
### Overview of Microbial Monitoring Technologies Considered for Use Inside Long Duration Spaceflights and Planetary Habitats

Monsi C. Roman NASA ECLSS Chief Microbiologist

*C. Mark Ott, PhD* Microbiology Laboratory NASA Johnson Space Center

### Microbial Monitoring in Long Duration Missions

- The purpose of this presentation is to start a conversation including the Crew Health, ECLSS, and Planetary Protection communities about the best approach for inflight microbial monitoring as part of a risk mitigation strategy to prevent forward and back contamination while protecting the crew and vehicle.
  - Will help set future:
    - Resource allocations
    - Monitoring requirements
    - Minimize duplication of monitoring technologies for use in space
    - Foster complementary monitoring technologies



### Prevention Designed to Meet Current Requirements



## So...Why Are We Currently Monitor Microorganisms?

#### Short-term Effects of Microbial Exposure (days to weeks)

#### Air/Surfaces:

- Release of volatiles (e.g., odors)
- Allergies (e.g., skin, respiratory)
- Infectious diseases (e.g., Legionnaire's)

#### Water:

• Objectionable taste/odor

#### Long-term Effects of Microbial Exposure (weeks to years)

#### Air/Surfaces (same as short-term plus):

- Release of toxins (e.g., mycotoxins)
- Sick building syndrome
- Environmental contamination
- Biodegradation of materials
- Systems performance

#### Water (same as short-term plus):

- System failure
  - Clogging, corrosion, pitting, antimicrobial resistance/regrowth potential (biofilm)

### Microbial Monitoring Design Considerations\*

"Even in high quality water supplies protected by a residual bactericide, viable organisms can still persist. Therefore, the potential for microbial overgrowth is an ever-present hazard. Due to the long potential unmanned loiter time contributing to the duration of flights, routine microbiological monitoring of potable water coinciding with the re-ocupation by the crew to ensure that it meets the standards outlined in Table 7.2.3.2-1 and section 5, Natural and Induced Environments, for microbiological limits may be necessary."

The document also addresses the potential for BIOFILM formation

\***Reference**: NASA-STD-3000 Volume VIII- Human-Systems Integration Standards for the Crew Exploration Vehicle

## Microbial Monitoring in Long Duration Missions

- Current in-flight microbial monitoring technology is good but it:
  - Provides only a partial assessment of the microbial population as it detects the fraction of microorganisms that will grow in the selected media
  - Is crew time intensive
  - Produces a biohazardous waste as microorganisms are grown in flight

# Current US In-flight Microbial Monitoring Capabilities

- Water Microbiology Kit (WMK)
  - Membrane filtration/ 48 hours incubation/ visual analysis
  - Sample collection/ processing: 122.5 min/ 62.5 min
- Water Microbiology Analysis Kit (WMAK)
  - Presence/absence analysis using Colisure
  - Final result reported in 24 to 48 hours
- Surface Sampler Kit (SSK)
  - Contact slide or swab/ 48 hohurs incubation/ visual analysis
  - Sample collection: 100 min; analysis: 220 min
- Microbial Air Sampler (MAS kit)
  - Impaction sampler/ incubation 5 days/ visual analysis
  - Sample collection: 135 min/ analysis: 220 min

# Current Microbial In-Flight Analysis

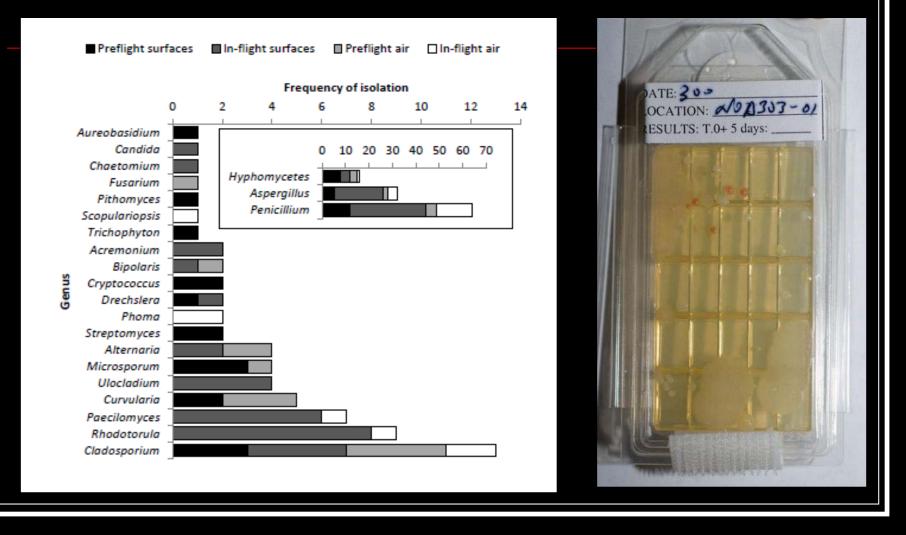


coliform

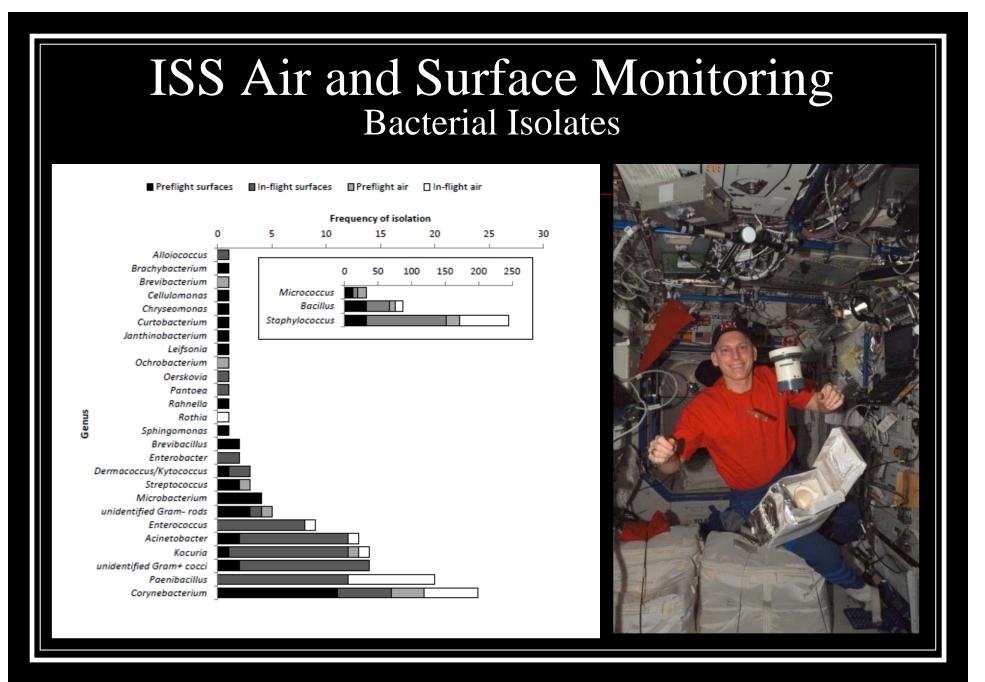


Ν










### ISS Air and Surface Monitoring Fungal Isolates



Pierson, et. al. Environmental Monitoring: A Comprehensive Handbook 2012



Pierson, et. al. Environmental Monitoring: A Comprehensive Handbook 2012

## U. S. Potable Water Dispenser

- Provides "hot" and "ambient" potable water
- Processing includes:
  - Catalytic oxidizer
  - Iodine disinfection
  - In-line filter (0.2 micron)
- Common isolates
  - Ralstonia pickettii
  - Burkholderia multivorans
  - Sphingomonas sanguinis
  - Cupriavidas metallidurans



## Stakeholders for In-Flight Microbial Monitoring Technology

- Crew Health
- Life Support Systems-system Health/Environmental
- Internal Coolant/Environmental
- Experiments/Payloads
- Astrobiology and Planetary Protection
- Spaceflight Food

### Microbial Monitoring Capabilities Crew Health and ECLSS

- To enable new technology that does not depend strictly on culture based systems, we have been investigating both hardware and requirements definition.
  - Based upon feedback from multiple workshops:
    - Total counts reflect system performance (engineering requirement) and are not as important for health assessments
    - For crew health assessments, the monitor should target the identification of key organisms specific to a given mission architecture
    - For crew health assessments, the monitor must reflect viable organisms

### **Current Hardware Efforts**

- Two DNA based microbiological monitoring systems are being evaluated under the ISS 2 x 2015 technology demonstration initiative
  - One effort is evaluating the RAZOR QPCR system developed by Biofire Diagnostics
  - One effort is evaluating the MinION system developed by Oxford Nanopore

# Lessons Learned

- No single technology may provide the needed data ("a silver bullet solution"); combination of multiple technologies may provide the best approach. Two very small monitors may be more efficient than one very large monitor.
- Defining the requirements of all stakeholders is essential. For example, crew health requirements using non-culture based methodologies do not exist.
- Changes in mission architecture can cause changes in monitoring requirements.

# Lessons Learned

- In the search for new technologies, in-flight sample collection and processing are often under emphasized.
- Chosen technologies need to be extensively validated in the proper environment with appropriate samples prior to use in long duration missions.