National Aeronautics and Space Administration

NASA Measurement Summary

WG1 33rd IADC Meeting

Gene Stansbery Orbital Debris Program Office

Major Initiatives

- Meter Class Autonomous Telescope (MCAT)
- Debris Resistive Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) on ISS
- DebriSat

Meter-Class Autonomous Telescope (MCAT)

- NASA is currently working with the Air Force and AFRL to deploy a new 1.3-m telescope on Ascension Island.
- The low latitude of the site will permit observations of low inclination debris at all altitudes.
 - Debris as small as 10 cm in GEO should be detectable.
- The telescope will ultimately operate autonomously.
- Operations will start in 2015.

The MCAT telescope and mount will be non-traditional.

Meter-Class Autonomous Telescope (MCAT)

Debris Resistive Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS)

- Purpose is to provide data on debris smaller than 1 mm
- DRAGONS combines dual-layer thin films and an acoustic sensor system with the resistive grid sensor system to create a COTS-based instrument that provides excellent semi-real-time impact detection and recording capability
 - Impact data includes: Impact time, impact flux, particle size, impact speed, impact direction, and impact energy

DRAGONS

Two potential flight opportunities

- ISS Technology Demonstration Office
- DoD Space Test Program higher altitude

DRAGONS Prototype

DebriSat

NASA Standard Breakup Model

- Based on ground based hypervelocity impact tests and on-orbit fragmentations, explosion and collision
- Ground based tests were on performed on 1960's Transit satellite and simulated spacecraft & rocket bodies
 - No multilayer insulation (MLI) or solar panels
- Iridium/Cosmos collision in 2009 showed differences between "new" and "old" construction

DebriSat

- Design and fabricate a 60-cm/50-kg class satellite, including MLI and solar panels, to be representative of modern payloads in LEO
- Carry out a hypervelocity impact test with sufficient kinetic energy to completely breakup DebriSat

DebriSat

- DebriSat shot was successfully conducted on April 15th at Arnold Engineering Development Center (AEDC)
 - Projectile impacted DebriSat at 6.8 km/sec and completed fragmented the target

DebriSat Test Shot

- To further increase the benefits of the project, Aerospace built a target resembling a launch vehicle upper stage ("DebrisLV") for the pre-test shot
 - DebrisLV: 17.1 kg, body dimensions ~ 88 cm (length) × 35 cm (diameter)
 - Pre-test shot was successfully conducted on April 1st
 - Projectile impacted DebrisLV at 6.9 km/sec and completed fragmented DebrisLV

DebriSat Test Shot

- AEDC always conducts a test shot prior to the main event
 - Opportunity to test emulated upper stage

On-Going Measurements

- Radar
 - HUSIR/HAX
 - Goldstone
- UK InfraRed Telescope (UKIRT)
- Michigan Orbital DEbris Survey Telescope (MODEST)
- Magellan/Blanco/Bi-static

On-Going Radar Measurements

- Haystack Ultrawideband Satellite Imaging Radar (HUSIR) – X band
 - Was down for several years for upgrade and bearing issues.
 - Resumed limited operations in Jan. 2014
 - 336 hours collected in FY 2014
 - Expect ~600 hrs in FY 2015

- 645 Hours collected since last IADC
- Goldstone
 - 87 hours collected since last IADC

On-Going Optical Measurements

- MODEST (0.6 m)
 - 1 week of survey observations late June 2014
- Magellan (6.5 m)
 - 2 nights May 27 and May 28 direct imaging for faint GEO object survey. 0.5 deg field of view. Both nights clear.
- Blanco (4.0 m)
 - 1 night June 24 with Dark Energy Camera (2 deg diameter field of view) for faint GEO object survey.
- MODEST/Blanco/SST/USNO Multi-Static
 - Coordinated survey observations with 3.5-m Space Surveillance Telescope (New Mexico, USA), 1.3-m telescope at USNO Flagstaff (Arizona, USA), and 0.6-m MODEST (Chile). Clear all sites.

On-Going IR Measurements

• United Kingdom InfraRed Telescope (UKIRT)

- 3.8 m telescope
- Mauna Kea, Hawaii (4200 m elevation)
- Significant time dedicated to NASA Orbital Debris Observation

• WFCAM (Wide Field CAMera) JHK

- 25 nights of data April, May, June, 2014
- 16 objects observed

WFCAM ZYJHK

- 26 Nights Oct, Nov, Dec 2014
- 24 objects observed

• UIST (UKIRT Imaging Spectrometer) 1-2.5um spectra

- 6 nights of data Aug, Sept 2014
- 10 objects observed

