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Aerospace projects have traditionally employed federated avionics architectures, in which each computer 

system is designed to perform one specific function (e.g. navigation).  There are obvious downsides to 

this approach, including excessive weight (from so much computing hardware), and inefficient processor 

utilization (since modern processors are capable of performing multiple tasks).  There has therefore been 

a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged 

for different purposes [1].  This consolidation of multiple vehicle functions to shared computing platforms 

can significantly reduce spacecraft cost, weight, and design complexity.  However, the application of 

IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed 

criticality and performance levels – potentially all related to the same shared computer hardware.  

Because individual network technologies are rarely so competent, the development of truly integrated 

network architectures often proves unreasonable.  Several different types of networks are utilized – each 

suited to support a specific vehicle function. 

 

Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees 

regarding message latency (i.e. determinism) and fault-tolerance [2].  Alternatively, non-critical systems 

generally employ data networks prioritizing flexibility and high performance over reliable operation.  

Switched Ethernet has seen widespread success filling this role in terrestrial applications.  Its high speed, 

flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it 

desirable for inclusion in spacecraft platforms.  Basic Ethernet configurations have been incorporated into 

several preexisting aerospace projects, including both the Space Shuttle and International Space Station 

(ISS) [3].  However, classical switched Ethernet cannot provide the high level of network determinism 

required by real-time spacecraft applications.  Even with modern advancements, the uncoordinated (i.e. 

event-driven) nature of Ethernet communication unavoidably leads to message contention within network 

switches.  The arbitration process used to resolve such conflicts introduces variation in the time it takes 

for messages to be forwarded. 

 

TTEthernet
1
 introduces decentralized clock synchronization to switched Ethernet, enabling message 

transmission according to a time-triggered (TT) paradigm.  A network planning tool is used to allocate 

each device a finite amount of time in which it may transmit a frame.  Each time slot is repeated 

sequentially to form a periodic communication schedule that is then loaded onto each TTEthernet device 

(e.g. switches and end systems).  Each network participant references the synchronized time in order to 

dispatch messages at predetermined instances.  This schedule guarantees that no contention exists 

between time-triggered Ethernet frames in the network switches, therefore eliminating the need for 

arbitration (and the timing variation it causes) [4]. 

 

Besides time-triggered messaging, TTEthernet networks may provide two additional traffic classes to 

support communication of different criticality levels.  In the rate-constrained (RC) traffic class, the frame 

payload size and rate of transmission along each communication channel are limited to predetermined 

maximums.  The network switches can therefore be configured to accommodate the known worst-case 

traffic pattern, and buffer overflows can be eliminated [5].  The best-effort (BE) traffic class behaves akin 

to classical Ethernet.  No guarantees are provided regarding transmission latency or successful message 

delivery [6].  TTEthernet coordinates transmission of all three traffic classes over the same physical 

connections, therefore accommodating the full spectrum of traffic criticality levels required in IMA 

                                                           
1
 TTEthernet is the further commercial development of the TT-Ethernet research jointly conducted between the 

Vienna University of Technology and TTTech Computertechnik AG [6]. 
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architectures.  Common computing platforms (e.g. LRUs) can share networking resources in such a way 

that failures in non-critical systems (using BE or RC communication modes) cannot impact flight-critical 

functions (using TT communication).  Furthermore, TTEthernet hardware (e.g. switches, cabling) can be 

shared by both TTEthernet and classical Ethernet traffic. 

 

 

 
 

Figure 1. Integrated dataflow in a sample TTEthernet network 

 

The Avionics and Software (A&S) project, chartered by NASA’s Advanced Exploration Systems (AES) 

program, is exploring the application of the TTEthernet technology to future spacecraft architectures.  

TTEthernet is used in the second iteration of a network-based failover architecture showcased in the 

Integrated Power, Avionics, and Software (IPAS) facility at Johnson Space Center (JSC).  Real-time 

failover occurs between two redundant flight computers running Core Flight Software (CFS) in a 

simulated Asteroid Redirect Mission (ARM).  To show the versatility of the TTEthernet-based failover 

method, dissimilar processors are used in the redundant flight computer set.  One flight computer is 

realized on a standard Linux PC running CentOS 6.5 64 bit.  The second flight computer, a Proton400k-L, 

incorporates a Freescale dual-core PowerPC processor in a radiation hardened 3U single board computer 

(SBC) platform. 

 

Several different software applications were developed to aid in the configuration of TTEthernet networks 

and in the visualization of their operation.  A TTEthernet network interface status monitor was created to 

provide real-time feedback regarding the condition of any installed TTEthernet controllers.  A second 

application was developed to let a user change a local network adaptor’s schedule configuration from a 

straightforward graphical interface.  This separates the management of a device’s communication 

schedule from the software actually used to send and receive TTEthernet messages.  Within the context of 

a redundant flight computer setup, it allows both computers to run identical flight software loads while 

still communicating according to different TTEthernet schedules.  A third program was developed to 

monitor and graphically display the flow of all critical traffic (TT or RC) within a TTEthernet network.   

 

The implementation of TTEthernet-based failover requires integration of the TTEthernet library/API with 

the flight software running on each flight computer.  CFS provides a mission independent environment 

offering core services designed to insulate developers from underlying hardware and software 

dependencies.  The long-term goal of CFS’s integrated core flight executive (cFE) is to facilitate the 

growth of a reusable bank of flight software applications [7].  The integration of TTEthernet with CFS is 

therefore important not just for this failover application, but also so it may be leveraged in future 

spaceflight projects.  A shared library was developed to provide compatibility between CFS and the 

TTEthernet network adapters.  The library allows any CFS application to access core TTEthernet 

capabilities, including the ability to send and receive mixed criticality messages.  The flight software 
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interfaces that had previously used UDP/IP messaging to communicate with the simulation were rewritten 

to use the new TTEthernet library. 

 

Two methods were developed to enable failover between the redundant flight computers – one based on 

periodic heartbeat messages, and the second using coupled data pairings.  Both approaches utilize a 

traditional failover methodology, in which only one flight computer controls the vehicle and drives the 

simulation at a time.  In the first failover method, the primary computer sends regular heartbeat messages 

to the backup machine to indicate that it is still functioning.  If the backup stops receiving heartbeats, it 

assumes that the primary machine has failed and takes control of the vehicle.  Because both flight 

computers receive the same data from the simulation simultaneously, the exchange of no other state 

information is necessary.  The second failover method better leverages TTEthernet’s capabilities to 

increase performance and eliminate the need for a periodic heartbeat.  Both flight computers still receive 

data from the simulation simultaneously, but are no longer divided into static primary and backup roles.  

Because no distinction exists between them, each machine processes information and sends effector 

commands back to the simulation as if it is the only computer flying the vehicle.  Both messages are sent 

back such that the simulation always receives them in paired sets.  The receipt of both commands 

composes one single command cycle.  One computer is designated as primary in each cycle, and data sent 

by the backup is discarded.  If no command from the primary computer is included in the received data 

set, the backup computer takes the primary designation, its command is processed, and the mission 

continues uninterrupted.   

 

Figure 2 and Figure 3 depict the integrated failover architecture as showcased during the A&S project’s 

end of FY14 Integrated Test.  In addition to the capabilities described above, the flight computers also 

communicate with other vehicle subsystems using standard Ethernet interfaces.  The active flight 

computer outputs mission status information encapsulated in UDP packets.  This data is transmitted in 

classical Ethernet frames through the TTEthernet switches, into the Bay 1 network, and to a touchscreen 

crew display.  Additionally, an ECLSS simulator in Bay 2 of the IPAS facility broadcasts data such as 

partial pressure and ambient temperature to both flight computers.  This data is relayed as UDP traffic 

over a standard Ethernet network, through a router connecting the Bay 2 and Bay 1 networks, and into the 

TTEthernet switches.  In both cases, the UDP packets travel through the same physical cabling as the 

time-triggered messages in the flight control loop.  A separate machine running Engineering DOUG 

Graphics Environment (EDGE) software receives data from the simulation and displays a high fidelity 3D 

representation of the mission as it progresses. 
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Figure 2. Final integrated failover architecture in IPAS facility (physical connections) 

 
 

Figure 3. Final integrated failover architecture in IPAS facility (data flow) 
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