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Abstract 

The corrosion fatigue crack growth characteristics of small 
(>35 μm) surface and corner cracks in aluminum alloy 7075 is 
established. The early stage of crack growth is studied by 
performing in situ long focal length microscope (500×) crack 
length measurements in laboratory air and 1% sodium chloride 
(NaCl) environments. To quantify the “small crack effect” in the 
corrosive environment, the corrosion fatigue crack propagation 
behavior of small cracks is compared to long through-the-
thickness cracks grown under identical experimental conditions. 
In salt water, long crack constant Kmax growth rates are similar 
to small crack da/dN. 

1.0 Introduction 

The propagation of small fatigue cracks from surface defects (5 μm to 10 μm) constitutes a large 
percentage (50% to 90%) of the total fatigue life of structural components [1]. Thus, accurate 
prediction of small crack da/dN is required for damage tolerant based life predictions. A problem 
arises because small cracks propagate at unpredictable accelerated rates compared to long fatigue 
cracks [2]. The difference in long and small crack growth behavior is due to numerous effects 
(i.e., diminished crack-tip shielding (closure) effects at small crack sizes). Compounding the 
small crack problem are complex environmental effects. Research on high strength steels in salt 
water has shown that chemically short (< 500-μm) cracks propagate 1.5 to 500 times faster than 
long cracks subjected to the same mechanical driving force [3]. Limited data on 2000 series 
alloys exposed to deaerated salt water suggest little chemical-crack-length effect [4]. The 
purpose of this work is to study the chemical crack length effect in environmentally sensitive 
alloy 7075-T6. 

2.0 Experimental Procedures 

Constant amplitude fatigue crack growth experiments were conducted using a pin-loaded 
extended compact tension (ECT) specimen (also known as the eccentrically loaded single-edge 
cracked tension specimen) as shown in Fig. 1. The blunt notched alloy 7075-T6 sheet specimens 
were oriented in the longitudinal-transverse (L-T) direction. The growth of small surface and 
corner cracks located at the root of the polished (through 0.3-μm diamond paste) blunt notch 
were monitored in situ by using the long focal length (×500 magnification) microscope shown in 
Fig. 2. The surface crack length (a) was measured to an accuracy of approximately 3 μm in air 
and 5 μm in salt water. The acetate replica method [5] was also used to verify microscope-based 
surface dimension of small cracks at the root of the notch. Crack length measurements were 
conducted while the specimen remained at 70% of maximum load. Small surface and corner 
crack growth rates and stress intensity factors were calculated assuming uniform semicircular 
crack geometry and procedures documented elsewhere [4]. 
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Figure 1. ECT specimen. 

 
Figure 2. Corrosion fatigue setup. 

Small crack experiments in laboratory air were conducted at constant ΔP and stress ratio (R) of 
0.05 with a minimum crack length resolution of 35 μm. All corrosion fatigue tests were 
performed using the similar loading history; crack initiation was performed at constant ΔP 
(R = 0.05) and small crack growth testing was conducted at low and high R by varying Pmin at 
constant Pmax. Constant Pmax testing eliminated possible load history effects when varying ΔK. 
Reduced in situ crack length measurement resolution limited the study of corrosion fatigue 
cracks to a ≥100-μm and to high R (0.7 ≤ R ≤ 0.8) testing for the investigation of low ΔK 
environmental da/dN. 

The direct current electrical potential drop method was used to monitor the growth of through-
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continuously adjusting the load to maintain the programmed ΔK and R. The decreasing ΔK test 
was conducted at variable R (0.2 ≤ R ≤ 0.09) at a constant Kmax (15 MPa√m). 

A 1.5-litre O-ring sealed plastic chamber, shown in Fig. 2, was used for salt-water corrosion 
fatigue experiments. The mid-half of the ECT specimen was continuously immersed in helium 
deaerated 1% NaCl (pH = 8) solution. All aqueous NaCl experiments were conducted at constant 
electrode potential using a potentiostat, two fully immersed platinum counter electrodes, and a 
silver/silver chloride (Ag/AgCl) reference electrode. All deaerated corrosion fatigue experiments 
were conducted at a constant electrochemical potential of −830 mVSCE (approximately 
100 mVSCE cathodic of the breakaway or pitting potential). The distilled water/salt solution was 
continuously circulated through the test chamber at a rate of 30 ml/min. from a reservoir 
containing 25 liters of argon deaerated NaCl solution. A quartz window located on the side of the 
chamber and adjacent to the notch was used for in situ long focal length microscope viewing of 
the notch root surface fatigue cracks.  

3.0 Experimental Results and Discussion 

3.1 Fatigue Crack Growth Rate 

Figure 3 shows the crack growth characteristics of small surface and corner cracks in air at 
R = 0.05. Here, data are shown for a range of crack lengths, 10 μm ≤ a ≤ 1000 μm for replica-
based measurements and 35 μm ≤ a ≤ 1400 μm for microscope-based measurements. Typical of 
small crack data, the scatter is presumed to be a result of crack-front/microstructure interaction 
[2]. A power law fit of the microscope and replica data (solid and dotted lines, respectively) 
show that both measurement techniques yield nearly identical small crack da/dN for alloy 7075. 
Further comparisons with literature small crack data (dashed line power law fit) for similar low 
R (R = 0) show that the ECT results correlate well with replica-based data from single edge 
notch tests [6]. Long crack growth characteristics (R = 0) are similar to small crack da/dN for 
ΔK > 3 MPa√m, but small cracks exhibit accelerated da/dN in the long crack growth threshold 
regime.  

 
Figure 3. The fatigue crack growth characteristics of small cracks in air. 
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The results in Fig. 4 show that small cracks ranging in size from 100 μm to 1400 μm exhibit 
accelerated fatigue crack growth rates in deaerated 1% NaCl compared to laboratory air at a 
loading frequency of 5 Hz. A comparison of the salt water and air power law fit (solid and 
dashed lines, respectively) show that fatigue crack growth rates are accelerated by a factor of 
three in NaCl. The corrosion fatigue crack propagation behavior of small cracks is also compared 
to long crack da/dN shown in Fig. 4. Long crack growth rates at a constant Kmax = 15 MPa√m 
are essentially closure free, accelerated compared to R = 0.1 da/dN, and envelop the majority of 
small crack data; similarly, small and long crack behavior in deaerated salt-water suggests no 
crack length chemical effect. The increase in long crack constant Kmax and R da/dN for 
ΔK > 7 MPa√m may be a result of stress corrosion cracking effects. 

 
Figure 4. The corrosion fatigue crack growth characteristics of small and long cracks in 

deaerated salt water. 

3.2 Small Crack Fractography 

Figure 5 shows the region of crack initiation and the typical morphology of a semicircular-
shaped corrosion fatigue surface crack (a = 355 μm) that was exposed to deaerated NaCl 
(−800 mV). The micrographs are oriented normal to the fatigue crack surface and the surface of 
the blunt notch is located at the bottom of both micrographs. The fatigue crack initiated at a 
corrosion pit located at the root of the blunt notch (arrow shown in Fig. 5a). Following initiation, 
the crack propagated along a transgranular semicircular-shaped crack path marked by the dashed 
lines in Fig. 5a. The high magnification micrograph in Fig. 5b shows that the fatigue crack 
initiated at a corrosion pit approximately 10 μm in depth. The pit is elongated in shape with 
microcrack-like features emanating from the region of greatest pit depth. Figure 6 shows typical 
examples pit surface morphology. The micrographs in Fig. 6 are oriented normal to the corroded 
blunt notch surface and in the highly stressed region very near the fatigue crack. Here, both 
micrographs show that surface pits, 10 μm to 20 μm in size, contain regions of microcracking. 
The pit shown in Fig. 6b exhibits a microcrack-like morphology similar to the subsurface pit 
morphology observed in Fig. 5b. 
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Figure 5. Fatigue crack/initiation. 

 
Figure 6. Surface pitting. 

4.0 Conclusions 

No chemical crack length effect was observed. For deaerated salt-water solution, small surface 
and corner fatigue cracks exhibited similar crack growth rates as those observed for long though-
the-thickness cracks. Small cracks exposed to salt water exhibited a factor of three increase in 
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da/dN compared to small crack growth rates in air. A similar factor of three increase in long 
crack da/dN (R = 0.1) was observed in NaCl compared to long crack growth rates (R = 0.05) in 
air. Presumably, small crack growth rate data shown herein was truncated near a ΔK = 1 MPa√m 
due to crack length resolution. It is likely that small cracks grow at accelerated rates for 
ΔK < 1 MPa√m. 
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