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ABSTRACT 
 
 

Conceptual and Procedural Understanding of Algebra Concepts in the Middle Grades. 

(December 2005) 

Heather Kyle Joffrion, B. S., Texas A&M University 

Chair of Advisory Committee: Dr. Gerald Kulm 
 
 

In this study, the balance between conceptual and procedural teaching and its 

effect on the development of algebraic reasoning was examined.  

Participants included two seventh grade mathematics teachers and their students 

in targeted classes (N = 33). One video taped lesson from each teacher was selected for 

in-depth analysis of the balance between conceptual teaching, procedural teaching, and 

classroom time that included neither. Student participants took pretest and posttest 

algebra tests. Distribution of student responses and scores were analyzed for the degree 

of conceptual understanding demonstrated by students and then related to observed 

instructional practices.  

It was concluded that the students of the teacher with a more explicit conceptual 

emphasis in her lessons performed better on the test and were better able to exhibit 

flexible reasoning in unfamiliar contexts. Students whose teacher focused more heavily 

on procedural instruction without conceptual connections were less flexible in their 

reasoning and unable to apply some of the procedures taught in class. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Statement of Problem 

For all high school mathematics courses, algebra is widely regarded as a 

“gatekeeper.” Students in the United States fail mathematics more frequently than any 

other subject (Jacobson, 2000). The world of higher level mathematics and the 

opportunities that come with it are closed to students who do not succeed in high school 

algebra. Preparation for algebra in the middle grades is critical to student success in high 

school mathematics (Silver, 2000). 

Using symbolic algebra to represent and solve linear equations is one of the 

expectations under the Algebra content strand for 6-8 grade mathematics in the National 

Council of Teachers of Mathematics (NCTM) Principles and Standards for School 

Mathematics (2000). Understanding of linear equations and algebraic relationships is 

fundamental to preparing students for success in future algebra experiences. Silver 

(2000) asserted, “In the middle grades, students need to develop a thorough 

understanding of, and representational facility in, dealing with linear functions and 

equations” (p. 22). Researchers have examined a variety of strategies for teaching the 

solving of simple linear equations. In the present study, the relationship between 

classroom emphases on conceptual understanding and/or procedural knowledge of linear 

algebra concepts and student achievement in algebraic reasoning were examined.  

___________ 
This thesis follows the style of the Journal for Research in Mathematics Education. 



2 

Rationale 

Mathematics teachers in modern society are called to address the needs of many 

different learning styles. In the past, not all students were expected to take Algebra in 

high school. One semester of mathematics study in the ninth grade, limited to operations 

with positive rational numbers, was required for high school graduation, according to a 

bulletin published by the Los Angeles City Schools (Butler, 1968). This bears sharp 

contrast to expectations for today’s high school students. The NCTM Principles and 

Standards (2000) state that all students should be enrolled in enriched, meaningful 

mathematics courses during each of the four years of high school, receiving necessary 

support to be successful. Texas now requires Algebra I and Geometry for all students, 

and three years of mathematics study for graduation (Texas Education Agency, 1998). 

This leaves today’s teachers, especially those who serve middle school and high school 

students, with a tremendous responsibility to make algebra accessible for all students. 

Functions, equations, graphs, and algebraic relationships and vocabulary receive 

attention in middle grades mathematics curricula. Students’ understanding of these 

concepts, even before a formal Algebra course, prepares them for future success. Middle 

grades teachers need to know the most effective ways to enable their students’ algebraic 

reasoning. Teachers use both conceptual and procedural methods of instruction when 

teaching students to solve problems requiring algebraic reasoning. Successfully 

balancing conceptual and procedural emphases in classroom instruction will support 

students as they begin to develop the algebra skills needed for success in high school 

mathematics classes.  
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Research Questions 

Given these suppositions, the following will be investigated. 

1. How does the degree to which a teacher emphasizes conceptual understanding 

of solving equations and the amount of emphasis placed on procedural knowledge 

correspond with students’ ability to solve algebraic equations? 

2. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

ability to model equations from verbal problem representations? 

3. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

ability to recognize algebraic relationships in tabular representations? 

4. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

demonstration of conceptual understanding and flexibility in problems requiring an 

application of algebraic concepts? 

 

Educational Significance 

The findings of this study will contribute to a body of research addressing the 

need for conceptual and procedural understanding and their connection. In order to 

provide mathematical foundations for student success, research-based pedagogical 

methods are mandated by the No Child Left Behind Act of 2001 (NCLB). By 

researching some effective teaching practices for critical pre-algebra skills, this study 
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will deepen understanding of this subject in the field of mathematics education, and 

better equip those who plan curriculum and teach students to meet the needs of middle 

grades mathematics students. 

 

Definition of Terms 

The following terms are listed in alphabetical order with the definition as will be 

used in this study: 

1. Conceptual understanding/knowledge: understanding of ideas and 

generalizations that connects mathematical constructs (Ashlock, 2001) and is rich in 

relationships (Hiebert & Lefevre, 1986). Specifically in this study, conceptual 

understanding relates to the meaning of equations, equality, relationships between 

quantities, and variable. 

2. Procedural understanding/knowledge: understanding that is focused “on skills 

and step-by-step procedures without explicit reference to mathematical ideas” (Ashlock, 

2001, p. 8) 
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CHAPTER II  
 

LITERATURE REVIEW 
 
 

Conceptual and Procedural Understanding 

In order to succeed in algebra, students need to develop both conceptual 

understanding of numbers and relationships and procedural skills in using them 

efficiently. With the completion of the Third International Mathematics and Science 

Study (TIMSS), much attention has come to procedural teaching and conceptual 

teaching. The video analysis portion of this study included a random sample of eighth 

grade classrooms across the United States, Germany, and Japan. Japanese students 

consistently rank in the top of international studies of mathematics achievement, and 

German students also typically outscore students in the United States. The TIMSS 

created a window into classrooms that revealed very different treatment of procedural 

knowledge between the U. S., Germany, and Japan.  In Japan, students are encouraged to 

invent their own procedures for solving demanding problems. Instruction is problem-

based, student-centered, and carefully structured to encourage students to arrive at 

desired outcomes. In the United States, teachers tend to present definitions and 

procedures and students are expected to practice them. German classrooms also revealed 

an emphasis on procedure, but the level of rigor far exceeded that of the American 

curriculum (Stigler & Hiebert, 1999). 

Not all teaching in high-achieving countries is as open and consistently 

conceptual as that of Japan. Reflecting on the high achievement of East Asian students, 

Leung and Park (2002) presented teachers with arithmetic problems, asking them to 
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explain to the researcher how to solve it in the same way that they would explain it to a 

second-grader. The sample of teachers came from Korea, Hong Kong, and the United 

States. Across the study, nearly all the teachers emphasized procedure, and few were 

able to explain the concepts behind the procedures clearly. From this study, the 

researchers concluded, “ . . . the assumption that one must first understand before one 

can have meaningful practice may not be valid. The process of learning very often 

begins with gaining competence in the procedure, and then, through repeated practice, 

students begin to learn the concepts behind the procedures” (p. 127). Leung and Park 

continued, asserting that procedural learning could only be the vehicle for understanding 

if it was contained in a curriculum based on sound concepts, sequenced to help students 

learn concepts as they develop procedures. 

Boaler (1998) reported on a study that centered on the differing effects of 

problem-based conceptual instruction and traditional, more procedural instruction. Two 

schools were examined, one employing a traditional curriculum and the other employing 

solely activity-based instruction. After three years, the researchers determined that 

students whose instruction had been primarily procedural were unable to apply 

mathematical knowledge and problem-solving skills in unfamiliar situations. Students 

who learned in a problem-based environment were more flexible and better able to apply 

their mathematical understanding in a variety of academic and non-school situations.   

There has been some debate over the relationship between conceptual and 

procedural knowledge and which type of understanding develops first as students 

encounter new mathematics (Gelman & Williams, 1998; Siegler, 1991; Siegler & 
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Crowley, 1994). Rittle-Johnson, Siegler, and Alibali (2001) proposed a mediating 

viewpoint, that, in fact, the two types of knowledge are not necessarily distinct, but 

rather opposite ends of a continuum and improvements in one type of understanding 

typically result from or result in improvements in the other type. They assert that the 

process of development of concept and procedure is iterative and closely intertwined. 

In a similar study, Star (2002) reiterated Rittle-Johnson, Siegler, and Alibali’s 

(2001) point that conceptual and procedural knowledge are not distinct entities. The 

researcher gave three examples of student solutions to a complicated single-variable 

equation. Each student was able to solve the equation successfully, but the degree of 

efficiency and sophistication of the solutions varied. The strategies and procedures 

employed by the students were very distinct and clearly reflected varying levels of 

conceptual understanding as manifested by their procedures. Star believes that the skill 

vs. concept debate has outlived its usefulness and that procedural competence should be 

bolstered with conceptual understanding, not replaced by it. 

Jitendra, DiPipi, and Perron-Jones (2002) studied the effect of instruction that 

explicitly made conceptual connections on students’ (specifically those with learning 

disabilities) abilities to solve mathematics word problems. They found that a schema-

based strategy integrating elements of conceptual and procedural understanding effected 

a reasonably long-term improvement in students’ abilities. These researchers used 

Anderson’s (1989) definition for procedural knowledge as “organization of conceptual 

knowledge into action units” (p. 24). Without conceptual knowledge, this definition of 
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procedural knowledge is useless. Likely, this approach to procedural teaching 

contributed to the success of the students in the study. 

 

Learning Trajectories 

Central to much recent research in promoting conceptual understanding is the 

sequence in which algebra concepts are presented. Specifically, when should those 

concepts related to writing and solving simple equations be taught? The work of 

Carpenter, Fennema, Franke, Levi, and Empson (1999) in Cognitively Guided 

Instruction, and others who explored the problem solving methods and capabilities of 

young children inspired similar investigations into the process of problem solving in 

secondary students (Nathan & Koedinger, 2000). These authors suggest that students are 

able to solve many problems, especially those situated in familiar contexts, without 

explicit instruction in the operations required. Their investigations have shown students 

may be developmentally able to solve word problems before performing the associated 

symbolic operations.  

The results of these investigations have challenged many of the beliefs about 

students’ developmental stages in the learning of algebra. Nathan and Koedinger (2000) 

conducted a study to compare teachers’ and researchers’ beliefs about the learning 

trajectory associated with algebraic reasoning with the learning path actually 

demonstrated by student performance. These investigators examined the perceived 

difficulty of problems presented in symbolic formats (number sentences) and those 

presented in verbal formats (story problems), as well as problems of both types that 
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involved result-unknown (primarily arithmetic) or start-unknown (primarily algebraic) 

solutions. Discovering that teachers’ and researchers’ beliefs aligned with those implicit 

in algebra textbooks, the results suggest these professionals tend to believe that students’ 

skills in symbolic manipulation precede students’ abilities to apply those skills in 

problem-solving contexts. However, the data from this study revealed that students often 

were more successful in solving verbal, contextualized problems than those requiring 

symbolic manipulation only.  

Koedinger and Nathan developed their ideas further in a more recent study 

(2004), determining that the previously observed trajectory could be attributed, in part, 

not to familiarity with situations presented in problems, but to difficulty with formal 

symbolic representation. This led to a conclusion that the differences in student learning 

were related to students’ representation abilities. Problems situated in verbal contexts 

were easier for students to represent than those presented to the students in symbolic 

form. 

In another study of early algebraic reasoning, Van Ameron (2003) determined 

that symbolizing and reasoning capabilities do not necessarily develop coincidentally. 

This study also revealed the value of encouraging students’ informal understanding of 

algebraic reasoning and notations in helping students to bridge the gap between their 

arithmetic experiences and those in the realm of algebra. Student participants (sixth and 

seventh grade students) often demonstrated much stronger skills in solving formal and 

informal problems that require algebraic reasoning than in symbolizing equations. 
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Students’ abilities to solve simple word problems with arithmetic can and should be 

connected to the formal algebraic symbolic notation. 

Recent mathematics education reform stresses the importance of presenting 

students with opportunities to encounter problems that cannot be solved using routine 

methods (NCTM, 2000). Problem solving, a very important skill in mathematics, should 

be an important part of the algebra curriculum. Many teachers and curricula cling to a 

traditional view of mathematics learning that gives students a set of skills in symbol 

manipulation, followed by problem solving tasks that require application of those skills. 

Reformed mathematics suggests students may learn concepts through problem solving 

that may later be enhanced, supported, or refined by symbol manipulation and 

mathematical vocabulary (Latterell & Copes, 2003). 

Symbol manipulation is a procedural skill. According to the study by Nathan and 

Koedinger (2000) mentioned above, traditional curriculum implicitly states that 

procedural skills precede students’ conceptual understanding of material. However, their 

research suggests that this is likely not the case. This work and the others mentioned 

here lay foundation for the idea that students develop conceptual understanding before 

developing real procedural understanding. 

 

Transition from Arithmetic to Algebra 

 Pre-algebra has been defined by some as the transition from the arithmetic of 

elementary school mathematics to the algebraic and more abstract skills required at the 

secondary level (Kieran & Chalouh, 1993). Stacey and MacGregor (1997) wrote of the 
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importance of laying a solid foundation for algebraic reasoning in the middle grades. 

They suggested that many aspects of algebraic reasoning can be developed through 

properties of arithmetic, and that teachers can help students develop their understanding 

of both simultaneously. They stressed the importance of teaching students to see 

processes and operations holistically, and stressing relationships between numbers 

instead of focusing primarily on the answer. Discussing the value and efficiency of 

informal approaches with students may help them make the transition from these 

intuitive approaches to more formal algebraic methods, but it is very important that 

students do make the transition. Students who make that transition in the middle grades 

will be more successful in their high school studies. 

Van Dooren, Verschaffel, and Onghena (2003) conducted a study of pre-service 

primary teachers as well as pre-service secondary mathematics teachers. They sought to 

determine the kinds of strategies these pre-service teachers used in solving various 

problems. Participants focusing on secondary-level mathematics tended to use algebraic 

solution strategies, even when arithmetic strategies would have been simpler or more 

efficient. Participants studying primary education more frequently focused their 

solutions on arithmetic and were less likely to be able to solve more complicated 

problems that required algebraic reasoning. From this dichotomy, the researchers 

concluded that pre-service teachers need direct instruction in the transition between 

arithmetic and algebraic solution methods. They were concerned that primary teachers 

would be ill-equipped to help their students develop problem-solving skills and the 

underpinnings of algebraic reasoning and lower secondary school teachers (including 



12 

those in middle school) would be ill-equipped to facilitate students’ transition from 

arithmetic to algebra. 

 

Conceptual Understanding in Pre-Algebra 

Concepts of equality. Students transitioning from arithmetic to algebra often 

struggle with misconceptions about the meaning of the equals sign. Recently the use of 

concrete models in teaching solving equations has become a more common practice to 

help students develop conceptual understanding of equality. In the majority of prior 

experiences, the equals sign was active. It indicated to a student that the “answer” should 

follow it. In algebra, students must see the equals sign as relational, denoting either side 

has equal value. Students as early as third grade can conceive of this aspect of equality 

when they are given experiences that feature the equals sign in situations that allow 

students to recognize quantitative sameness (Saenz-Ludlow & Walgumuth, 1998). Too 

often, children do not have such experiences with equality until formal algebra study. 

The Balance Model for teaching about equality was described and studied by 

Vlassis (2002). This concrete model features the equals sign as the pivot on a balance 

scale. In order to maintain balance, whatever is added to or taken away from one side 

must be added or taken away from the other. This author explored the benefit of this 

concept in the supporting eighth graders’ understanding as they solved linear equations. 

Citing various proponents and opponents of the use of manipulatives in teaching algebra 

concepts, Vlassis determined that the Balance Model and other concrete models for 
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solving equations were limited. Their usefulness seemed to disappear when modeling 

problems involving negative quantities. 

Pirie and Martin (1997) were among the opponents of the Balance Model 

mentioned by Vlassis. They expressed concern with the model because of its apparent 

disconnect from the symbolic algebraic representation. Students often do not make the 

transition from weighing in a pan balance and drawing pictures of equations to the 

symbolic representation. These topics must be explicitly taught. In Pirie and Martin’s 

study, some students persisted in believing that all variables represented weights or 

counters. These participants were not flexible in seeing the variables as quantities in 

word problems. They did recognize the value of concrete models in directing students to 

the need for symbolic representation and solving equations in the more conventional 

way. 

Concept of variable. Pre-algebra students need to have a developed concept of 

the meaning of variable. This understanding should be rooted in experiences with 

patterns and generalizations. Variables are difficult, even for mathematics teachers, to 

describe in few words. The term takes on many different meanings in the study of 

algebra and therefore the concept is difficult for students. They should be treated as tools 

for expressing relationships and research suggests that it may be helpful for students to 

verbally express a generalization before attempting to represent it using symbols 

(Schoenfeld & Arcavi, 1988). 

Misconceptions about variables are common among students who are learning to 

use them. The variable x has been mistaken for the multiplication symbol by many 
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students (Martinez, 2002). Wagner (1983) told of one of her students who stated that the 

next consecutive integer that followed x was y.  In another investigation by Wagner 

(1977), she presented students with two equations, identical except for different letters 

were used as the single variable. The researcher received a variety of responses when she 

asked participants if different solutions would be obtained from solving both equations.  

Confusion was evident in responses including comments on which letter came first in 

alphabetical order. Other students believed it was impossible to determine whether or not 

they were the same until both had been solved. Though these studies took place long 

ago, there is little reason to believe confusion about the proper use of variables has been 

resolved. 

Moseley and Brenner (1997) discovered that students who were instructed in the 

use of variables with multiple representations demonstrated a more profound 

understanding of their usefulness. Placing participants’ work on a continuum from 

arithmetic-based to algebraic, they determined that the use of multiple representations 

was critical in helping students bridge the conceptual gaps between arithmetic and 

algebra and learn to use variables to generalize relationships. 

 

Linear Equations 

Solving equations. Notably, learning to solve equations should involve more than 

memorizing a set of rules. Students who understand only an algorithmic method of 

solving equations will experience difficulty when they encounter equations in different 

forms, solving for different variables, and working with non-linear equations later in 
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their mathematics careers. Perso (1996) expressed concern that students who solve 

equations only by a set of memorized rules tend to have misconceptions about solving 

equations. It is common practice, Perso claimed, for frustrated teachers to teach students 

using rules instead of encouraging conceptual understanding of algebraic processes. 

When the idea of inverse operations, for example, is eclipsed by the memorized rule 

“Change the side, change the sign,” students will not likely see that inverse operations 

can be performed without changing the equality of the equation. 

Conceptual understanding of solving equations may result in part from effective 

implementation of multiple representations. In a study of six pre-algebra classes, 

Brenner et al. (1997) developed an assessment tool to evaluate middle grades pre-algebra 

students’ skills in problem solving. Three of the participating classes were assigned to a 

treatment group and were taught about equations via a problem-based, reformed 

instructional unit that emphasized representation before symbol manipulation and 

solving equations. The other three classes followed the traditional pre-algebra 

curriculum set forth by the textbook used in all the participating classes. They 

determined that the reformed curriculum did not necessarily produce students more 

capable in symbol manipulation and solving equations. However, students who 

participated in the reformed curriculum did exhibit stronger problem representation 

skills, a critical skill for success in algebra.  

Solving equations is not limited to finding a solution. It is important, as Wagner 

and Parker (1993) claim, to encourage students to check their work. Understanding that a 

variable in the original equation can be replaced by the value determined by the solution 
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is a powerful tool and demonstrates knowledge of the nature of variable and the purpose 

of solving equations. Fostering metacognition, students should recognize and correct 

errors and monitor their own work, very important skills in preparing students to be 

more independent learners. 

Modeling equations from verbal representations. Among students’ greatest 

difficulties in pre-algebra is modeling equations from problem situations. Translating 

from verbal relational statements to symbolic equations, or from English to “math,” 

causes students of all ages a great deal of confusion. In a study Rosnick (1981) 

conducted in his college-level statistics class, 40% of sophomore and junior business 

majors were unable to select the meanings of the variables in a direct variation equation 

written from a simple English statement.  

Like the solving of equations, modeling equations can be taught with a 

procedural or conceptual emphasis. Lodholz (1990) observed that writing equations from 

word problems is often a skill taught in contrived situations or in isolation. Mechanical 

word problems that require students to write an expression that represents “5 more than 

3 times a number,” when taught apart from opportunities for application, can cause 

students difficulty when interpreting meaningful sentences later. This gives students a 

procedural method for doing what, by its nature, should be conceptual.  

Children may translate English sentences to mathematical expressions, simply 

moving from left to right. “Three less than a number” is interpreted by many students as 

“3 – x” since the words “less than” (which mean to subtract, they have always been told) 

follow the 3. Teachers must be aware of these misconceptions and address them in 
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instruction (Lodholz, 1990). MacGregor and Stacey (1993) explored this well-

documented hypothesis and their data suggested deeper cognitive reasons for students 

reversing variables or putting terms in the wrong order. The students in their study 

actually did make an attempt to understand the situation being described in a problem, 

but were unable to represent their cognitive model symbolically.  

Even still, writing equations from word problems is a difficult skill for middle 

grades students, whether caused by cognitive misconceptions or literal translation. Their 

inclination to translate directly from English sentences to algebraic expressions may be 

augmented by the procedural method many teachers use when addressing this topic in 

class. It is not uncommon for teachers to encourage students to look for “key words” in 

word problems that signify a particular operation. Wagner and Parker (1993) stated, 

“Though looking for key words can be a useful problem-solving heuristic, it may 

encourage over-reliance on a direct, rather than analytical, mode for translating word 

problems into equations” (p. 128). 

Recent research has demonstrated that teaching lower-achieving students a 

strategy for checking their symbolic representation once generated can be very useful in 

improving student understanding (Pawley, Ayres, Cooper, & Sweller, 2005). The 

checking method used by the students in this study required students to ask themselves, 

after finishing the problem, which quantity was bigger according to the verbal 

representation and then which quantity in their equation would be bigger. Though at first 

this strategy appeared to disadvantage and confuse students, after practice and 

acquisition, low-level students improved their representation skills greatly.  
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Encouraging conceptual understanding of this skill is typically done by fostering 

mathematical communication. Mathematics is a language for communication and a tool 

for new discovery. Like any language, it has grammar rules and syntax structure that can 

be difficult for students to master (Esty, 1992). Students must have skills in reading 

comprehension and reasoning before an algebraic expression or equation can be derived. 

The use of language in classrooms is critical in developing these skills with middle 

grades students. Students benefit from instruction that includes many types of 

mathematical and verbal communication, including writing and solving word problems, 

discussing solution strategies and concepts, and journaling (Esty, 1992; Johanning, 2000; 

Pugalee, 2004). Before students learn to represent algebraic situations symbolically, they 

should have opportunities to discuss them in easily understood, everyday language, thus 

developing their conceptual understanding (Kieran & Chalouh, 1993). 

 

Conclusions 

Mathematics education researchers have made significant strides toward 

understanding the balance of procedural and conceptual knowledge in the classroom, but 

many have come to conflicting conclusions about their relationship and the trajectory in 

which they typically develop. The call for decreased emphasis on procedure in American 

classrooms, however, is clear (Stigler & Hiebert, 1999). Many researchers believe that 

an increased emphasis on conceptual understanding will begin to minimize the gap that 

exists between Western countries and much of the rest of the world. Others continue to 

assert that we must not eliminate procedural teaching from the curriculum. Many agree 
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that both are necessary and integrating the two types of understanding is critical for 

greater student understanding.       



20 

CHAPTER III 
 

METHOD 
 
 

This investigation is part of the Middle School Mathematics Project, a 

collaborative effort between the University of Delaware and Texas A&M University, 

supported by Project 2061 of the American Association for the Advancement of Science 

(AAAS). This is a five-year IERI grant whose purpose is to examine curriculum 

materials, factors affecting student learning, and professional development support for 

teachers in middle grades mathematics. The study design was primarily qualitative. 

 

Participants 

Two seventh grade teachers and their students in targeted classes were examined 

in this study. Data were collected during the 2003-2004 school year. Each participating 

teacher was filmed three times teaching algebra lessons over the course of the year. One 

of the participating teachers is employed in a suburban district. She will hence be 

referred to as Teacher A. The other teacher, Teacher B works with a diverse population 

in a rural district. Both classes were general seventh grade mathematics classes. Neither 

contained exclusively advanced students nor students requiring remediation. Both 

teachers’ curriculum was Glencoe’s Mathematics: Applications and Connections, 

Course 2, though the teachers relied on and employed the textbook to varying degrees.  

Together, Teacher A and Teacher B had 43 students complete the pretest, and 33 

complete the posttest. Of these 33 students, 20 were students of Teacher A and 13 were 
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students of Teacher B. Only students who completed both the pretest and posttest were 

considered in the analysis.  

 

Data Collection 

During September 2003, parallel forms of the algebra test, containing similar 

questions presented in slightly different order were administered to student participants. 

A posttest identical to the pretest was administered to students in May at the end of the 

school year. The test consisted of 15 multiple choice and short answer questions, as well 

as one extended response item. Short and extended response items were scored 

according to a rubric by certified graders.  

In addition to these data, one lesson video from each of the teachers was 

analyzed in depth for its degree of conceptual and procedural emphases. Selected lessons 

targeted learning goals related to representing linear equations and functions. The 

classroom videos selected for this analysis were approximately the same length. The 

taped segment for Teacher A featured 42 minutes and 10 seconds of classroom footage. 

The segment for Teacher B contained 38 minutes and 30 seconds of footage, but sound 

was unavailable for 1 minute and 40 seconds. Only 36 minutes, 50 seconds were 

analyzed for Teacher B.  

The lesson videos were divided into ten-second intervals. The videos of Teachers 

A and B contained 254 and 221 ten-second intervals, respectively. Each interval was 

carefully watched at least twice by the researcher, then coded as C (Conceptual), P 

(Procedural), or N (Neither) for the type of understanding emphasized in the segment. A 
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brief description of the interactions, teacher questions, and student behavior was noted in 

the spreadsheet as well. This included notes of the researcher. 

In order to increase the consistency of the coding scheme, the researcher sought 

specific indicators of conceptual or procedural teaching present during each time 

interval. These indicators were extracted from the rich descriptions of conceptual and 

procedural understanding found in Hiebert & Lefevre’s chapter in Hiebert’s pioneer 

work in the area (1986). The indicators of conceptual teaching and procedural teaching 

can be found in Appendix A. Before applying the analysis tool to the videos of 

participating teachers, it was used to analyze another lesson video. An iterative process 

was used to refine and add detail to the indicators as needed. 

 To ensure reliability of coding results, another graduate student in mathematics 

education was selected by the researcher. With the researcher, this graduate student 

viewed video clips and discussed the coding indicators, as applied to segments of the 

lesson. After an hour of this training, the second student coded three minute segments 

from each video. The percentage of agreement between the researcher and second 

graduate student was 92.1%. After the second graduate student had coded the three 

minute sections, the second graduate student viewed each ten-second interval for which 

the appropriate coding was unclear to the researcher in the original viewing (four total 

intervals). Each interval was discussed and the researcher made the final decision for the 

appropriate coding. 

The two other lessons available for each teacher were also watched by the 

researcher. Instances of instruction related to the research questions and specific test 
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items were noted by the researcher and revisited as needed during the analysis. 

Transcripts of specific interactions and descriptions of teacher behavior that addressed 

research questions and test items were recorded.  

 

Data Analysis  

Responses on multiple choice items selected by students of each teacher were 

compiled and entered into a spreadsheet. Scores for each student provided by scorers on 

the free response and extended response items were also entered into the spreadsheet. A 

total score on all items was calculated for each student for the pretest and posttest. Two 

t-tests were calculated (α = .05) to examine the differences in the performance of the 

classes on the pretest and on the posttest. 

Selected items from the test were grouped according to the student competency 

they assessed and the research question they addressed. Each item selected for this study 

can be found in Appendix B. The first research question required an assessment of 

students’ ability to solve equations and Items 1 and 15 were selected to address this 

question. The second research question addressed students’ ability to model equations 

from a verbal representation. Items 2, 3, and 8 were chosen by the researcher to address 

this student ability. The third research question addressed students’ ability to analyze 

relationships within a table. To assess this student ability, items 5, 7, 11, and 16B were 

analyzed. The final research question required an assessment of students’ ability to apply 

algebraic concepts. To do this, items 4, 9, and 16C were selected. 
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Each item and its answer choices were analyzed for content and potential 

misconceptions. Student responses were also analyzed, including correct responses and 

incorrect answers given by many students. In the case that an incorrect answer choice 

was selected by many students, teaching methods contributing to student misconceptions 

were sought from the analyzed videos.  

The degree to which conceptual knowledge or procedural knowledge was needed 

to answer given items was noted. The type of understanding needed to answer an item 

correctly was related to student responses and teachers’ emphasis in delivery of 

instruction. Conceptual and procedural teaching approaches contributing to student 

success or misconceptions on particular items were explored and described. 

Results of this study were connected to past findings on the importance of 

conceptual understanding in enhancing students’ procedural knowledge of verbal and 

symbolic algebraic expressions. In light of the current importance of using multiple 

representations to convey algebraic ideas, this research supported the importance of 

those ideas and revealed the types of questions students whose teachers emphasize 

different aspects of understanding are better able to answer. 
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CHAPTER IV 
 

RESULTS 
 

 
The balance between conceptual and procedural emphasis in classroom lessons is 

central to each of the four research questions of this study. The first section of this 

chapter addresses the results of the video analysis that were used to examine conceptual 

and procedural emphases in the participating classrooms. A section describing the 

overall student achievement of the participating classes follows. The final section 

containing the analyses of the test items and student responses is divided into four sub-

sections, each addressing one of the four research questions, which follow: 

 1. How does the degree to which a teacher emphasizes conceptual understanding 

of solving equations and the amount of emphasis placed on procedural knowledge 

correspond with students’ ability to solve algebraic equations? 

2. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

ability to model equations from verbal problem representations? 

3. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

ability to recognize algebraic relationships in tabular representations? 

4. How does the degree to which a teacher emphasizes conceptual understanding 

and the amount of emphasis placed on procedural knowledge correspond with students’ 

demonstration of conceptual understanding and flexibility in problems requiring an 

application of algebraic concepts? 
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Video Analysis  

Teacher A. In the lesson selected for Teacher A, students explored the 

differences between two cellular phone plans. One included a free phone and slightly 

higher monthly rate, while the other charged the customer for a phone but the monthly 

rate was lower. The lesson observed was the second day that the students had been 

interacting with this problem. On the first day, students had worked in groups to make 

graphs of the total cost of each plan and the number of months that had passed. 

Throughout the lesson observed, the teacher and students made reference to the hand-

drawn graphs. During this lesson, students wrote equations for their lines, used graphing 

calculators to compare the linear graphs, used a table of values generated by hand, and 

then used a table made by the calculators to make decisions about the best plan for 

different needs.  

Teacher A asked questions that required students to reason flexibly and 

encouraged conceptual understanding. In one series of questions, she asked the 

following: a) At three months, which plan is better? b) At nine months, which plan is 

better? c) Is there a time when both plans cost the same amount? d) If you have $300 set 

aside to pay for your phone, when will you run out of money on plan 1? e) When would 

you run out of money on plan 2? f) How much would using the phone for two years 

cost? By asking a variety of questions, students must interpret the graph or table, 

recognize when the independent variable is given and dependent is unknown, and 

identify the value for the dependent variable when the independent variable is given.  
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Teacher A’s support of conceptual understanding was not limited to her 

questioning techniques. She constantly encouraged students to make connections 

between graphs, tables, and equations. Connections between different representations 

and connections to prior knowledge are one of the most prominent characteristics of 

conceptual understanding. Teacher A never executed a procedure without explaining (or 

asking a student to explain) why the technique was mathematically necessary and valid. 

She also consistently connected the calculator activity to the work the students had done 

by hand the day before. 

Of the 254 ten-second intervals in Teacher A’s lesson video, 72.7% were 

conceptual, 14.2% were procedural, and 13.0% were classified as promoting neither type 

of understanding. See Table 1 for a summary of these results and a comparison with 

Teacher B. 

The other two algebra lessons for Teacher A were also watched by the 

researcher. The continuity in the lessons was notable. Each of the three lessons included 

students creating a table of values that represented something they had experienced or 

measured, working as a group to represent their table with a graph and an equation, 

presenting their work to the class, and reinforcing their work at the end by using 

graphing calculators. In each lesson, the concepts of proportional and non-proportional 

relationships, unit rate (rate of change), and connections between each representation 

were emphasized. 

Teacher B. The lesson selected for Teacher B included two distinct topics. 

Students were studying roller coasters and amusement parks. Students spent the first 
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twenty minutes of class creating a graph that represented the total number of passengers 

that could ride on a particular roller coaster after a given number of hours if, each hour, 

760 passengers can ride. The teacher led the class in creating the graph. This lesson was 

chosen for analysis because of this portion’s alignment to the content presented by 

Teacher A. In the second half of the lesson, students interpreted a table that gave track 

lengths of different coasters and time needed for the coaster to travel the track. Students 

created a bar graph of average speeds after calculating a speed in feet per second for 

each coaster. Though the second half of the lesson was less focused on explicit algebra 

topics, there were still many opportunities to promote algebraic reasoning. 

The lesson presented by Teacher B had potential to be very conceptual, but her 

delivery was only minimally conceptual. Questions asked by Teacher B were often 

sufficiently answered with a simple “yes” or “no,” and often the correct answer could be 

determined by her tone of voice or a statement that led up to the question. During the 

part of the lesson in which students wrote and graphed an equation to represent the 

passengers on the roller coaster, the teacher told the students what the appropriate 

equation was, without reference to the concept of unit rate or what the variables x and y 

represented. Teacher B then led the students through the creation of a table of values, 

telling students what operations to do as they filled their tables. Student input here was 

limited to calculations called for by the teacher.   

After creating the table, many opportunities for analysis presented themselves. 

The teacher explained how to read the completed table, that after one hour, 760 people 

could ride, after two hours, 1520 people could ride, and so on. She did ask students how 
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many people can ride in five hours and then in ten hours, but she never asked students 

for the number of hours needed to accommodate a particular number of riders. In other 

words, all of her questions asked for the value of the dependent variable when given an 

independent value and never the other way. This bears contrast to the type of reasoning 

required to answer the questions of Teacher A, who gave known values for independent 

and dependent values. 

The rest of the lesson was very procedurally focused. Students were frequently 

distracted by where to write answers on their worksheets. The teacher gave explicit 

directions for how to label their graphs and later what numbers and operations to enter 

into the calculators. In one particular segment that caused significant student confusion, 

students were filling out a table that included track length (in feet), time of ride (in 

minutes and seconds), and a blank column for speed (in feet per second). The teacher 

instructed students to begin by calculating the total number of seconds needed for each 

ride. Because there was no specified place for this in the table, students became very 

confused, making comments like, “I thought we were supposed to find speed,” and “I 

don’t know where to write this.” This confusion stemmed from a lack of understanding 

of the reason for calculating the total number of seconds needed for each ride. Although 

the teacher did briefly mention it at the beginning of the exercise, it was clear that most 

students did not understand why they needed this information. This may have been 

assuaged by finding total seconds and speed for each ride, one at a time, instead of 

finding total seconds for each ride and then calculating speed as a separate step. The lack 

of connection between the step of finding total seconds and the following step of 
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calculating speed indicated a lack of conceptual understanding and an emphasis on 

procedural knowledge. 

The majority of instruction delivered by Teacher B was procedural. Of the 221 

ten-second intervals in Teacher B’s lesson video, 18.6% were conceptual, 60.6% were 

procedural, and 20.8% were classified as promoting neither type of understanding. Table 

1 presents a comparison between the two teachers.  

The other two algebra lesson videos were also watched for Teacher B. These 

lessons were significantly more discrete than those of Teacher A. The first of the algebra 

lessons focused on translating verbal expressions to symbolic expressions and equations. 

This skill was the only skill addressed in the entire lesson, without reference to any other 

algebra concepts. Instruction on this topic was limited to very procedural translation 

based on rules and “key words,” without any contextualized examples. In the second of 

the algebra lessons, after an example by the teacher, students worked independently to 

create scatterplots of tables of values they had been given. The plots did not create linear 

relationships, but students were to note the trend of the data. The scatterplots resulted 

from the execution of a series of steps that included labeling the graph, writing ordered 

pairs from the table, and plotting them on the graph. Again, in this lesson, there were no 

explicit references to other algebra topics, with an emphasis on procedure. 
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Table 1 
 
Results of Video Analysis 

 
 

Teacher A  Teacher B 

 
 

Intervals Percent of total  Intervals Percent of total 
 

Conceptual (C) 184 72.7% 41 18.6% 
 

Procedural (P) 36 14.2% 134 60.6% 
 

Neither (N) 33 13.0% 46 20.8% 
 

 

Student Achievement 

On the whole algebra test, students of Teacher A had an average score of 7.75 on 

the pretest and 9.40 on the posttest. Students of Teacher B had an average score of 6.46 

on the pretest and a score of 5.31 on the posttest. A t-test (α = .05) was used to determine 

that the difference in the pretest means for the two teachers was not statistically 

significant (significance level .360), but that the difference in the posttest means was 

statistically significant (significance level .002). 

 

Item Analysis 

Items, student responses, and teaching behaviors addressing each research 

question were studied. The student competency central to the first research question is 

the ability to solve linear equations. The second research question addresses students’ 

ability to model equations and expressions from verbal problem representations. The 

focus of the third research question is students’ ability to assess algebraic relationships 
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among quantities in tables. To answer the final question, students’ ability to apply 

algebra concepts and to employ flexible algebraic reasoning were examined.  

Solving equations.  To address the first research question, Items 1 and 15 were 

examined to study students’ ability to solve linear equations (See Appendix B for test 

items). Student responses to these items may be found in Tables 2 and 3.  

The first item on the test was the most basic and perhaps the most procedural in 

its nature. Students were given the equation 43 = □ – 28 and asked to select the value of 

the box. This is the only item on the entire test on which Teacher B’s students 

outperformed those of Teacher A. As displayed in Table 2, among the students in 

Teacher B’s class, 11 (84.6%) chose correct answer choice, D) 71.  Of Teacher A’s 

students, 11 (55%) answered this item correctly. Only 2 of Teacher B’s students 

answered this item incorrectly, selecting the distracter answer A) 15. Seven of Teacher 

A’s students selected A as well. Answer choice A was likely selected by many of the 

students because they performed the operation 43 – 28, seeing these two numbers and 

the subtraction operation. These students may have been careless or they may have an 

incomplete understanding of inverse operations or equality. Answer choice C) 61 was 

also selected by two of Teacher A’s students, who may have found that answer as a 

result of an addition error (most likely, not regrouping). 
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Table 2 

Student Responses for Item 1 
 

Response 
 

Teacher A Teacher B 
 

A 
 

35% 15.4% 
 

B 
 

0% 0% 
 

C 
 

10% 0% 
 

D 
 

55%* 84.6%* 
* Students giving the correct answer 

 

In none of the available video footage did Teacher A solve a problem like this in 

class, so little is known about student instruction in solving a one-step linear equation 

like the one presented in item 1. In one small aside during her lesson on writing 

equations from verbal representations, Teacher B solved an equation much like this one. 

She mentioned it in review, quickly solving one of the equations they had written. 

Students seemed acquainted with the idea of performing the “opposite” operation. 

Though execution of the solution to the problem in the lesson video was very procedural, 

most of her students mastered the steps to executing the procedure and were able to 

answer this question correctly. 

Item 15 required students to provide their own answers and show their method of 

finding their answer. They were asked to find the value(s) of x that made the equation 19 

= 3 + 4x true. Student results can be found in Table 3. The two-step equation in this item 

was clearly difficult for the seventh-grade participants in this study. A brief description 

of the scoring rubric for this item and scores earned by students can be found in Table 3. 
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Students of Teacher A outperformed those of Teacher B on this item. Among Teacher 

A’s students, 45% (9 students) gave an answer that was completely correct, including 

demonstrating a clear and mathematically sound method for selecting the value they 

chose. Among Teacher B’s students, 15.4% (2 students) successfully did this. 

 

Table 3 

Student Scores for Item 15 
 

Score and method  
 

Teacher A 
 

Teacher B 
 

2 – Traditional use of 
 

inverse operations  
 

0% 
 

0% 
 

2 – Use of guess and check  10% 7.7% 
 

2 – Use of running equation or 
 

other valid method  35% 7.7% 
 

1 – Correct answer without 
 

explanation or minor errors 
 

leading to incorrect conclusion  15% 23.1% 
 

0 – Incorrect answer or 
 

explanation or no response  40% 61.5% 
 

 

As indicated above, almost half of Teacher A’s students answered this item 

correctly and supported their answers, receiving a score of 2. However, none of these 

students solved the equation using the traditional series of steps to isolate the variable. 

All nine students either employed a guess and check method or some kind of running 
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series of operations to solve the two-step equation. This demonstrates that these students 

had a flexible conceptual understanding of the function of the variable and could use 

their own methods for figuring its value. They were not dependent on an algorithm, and 

therefore could solve problems that they may not have “known how” to do. This 

corresponds with their teacher’s consistently conceptual teaching (see the description of 

Teacher A’s lessons in the section above) and her avoidance of strictly procedural 

teaching. Understanding concepts and not relying on memorized procedures enabled 

these students to flexibly apply their understanding in an unfamiliar situation and arrive 

at a valid solution. 

Modeling equations. Items 2, 3, and 8 were examined to assess students’ ability 

to derive an algebraic equation or expression from a short verbal description of a 

numerical relationship in order to answer the second research question (see Appendix 

B). Table 4 displays student responses on items 2 and 3. Table 5 contains scores received 

by students on item 8. 

Item 2 from the test required students to write an algebraic equation representing 

the situation, “Julie has 3 times as many trading cards as Mary. They have 36 trading 

cards in all.” Student responses to this item are displayed in Table 4. Of Teacher A’s 

students, 10 (50%) chose answer choice C) x + 3x = 36, the correct response. The 

correct answer was selected by 5 (38.5%) of Teacher B’s students. The most popular 

incorrect answer choice was A, selected by 10 of Teacher A’s students and 7 of Teacher 

B’s students. Selection of choice A indicates a reliance on a more procedural translation 

from verbal to symbolic representations. Students likely saw the phrase “3 times” in the 
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problem and thought to translate that as 3x. The “36 trading cards in all” indicated to 

students that they should finish their algebra sentence 3x = 36. Many students from both 

teachers made this mistake.  

Item 3 was similar to Item 2, asking students to select an expression that could be 

used to represent the number of rows, if there were n girls all together and each row had 

6 girls. The correct answer choice was D) 
6
n . As detailed in Table 4, of Teacher A’s 

students, 55% chose the correct answer. Of Teacher B’s students, 15.4% selected the 

correct choice. The most popular distracter answer choice in this item was choice C) 6n, 

selected by 7 (35%) of Teacher A’s students and 8 (61.5%) of Teacher B’s students.  

 

Table 4 
 
Student Responses for Items 2 and 3 

  
 

Item 2  Item 3 
 

Response  Teacher A Teacher B  Teacher A Teacher B 
 

A  50% 53.8%  0% 0% 
 

B  0% 0%  5% 23.1% 
 

C  50%* 38.5%*  35% 61.5% 
 

D  0% 7.7%  55%* 15.4%* 
* Students giving correct response 

 

One of the additional videos watched for Teacher B was a lesson in translating 

verbal representations to symbolic algebra. Her instruction on this was entirely 

procedural. She began by leading the class in a creation of a list of key words that 
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indicated different operations. She instructed students to translate word for word from 

the text to the algebraic equation, remembering to “flip it” when using less than or more 

than. The reasons for any of this were never discussed and no contextualized examples 

were given to support the concept. When creating their list of key words, the word each 

was listed under both division and multiplication. This may contribute to Teacher B’s 

students’ confusion on this item. The word each does appear in the question for item 3. 

Many of her students chose multiplication as the necessary operation, when the situation 

actually called for the division of the total n by 6, the number of girls in each row. 

The final item on the test that required students to represent a verbal statement 

with algebraic symbols and variables was item 8.  Item 8 was a free response question 

asking students to generate an equation that represented the statement, “Tachi is exactly 

one year older than Bill” if T represented Tachi’s age and B, Bill’s age. Student scores 

on this item can be found in Table 5. Again, on this item, Teacher A’s students (45% 

correct) performed significantly better than those of Teacher B (15.4% correct). An 

additional 30% of Teacher A’s students transposed their variables, while none of 

Teacher B’s students committed this error. Eleven of Teacher B’s 13 students left this 

item blank or gave another answer.  
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Table 5 
 
Student Scores for Item 8 

 
Score and indicator  Teacher A Teacher B 

 
1 – Student gave T = B + 1 or an 

 
equivalent equation  45% 15.4% 

 
0 – Student transposed T and B  30% 0% 

 
0 – Student gave any other response or 

 
no response  25% 84.6% 

 

 

It is surprising so few students answered this correctly. Meaningful conceptual 

knowledge may not be necessary to answer this question. A procedural approach would 

yield a correct answer. Translating this statement one word at a time would result in, 

“Tachi (T) is (=) exactly one (1) year older than (+) Bill (B)” or the algebraic sentence T 

= 1 + B. Given the description of Teacher B’s instruction on this topic, even if students 

did not remember her rule about “flipping” the order of the terms being added or 

subtracted (because addition is commutative), students should have been able to solve 

this problem easily. Yet almost all of Teacher B’s students answered this completely 

incorrectly. This demonstrates that her lesson on this was not internalized by students. 

Examples of these skills being explicitly taught were evident in Teacher B’s 

lesson videos, but none of Teacher A’s videos included instruction in the translation 

from English sentences to algebraic representations. The primary focus of Teacher A’s 

lesson was mathematical communication. Students read understandable, familiar 
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problem situations, spoke with their group members about representing the ideas, 

interacted with their teacher, presented to the class, and wrote about the relationships 

between quantities. Topics such as translating verbal representations to symbolic algebra 

were not addressed as stand-alone topics, but were presented as a means to generating an 

equation, which was used to make a table and graph, which were used to answer 

meaningful questions.  

Student analysis of tables. Items 5, 7, 11, and 16B required students to identify 

patterns in a given table of values, describe algebraic rules or patterns, or fill in missing 

values (see Appendix B). The ability to see relationships between values in tables is 

central to the third research question. 

In item 5, students were given a complete table and required to select a rule that 

could be used to derive values in column B from the values given in column A. Table 6 

contains a summary of student responses. The correct answer choice D) Divide the 

number in column A by 4 was selected by the majority of the participants in the study, 

including 85% of Teacher A’s students (17 students) and 53.8% of Teacher B’s students 

(7 students). All 3 of Teacher A’s students who answered incorrectly chose C) Multiply 

the number in column A by 4. Teacher B’s students who answered incorrectly were 

divided among all three incorrect answer choices.  

Item 7 also required students to assess relationships between values in a table, 

but instead of the relationship between x and y values, they were asked about the way 

that the x and y values changed. With the responses to item 5, responses given by 

students on item 7 can be found in Table 6. The correct answer choice C) The y values 
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increase by 2 and the x values increase by 1 was selected by 80% of Teacher A’s 

students and 69% of Teacher B’s students.  

 

Table 6 
 
Student Responses for Items 5 and 7 

  
 

Item 5  Item 7 
 

Response  Teacher A Teacher B  Teacher A Teacher B** 
 

A  0% 7.7%  0% 7.7% 
 

B  0% 15.4%  20% 0% 
 

C  15% 23.1%  80%* 69%* 
 

D  85%* 53.8%*  0% 15.4% 
* Students giving correct response 
** One student did not respond 

 

Item 11 was a free response question that asked students to fill in a missing 

element in a table of values. Table 7 displays student scores on this item. From Teacher 

A’s students, 12 students (60%) chose the correct answer, 48. Of Teacher B’s students, 4 

students (30.8%) gave the correct value. The relationship between columns A and B was 

quite difficult to determine, though A values increased by 4, then 8, then 12 and so on, 

while B values increased by 2, 4, 6 and so on. Students who answered this item correctly 

most likely used the pattern of the values in column A to fill the missing cell.  
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Table 7 

Student Scores for Item 11 
 

Score and indicator  Teacher A Teacher B 
 

1 – Student answered 48  60% 30.8% 
 

0 – Student did not answer 48  40% 69.2% 
 

 

The last question that required students to analyze a table was 16B, a part of an 

extended problem situation with multiple questions. Students were presented with a 

diagram showing several arrangements of pine trees surrounding a square arrangement 

of apple trees. The examples in the diagram showed arrangements with one, two, three, 

and four rows of apple trees. The table students were given in 16B included a column 

that represented the number of rows of apple trees (n), a column representing the number 

of apple trees, and one containing the number of pine trees. The table only included 

values up to n = 5. The first row (n = 1) was filled in for students, as was the number of 

apple trees in the next row (n = 2). The rest of the table was blank for the student to fill. 

Student scores on this item can be found in Table 8. Eleven of Teacher A’s students 

(55%) filled in the table completely correctly, while an additional 3 students filled it 

mostly correctly, making only one error. Only four of Teacher B’s students (30.8%) 

generated all the values correctly, while none of her students gave only one incorrect 

entry.   
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Table 8 

Student Scores for Item 16B 
 

 

 
Score and indicator  Teacher A Teacher B 

 
2 – All entries in tables are correct  55% 30.8% 

 
1 – One incorrect entry in table  15% 0% 

 
0 – Multiple mistakes or blank tables  30% 69.2% 

 

This item could be answered by students in several ways. Of the cells to be filled 

in by students, only two of the values (the number of apple trees and pine trees in the 

row n = 5) could not be obtained by counting the example diagrams on the first page of 

the extended response item. Drawing an arrangement of five rows and counting the 

apple and pine trees would yield the two missing values. After beginning the table, they 

may also notice one of several patterns in the numbers and be able to continue the 

patterns without continuing to count trees in the diagram. Regardless of the method 

employed, students of Teacher A were better equipped to address this and all the other 

questions requiring recognition of patterns in tables than the students of Teacher B. This 

is likely due to the flexibility Teacher A encouraged by asking a variety of types of 

questions and pointing out many different relationships between numbers in the tables 

she presented in class. Teacher B did not do this in her class. 

Teacher A connected the relationship between values in a table very explicitly 

and several times in her lesson videos. At the beginning of the analyzed video, Teacher 

A began by leading a class discussion in the comparison of two tables, one that 
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demonstrated a constant unit rate and a second in which a constant value was added to 

the independent values to obtain the dependent values. Students pointed out that, in the 

first table, each y value was obtained by multiplying the x value by 7. Their teacher then 

asked them what they could multiply by x in the second table to get the y values. 

Students recognized that multiplication would not yield the values in the second table, 

and that another operation, in this case, addition, was needed. Comparing the two tables 

brought the type of question presented by item 5 to an even higher level of analysis. 

Each time the class made a table in Teacher A’s lessons, the class always returned to talk 

about the relationships within the table, including the rule that connected x and y values, 

as well as the changes in the x and y values. 

In the first section of the analyzed lesson, Teacher B also created a table of 

values with her students. She gave students x values and told them what operations to do 

in order to obtain the y value. After the table was completed, Teacher B did not return to 

the table and emphasize that for each x value, the same rule was used to obtain the y 

value. She simply went on to plot the points and create the graph without emphasizing 

the consistency in her table. She did not note the consistency of the changes in the x or y 

values in the table either. Her failure to make conceptual connections and her focus on 

the procedure of creating a graph may have contributed to her students’ performance on 

the items requiring students to analyze tables. 
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Applying algebraic reasoning. To answer the fourth research question and assess 

students’ ability to apply their understanding of algebra concepts, including equality and 

variable, items 4, 9, and 16C were examined (see Appendix B).  

Item 4 on the test presented a conceptual question in which students had to 

interpret an algebraic rule, rather than perform a calculation. Student responses on this 

item are summarized in Table 9. Fifteen of Teacher A’s students (75%) answered the 

question correctly, while 7 of Teacher B’s students (53.8%) chose the correct answer. 

Teacher A’s students who answered the item incorrectly were divided among the other 

three answer choices, but 4 of Teacher B’s students (30.7% of the whole class) who 

answered incorrectly chose answer choice C) The sum of two whole numbers is a whole 

number. 

 

Table 9 
 
Student Responses for Item 4 

 
Response 

 
Teacher A** Teacher B 

 
A 

 
10% 7.7% 

 
B 

 
75%* 53.8%* 

 
C 

 
5% 30.8% 

 
D 

 
5% 7.7% 

* Students giving the correct answer 
** One student did not respond 

 

To answer this item correctly, students must recognize that variables a and b can 

represent any numbers. They also must see the equals sign as a balance, a symbol that 
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does not connote action but states a relationship of quantitative sameness. Neither 

teacher directly addressed this topic in the lessons that were available; however, the 

treatment of key words in Teacher B’s lesson on translating verbal to symbolic 

expressions may have contributed to many of her students selecting an incorrect choice 

in this item. In her lesson, she told the class that one of the key words indicating addition 

was sum. Seeing addition in the rule, it is possible that students automatically chose the 

answer choice that contained the word sum. 

Item 9 presented students with the equation a = b – 2, and the pair of values a = 3 

and b = 5 that satisfied it. Students were asked to find a different pair of values that 

satisfied the equation. This question presented difficulty for many students; only 45% of 

Teacher A’s students and 15.4% of Teacher B’s students were able to provide a pair that 

satisfied the equation. Many of the same skills needed to solve Item 4 were also needed 

for this item, though this item was more difficult for students, perhaps because students 

had to generate a response. 

As indicated by their performance on Item 9 and Item 4, members of Teacher A’s 

class appear to have a better understanding of variables as placeholders and equality than 

those of Teacher B, though many of her students do still lack a complete understanding. 

Teacher A consistently stressed relationships between quantities in her lessons. She 

demonstrated that, if you understand the relationship between two quantities, the value 

for the independent variable can be determined if the dependent is known and the value 

for the dependent variable can be determined if the independent variable is known. 

Teacher A used this vocabulary with her students and they were clearly comfortable 
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determining which quantity could be manipulated and which quantity was dependent on 

the other. 

 In only one brief mention of the relationships between quantities in Teacher B’s 

lesson, she asked students to calculate values for the dependent variable, given several 

independent variables. She did not use the terms “independent” or “dependent” variables 

when asking students to perform these calculations. Again, her treatment of the topic 

was markedly procedural. The treatment of equality and relationships in equations by the 

two teachers may have contributed to their respective students’ performance on Items 4 

and 9. 

The final item that was examined to assess students’ levels of algebraic reasoning 

was 16C, the third part of the extended response item. Generally, student performance 

on this item was among the lowest on the entire test. Students were asked to find the 

value of n for which n · n is equal to 8n and explain how they found their answer. 

Solving the equation 8n = n2 is an advanced task for seventh graders, and probably 

unlike equations they have solved in class. None of the 33 students in the study solved 

the equation by algebraic methods, or even by guessing and checking possible values for 

n. Two students from Teacher A’s class found the correct answer by continuing the 

table. Two additional students from Teacher A’s class gave correct answers and fuzzy or 

incomplete explanations or gave slightly incorrect answers with a correct explanation. 

Two students from Teacher A’s class also gave a correct response with an incorrect 

explanation. Altogether, 6 students from Teacher A’s class displayed some degree of 

understanding of this problem (30%). Among Teacher B’s students, no one gave correct 
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answers and correct or even incomplete explanations. One student did give a correct 

answer with no explanation and another gave a correct answer with an incorrect 

explanation. Two students from her class (15.4%) demonstrated some understanding of 

the question. 

Being able to apply existing knowledge in new situations is a benefit of 

developing conceptual understanding. Procedural knowledge is limited to executing 

solution steps in situations resembling those in which the procedure was learned. The 

relative success of Teacher A’s students on this item may be attributed to her more 

conceptual approach. Her students were confident enough to understand the problem and 

use their own methods to arrive at a solution, even in an unfamiliar situation.   
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CHAPTER V 
 

DISCUSSION AND CONCLUSIONS 
 

  
This chapter will elaborate on the results outlined in the last chapter, noting 

findings that support or seem to contradict existing research. Also, support for answers 

to each research question will be noted. 

 

Video Analysis 

 The results of the video analysis presented a stark contrast between the two 

teachers’ approaches. Teacher A focused on making conceptual connections, with 

almost three-quarters of her class time spent in enhancing conceptual understanding. 

Teacher B was largely focused on ensuring that her students carried out the procedures 

in the day’s lesson, with the majority of her class time spent encouraging procedural 

understanding. This contrast was noticeable in watching the videos, but made more 

evident through the results of coding of the ten-second time intervals. 

Teacher A. The conceptual emphasis of Teacher A was consistent with the 

recommendations of the TIMSS study. Although Teacher A’s lesson was more teacher-

directed than the lessons of Japanese teachers described in the TIMSS study (Stigler & 

Hiebert, 1999), her lesson did encourage students to use their own procedures for solving 

problems. Her lessons each contained an extended exploration of a problem presented in 

a familiar context, which made them more student-centered than lessons containing 

more abstract problems or “real-life” problems to which the students could not relate.   
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The most glaring element of her lessons was connections. Statements made and 

questions asked by Teacher A were laden with connections. She made explicit 

connections between solution and graphing methods (by hand and aided by technology), 

between different representations of the same problem, between prior learning and the 

current lessons, and even between different students’ solutions. She also encouraged the 

students to make connections themselves, as well. Students were required to contrast 

different problem situations and make decisions. In this way, her lesson exemplified the 

description of conceptual teaching outlined by Hiebert (1986). 

Teacher A also carried out the recommendations of many reformers and 

researchers by giving her students multiple opportunities during each class to engage in 

meaningful mathematical communication (Esty, 1992; Johanning, 2000; Pugalee, 2004). 

Students in Teacher A’s class worked in groups, presenting to the class, interacted with 

the teacher, and wrote to answer questions requiring them to explain their reasoning. 

Teacher A solicited input from many students and always asked students to justify their 

thinking. The discourse in her classroom was not as student-centered as the discourse 

described by Sherin (2002), but her use of multiple students’ input and student 

discussion created a classroom that, in some ways, resembled the discourse community 

described and advocated by this author. This likely contributed to student success on 

many of the items on the posttest. 

Teacher B. Teacher B’s manner of instruction was primarily procedural. The 

mathematical content of her lessons was not rich in explanations, but rather focused 

primarily on step-by-step methods of finding the answer to each problem encountered. 
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Connections between topics, concepts, and procedures were not emphasized often in her 

lessons. Procedures and topics were treated as stand-alone skills to be mastered, aligning 

the focus of her teaching with given definitions and indicators of procedural teaching 

(Ashlock, 2001; Hiebert, 1986). 

Overall, the students of Teacher B did not perform as well as those of Teacher A 

after a year of instruction from their respective teachers. Some of the research mentioned 

in Chapter II supported varying degrees of procedural teaching (Jitendra et al., 2002; 

Leung & Park, 2002; Star, 2002). None of these researchers, however found that strictly 

procedural teaching without connections made to concepts resulted in improved student 

performance. Leung and Park (2002), whose study provided the greatest support for 

procedural teaching asserted the importance of practicing procedures as a vehicle to 

establish an understanding of concepts and also advocated the importance of teaching 

procedures in a curriculum sequenced to help students learn procedures as they learn 

concepts. These elements of more effective procedural teaching were missing in Teacher 

B’s lessons. Her lessons consisted of procedural teaching, not completely devoid of 

concepts, but largely leaving conceptual connections unaddressed. 

Teacher B also spent a significantly larger part of her lesson engaged in topics 

that were neither procedural nor conceptual than Teacher A. Many of the intervals 

designated as promoting neither type of understanding for her students were series of 

administrative directions. As mentioned in Chapter IV, her students were distracted by 

details involved in directions and she spent quite a bit of time telling students where to 

find the assignment in their textbooks, what they should find on given pages, where to 
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write information, and how to label their assignments. Her 46 ten-second intervals add 

up to almost 8 minutes in a 40 minute lesson spent giving directions. Her directions did 

not include any kind of academic transition; she never mentioned a connection between 

the activity completed and the upcoming activity. Over the course of a school year, 

spending much time addressing directions and administrative tasks could add up to a 

significant loss of student instructional time and may have contributed to the poor 

performance of her students. 

The use of classroom instruction time is important. Large amounts of time spent 

in addressing discipline issues or administrative tasks take time away from meaningful 

instruction. A study conducted in Kentucky revealed that in schools with large 

achievement gaps between student populations, teachers spent more time addressing 

administrative tasks (Meehan, Cowley, Schumacher, Hauser, & Croom, 2003). Though 

the achievement gap between subpopulations was not measured in the present study, 

Teacher A’s students outperformed those of Teacher B, who spent much more time in 

non-mathematical dialogues.  

  

Student Achievement 

As noted in the previous chapter, the two classes in the study began the year by 

performing roughly equally well on the pretest of the algebra test. The mean score of 

Teacher A’s students increased 1.65 points, while the mean score of students in Teacher 

B’s class actually decreased 1.15 points from the pretest to the posttest. The cause of the 

great difference between these two groups of students would be difficult to determine, 
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but the difference in teaching styles of Teachers A and B undoubtedly contributed to the 

relative success of Teacher A’s students.   

   

Item Analysis 

Solving equations. On the first item of the test, Teacher B’s students 

outperformed Teacher A’s class. With the box instead of a variable, this item may have 

been easier than the others on the test, because it resembles problems students may have 

encountered in elementary school. This item was easily solved by a procedural approach.  

Almost all of Teacher B’s students executed the proper procedure for finding the value 

of the box. Her procedural approach seems to have been internalized by students and 

they may even have corresponding conceptual understanding. Symbol manipulation is 

all that is required to solve this item. 

However, when her students came to the unfamiliar problem presented in item 

15, very few of her students were able to solve the equation. Though solving two-step 

equations is typically introduced in seventh grade curricula, including the textbook used 

by the two classes in this study, none of these students used the traditional series of steps 

typically employed to solve this equation. Teacher B’s students were well-equipped with 

the procedure to solve the one-step equation, but were unsuccessful with a more difficult 

problem utilizing the same reasoning. Her procedural approach did not encourage 

viewing a problem holistically. Also in her lessons, students were never presented with a 

problem that they had not, immediately before, been taught how to solve. Thus, when 
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students encountered this problem they did not know how to solve, most of her students 

were unable to use their own approach to figure it out.  

The order of Teacher B’s lessons reflected the traditional viewpoint discussed by 

Nathan and Koedinger (2000). Teacher B’s style of teaching indicated a belief that 

students need to receive instruction in a particular skill before encountering problems 

that require them to employ that skill. Had students been presented with non-routine 

problems, as suggested by the NCTM (2000), or encountered problems in which they 

had not received explicit instruction, her students may have been more comfortable 

using another method to solve some of the problems on this test that were unfamiliar. 

Teacher A’s instruction seemed to be more empowering. On item 15, almost half 

of her students were able to employ mathematically sound methods and obtain a correct 

value for x. Her problem-based instruction may have resembled the reformed curriculum 

implemented in the school described by Boaler (1998). The students who participated in 

the problem-based curriculum were more flexible in their reasoning abilities and in their 

ability to apply their knowledge in new situations. Similarly, many of Teacher A’s 

students appeared to exhibit this kind of flexibility. 

Modeling equations. The relative success of Teacher A’s students on this group 

of items reflected much of what is suggested by the literature. As mentioned above, 

Teacher A encouraged different kinds of mathematical communication in her classroom. 

Her students expressed consistent numerical relationships and generalizations in words, 

before or after representing the generalization with variables and other symbols, as 

suggested by Schoenfeld and Arcavi (1988). Kieran and Chalouh (1993) also advocated 
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giving students the opportunity to express algebraic situations in easily understood 

language, as a means to developing conceptual understanding of a problem, before 

representing them symbolically.  

The procedural approach to translating verbal representations to symbolic 

representations presented by Teacher B did not help her students succeed on the items 

that required students to apply this skill. Though taught this skill directly and explicitly, 

very few of her students were able to answer the items studied in this section. A skill 

taught in isolation, it is doubtful that students even recognized these questions as being 

connected to their lesson on translating expressions. Lodholz (1990) recognized the 

potential for student difficulty in encountering future need to apply this skill, when 

taught this skill in contrived situations. 

Her students’ failure to answer item 8 correctly, even when a procedural, word-

for-word translation would have produced a correct answer mirrors a discovery made by 

MacGregor and Stacey (1993). They noted that, “In test items designed so that syntactic 

translation would produce a correct equation, most students did not translate words to 

symbols sequentially from left to right, but tried to express the meaning and wrote 

incorrect equations” (p. 217). Teacher B’s lesson on modeling equations from problem 

situations, though not internalized or applied by her students, may not have been the 

source of the difficulties her students had with these items. Her students may have 

lacked the cognitive structures necessary for the level of abstraction required by this 

skill, as suggested by MacGregor and Stacey. Pawley et al. (2005) found that gradually 

increased exposure to problems requiring this skill, along with implementation of a 
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strategy to check the equation once written, can increase low-level students’ ability to do 

this successfully. Had Teacher B repeatedly exposed her students to similar problems 

with decreased support for solving them, and taught her students a method of reflecting 

on the equation after writing it, her students may have been more successful with these 

items.  

Student analysis of tables. In order to be successful on some of these items, 

students needed to be able to see relationships between numbers. On others, simply 

being able to detect and continue a pattern was sufficient. The relative success of 

Teacher A’s students over Teacher B’s students on all items requiring analysis or 

completion of tabular representations reflects the treatment of tables in algebra lessons.  

Items 5 and 7 required similar skills. Teacher A’s students answered both items 

with a similar percentage of correct responses. Two more of Teacher B’s students 

answered item 7 correctly than answered item 5 correctly. Item 7 asked students to 

describe the change in the x column (values increasing by 1) and the change in the y 

column (values increasing by 2).  Students could answer this item by recognizing the 

recursive patterns in each column without recognizing a generalized rule relating the 

columns in the table. Students have an inclination to look for recursive rules to describe 

the relationships between numbers in a table (Rubenstein, 2002). This basic skill of 

pattern identification is frequently addressed in elementary school mathematics. 

The skill presented by item 5 was to verbalize a consistent relationship between 

values in two columns, or to write an explicit rule used to map the values of one column 

to the values in the other. Identifying a relationship between the columns of a table of 
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values requires algebraic reasoning in addition to pattern identification. According to 

Lannin (2003), finding a recursive pattern can lead to the development of an explicit 

rule, a more advanced skill requiring generalization. Thus, item 5 presented more 

difficulty for the students of Teacher B than item 7.  

In Teacher A’s lessons, each time a table was generated from a problem situation 

or from an equation, by calculator or by hand, Teacher A emphasized consistency in the 

table, its connection to the equation used to generate the table, as well as its effect on the 

graph. She asked her students to verbalize relationships between values in the two 

columns in their own words, as suggested by Kieran and Chalouh (1993) and Schoenfeld 

and Arcavi (1988). Her approach to teaching students to recognize these relationships 

was closely related to her instruction on the translation of verbal to symbolic 

representations. By explicitly noting connections between each representation of an 

equation (graphs, tables, verbal descriptions, and symbolic equations), her students 

became flexible in their expression and interpretation of each form. This practice 

contributed to her students’ success, much like the students in the studies described by 

Brenner, et al. (1997) and Moseley and Brenner (1997). 

Applying algebraic reasoning. The items studied to address this question 

assessed student understanding of the crucial concepts of variable and equality. These 

are fundamental to success in preparing for further algebra study. Again, Teacher A’s 

students experienced more success on these items than the students of Teacher B. Two 

of the items answered most frequently incorrectly were included in this section of the 
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study, items 9 and 16C. These two questions were obviously difficult for students, 

largely unfamiliar to student participants.  

A benefit of conceptual understanding is the ability to apply existing knowledge 

to new situations. Conceptual knowledge and procedural knowledge deeply embedded in 

conceptual connections are more likely to be recalled and applied in new situations 

(Hiebert & Lefevre, 1986). As demonstrated by the reformed curriculum studied by 

Boaler (1998), students who experience problem-based learning rich in conceptual 

connections are more flexible in their problem solving ability and can apply existing 

knowledge in new situations. By making strong conceptual concepts, Teacher A enabled 

many of her students to apply their existing knowledge to new situations. A much larger 

portion of her students demonstrated some understanding of the two difficult questions 

than the students of Teacher B. Even in her instruction on procedures, conceptual 

connections gave her students a real understanding of the reasons behind the procedures.  

 

Concluding Remarks 

This study examined only two teachers with very different instructional 

approaches. The students of the teacher who delivered conceptual instruction improved 

their algebra skills from the beginning of the year to the end. The students who received 

more procedural instruction, without the support of the conceptual network, showed little 

improvement over the course of the year. Their knowledge stood alone as individual 

pieces and they were not able to apply it in new situations. These students were not well 

equipped to solve problems or apply algebraic reasoning. The students of the more 
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conceptual teacher, on the other hand, were significantly better prepared to answer 

questions requiring algebraic reasoning. 

As Robert Davis said, “Mathematics does not lie in its symbols, but in the ideas 

these symbols represent” (1986, p. 269). Algebraic relationships encountered in 

students’ everyday experience will not present themselves as matters requiring symbol 

manipulation. They will present themselves as decisions to make in the grocery store, at 

the gasoline pump, in financial planning, and when choosing service providers. Teachers 

must prepare students, not to carry out algebraic procedures for their own sake, but to 

use algebra as a tool to solve problems and represent situations. Without conceptual 

understanding, procedures mean almost nothing. Connections make mathematics 

meaningful, memorable, and powerful. 
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APPENDIX A 

For the analysis of classroom videos, instances of conceptual teaching and 

procedural teaching will be coded according to the following indicators (Hiebert & 

Lefevre, 1986). 

Conceptual Teaching  

• Relationships between numbers, topics, or representations explicitly 

pointed out 

• Concepts are connected to students’ current knowledge and future 

learning 

• Explanations of the reasons for executing elements of the procedure are 

emphasized 

Procedural Teaching 

• Rules and algorithms are presented as a series of steps 

• Solutions are presented as step-by-step and sequential 

• Solutions are presented by the instructor as hierarchical and very 

structured 

• Students are required to operate on objects or symbols 

• Input/output model of student processes is evident or implied 

• Steps being presented can be learned by rote 
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APPENDIX B 
 

The test items found below and mentioned in this thesis are proprietary and may 

not be reproduced or used without permission.  
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