "trivial" items.
- 4. Being built now.
- The academic designer uses paper and a pencil with an eraser. Mistakes can always be erased & changed.
- Errs of the practical designer are worn around his neck & cannot be erased.