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In a simultaneous paired approach to closely-spaced parallel runways, a pair of 

aircraft flies in close proximity on parallel approach paths.   The longitudinal 

separation between the aircraft must be maintained within a range that avoids wake 

encounters and, if one of the aircraft blunders, avoids collision.  To increase 

operational availability, the approach procedure must accommodate a mixture of 

aircraft sizes and, consequently, approach speeds.  In these procedures, the slower 

aircraft is placed in the lead position.  The faster aircraft maintains separation from 

the slow aircraft in a dependent operation until final approach and flies 

independently afterward.  Due to the higher approach speed of the fast aircraft, 

longitudinal separation will decrease during final approach.  Therefore, the fast 

aircraft must position itself before the final approach so that it will remain within 

the safe range of separation as separation decreases.  Given the approach geometry 

and speed schedule for each aircraft, one can use kinematics to estimate the 

separation loss between a pair of aircraft.   A kinematic model can complement fast-

time Monte-Carlo simulations of the approach by enabling a tailored reduction in 

the variation of starting position for the fast aircraft.  One could also implement the 

kinematic model in ground-based or on-board decision support tools to compute the 

optimal initial separation for a given pair of aircraft.  To better match the auto-

coupled flight of real aircraft, the paper derives a kinematic model where the speed 

schedule is flown using equivalent airspeed.  The predicted time of flight using the 

equivalent airspeed kinematic model compares well against a high-fidelity aircraft 

simulation performing the same approach.  This model also demonstrates a modest 

increase in the predicted loss of separation when contrasted against a kinematic 

model that assumes the scheduled speed is true airspeed. 

Nomenclature 

 = glideslope angle (radians) 

 = atmospheric density at altitude (slug per cubic foot) 

0 = atmospheric density at sea-level (slug per cubic foot) 

ADS-B = Automatic Dependent Surveillance-Broadcast 

aEAS = constant acceleration of equivalent airspeed, negative on approach (knot/s) 

AGL = above ground level 

aslow = acceleration of the slow aircraft, negative on approach  (knot/s) 

CSPO = Closely Spaced Parallel Operations 

dcompress = compression of longitudinal separation as the slow aircraft travels from FAF to PTS 

DCS = collision safe distance (feet) 

DEAS =  equivalent airspeed distance (feet) 

Ddecel = true or DEAS distance traveled by the aircraft during deceleration (feet) 

DI-fast = DEAS of the fast aircraft from PTF when the slow aircraft is at the FAF and deceleration is 

independent (feet) 

DD-fast = DEAS of the fast aircraft from PTF when the slow aircraft is at the FAF and deceleration is 
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dependent (feet) 

Doffset = offset distance between runways (feet) 

DWS = wake-safe distance (feet) 

EAS = equivalent airspeed (knots) 

f(h) = conversion factor for EAS to TAS as a function of geometric altitude 

FAF = final approach fix 

fps = feet per second 

g = standard acceleration due to free fall (ft/s
2
) 

h = geometric altitude, assumed same as altitude above mean sea level (feet) 

h' = equivalent airspeed altitude (feet) 

H = geopotential height (feet) 

hFAF = geometric altitude of the final approach fix (feet) 

hfast = geometric altitude of the fast aircraft when the slow aircraft is at the FAF (feet) 

hPTF = geometric altitude of the procedure termination point for the fast aircraft (feet) 

hPTS = geometric altitude of the procedure termination point for the slow aircraft (feet) 

hSAP = geometric altitude of the stabilized approach point (feet) 

hTCH = geometric altitude of the threshold crossing height (feet) 

IAF = initial approach fix 

KT = knots 

L = temperature lapse rate (Rankine per foot)
8 

P = atmospheric pressure at altitude (pound force per square foot) 

P0 = atmospheric pressure at sea level (pound force per square foot) 

psf = pound force per square foot 

PTF = procedure termination point of the fast aircraft  

PTS = procedure termination point of the slow aircraft 

R = gas constant for the atmosphere  

Re = equatorial radius of the Earth (feet) 

SAP = stabilized approach point 

SFAF = required longitudinal separation at the FAF (ft) 

T = atmospheric temperature at altitude (Rankine) 

T0 = atmospheric temperature at sea-level (Rankine) 

TAS = true airspeed 

TCH = threshold crossing height (feet) 

tdecel = time for an aircraft to decelerate from Vc to Vf (seconds) 

tdelay = time delay in the dependent operation response of the fast aircraft (seconds) 

tFAF→SAP = flight time from the FAF to the SAP (seconds) 

tfinal = flight time of an aircraft in the final approach segment (seconds) 

tI-fast = flight time of the fast aircraft from FAF to PTF under independent operation (seconds) 

tSAP→PTF = flight time from the SAP to the PTF (seconds) 

tSAP→PTS = flight time from the SAP to the PTS (seconds)  

tSAP→TCH = flight time from the SAP to the TCH (seconds) 

tslow = flight time from the FAF to the PTS for the slow aircraft (seconds) 

V
0
EAS = equivalent airspeed at start of deceleration (knots) 

Vc = constant segment speed (knots) 

VEAS = equivalent airspeed (knots) 

Vf = final approach speed (knots) 

VTAS = true airspeed (knots) 

W(h) = wind speed as a function of altitude (knots) 

XD-fast = the x-axis runway location of the fast aircraft when the slow aircraft is at the FAF and the 

fast aircraft deceleration is dependent (feet) 

XFAF = the x-axis runway coordinate of the FAF (feet) 

XI-fast = the x-axis runway location of the fast aircraft when the slow aircraft is at the FAF and the 

fast aircraft deceleration is independent (feet) 
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I. Introduction 

HE Closely Spaced Parallel Operations (CSPO) Working Group of the Federal Aviation 

Administration is investigating operational concepts to allow simultaneous paired approaches under 

instrument conditions at runways separated by as little as 700 ft.
1,2

  In a simultaneous paired approach, a 

pair of aircraft flies in close proximity to each other as they approach a pair of parallel runways.   The 

longitudinal separation between the aircraft must be maintained within a range to avoid wake encounters 

and, if one of the aircraft blunders
†
, to avoid collision.  To increase operational availability, the approach 

procedure must accommodate a mixture of aircraft sizes and, consequently, approach speeds.  The aircraft 

with the slower approach speed is placed in the lead position and the faster aircraft in the trail position.  The 

fast aircraft first establishes dependent operation to the slow aircraft.  The fast aircraft maintains speed and 

position against the slow aircraft until the fast aircraft reaches its final approach speed, which occurs after 

passing the final approach fix (FAF).  For the remainder of the approach, the faster aircraft flies 

independently.  It will close in on and, if the procedure allows, possibly pass the slower aircraft before 

landing.  To appropriately position the fast aircraft before the FAF, it is necessary to determine the amount 

of separation that will be lost during the final approach.     

The approach speeds of each aircraft and the approach geometry are the primary determinants of the 

separation loss during the approach.  Given the approach geometry and speed schedule for each aircraft, 

one can use kinematics to compute the separation loss between a pair of aircraft.   A kinematic model can 

complement Monte-Carlo simulations of the approach by enabling a tailored reduction in the variation of 

starting position for a given aircraft pair through identification of the ideal initial separation.  The kinematic 

model could also be inserted into ground-based or on-board decision support tools to compute the optimal 

initial separation for a given pair of aircraft. 

The precision of the kinematic model is limited by its assumptions.  One challenge to improving the 

precision of a kinematic model is that aircraft do not fly the speed schedule using true airspeed.  Aircraft 

use indicated or calibrated airspeed, which are functions of atmospheric properties at altitude.  Therefore, 

even in segments of the descent where the scheduled speed is constant, the aircraft executes a slow 

deceleration during descent.  Because the initial longitudinal separation of aircraft in a paired approach is 

less than a nautical mile, the impact of the slow deceleration on loss of separation, though small, is 

significant.  Therefore, the kinematic model should capture this effect.  Using the 1976 U.S. Atmosphere 

Model, the paper formulates a kinematic model using equivalent airspeed (EAS) to better approximate the 

indicated or calibrate airspeed flown by the aircraft.  That EAS model mirrors a kinematic model that uses 

true airspeed by introducing an equivalent airspeed distance (DEAS).  The predicted loss of separation using 

the EAS model is compared against a high-fidelity simulation performing the same approach. 

II. Approach Geometry 

  Candidate geometries for closely spaced parallel approaches (CSPO) are detailed in references 1 

through 6.  To summarize, air traffic control vectors a pair of aircraft onto parallel approach paths at a point 

between the initial approach fix (IAF) and the final approach fix (FAF).  The aircraft with the faster final 

approach speed is placed behind the aircraft with the slower final approach speed.  The aircraft also begin 

with a vertical separation of 1000 ft to allow each aircraft to safely establish their approach path and to 

allow the fast aircraft to establish longitudinal separation from the slow aircraft.  The faster aircraft can 

start at either the higher altitude or the lower altitude.  Each aircraft flies at a constant altitude until 

encountering the glidepath and then descends along the glidepath.  From the start of the procedure to the 

FAF, the slow aircraft flies an assigned constant speed (nominally 180 KT) and the fast aircraft maintains 

speed and position against the slow aircraft.  The fast aircraft executes this dependent operation until it 

reaches its final approach speed (matching speed of the slow aircraft as the slow aircraft decelerates upon 

reaching the FAF) or, if the fast aircraft does not detect the acceleration of the slow aircraft prior to the 

reaching the FAF, the fast aircraft switches to independent operation at the FAF. 

                                                           

 
†
 An aircraft is said to blunder when it departs from its approach path toward the path of the other aircraft.  

A blunder may occur due to pilot error or aircraft malfunction. 

T 



 

 

4 

Figure 1 depicts the horizontal geometry of the paired-approach procedure.  The figure shows two 

options for the separation window (i.e. the green box), the full length of the box applies to a procedure that 

allows the fast aircraft to pass the slow aircraft
1
 and the hashed boundary applies to a procedure that does 

not allow the fast aircraft to pass
6
. The former requires the trail aircraft to be equipped with a collision 

alerting and avoidance system that is designed for the tight vertical and longitudinal separations in the 

paired approach. The latter is designed to be passively safe against collisions and, therefore, requires no 

special equipage. In each option, the separation window is defined to avoid two hazards.  In the case where 

passing is not allowed, those hazards are collision and wake.  To avoid collision, the fast aircraft must 

maintain a sufficient distance behind the slow aircraft such that the slow aircraft will not collide with the 

fast aircraft if the slow aircraft blunders across the fast aircraft's path.  To avoid wake, the fast aircraft must 

be close enough to the slow aircraft that the wake of the slow aircraft passes behind the fast aircraft in the 

presence of adverse crosswind.  In the case were passing is allowed, the two hazards are both wake 

encounters.  The fast aircraft must remain forward of a rear wake-safe boundary to avoid encountering the 

wake of the slower aircraft.  The fast aircraft must also remain behind a forward wake-safe boundary so 

that the slow aircraft does not encounter the wake of the fast aircraft.   The paired approach with passing 

relies on collision alerting rather than separation to prevent collisions when one or both aircraft blender. 

With or without passing, the fast aircraft must maintain its separation between the forward and rear 

boundaries from the loss of altitude separation until one of the aircraft crosses the threshold.
‡
   

The kinematic models derived in this paper assume that the runway thresholds are not offset but they 

can have different elevations.  Section III.E.3 discusses adaptation of the models for offset runways.  If the 

runway thresholds are offset, then the slow aircraft is assigned to the closer runway.  From inspection, the 

kinematic models should be applicable to runways with different glideslope angles, but the models have not 

been verified and validated under this scenario.  If a runway pair does have differential glideslopes, then the 

slow aircraft flies the shallower glideslope since wake vortices tend to descend. 

                                                           

 
‡
 Both collision and wake risks are assumed to be negligible after the lead aircraft crosses the threshold.  

The assumption on collision risk is reasonable given that ground hazards restrict banking by the lead 

aircraft and the go-around procedure can be designed to increase lateral separation.  However, further wake 

studies on landing and go around scenarios are needed to validate the assumption of negligible wake risk.      
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Figure 1: Paired Approach Separation Distances 
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III. Modeling Travel Time and Separation Loss 

Prior to the FAF, the fast aircraft uses speed management to actively control its longitudinal separation 

with the slow aircraft.  The fast aircraft stops active management of longitudinal separation when it reaches 

its final approach speed (by decelerating in concert with the slow aircraft after the slow aircraft reaches the 

FAF) or when it reaches the FAF (if it has not detected deceleration by the slow aircraft beforehand).  For 

the remainder of the procedure, the longitudinal separation will decrease due to the difference in approach 

speeds.  However, the fast aircraft continues to monitor the longitudinal separation and will execute a go-

around if it falls outside the separation window.  Therefore, to limit nuisance go-arounds, the fast aircraft 

must position itself to accommodate the longitudinal compression before the slow aircraft reaches the FAF. 

If the aircraft accurately fly their planned approach speed to the threshold, then the longitudinal 

compression is characterized by the approach speeds of the two aircraft, the rate of deceleration, the 

minimum separation that must be maintained, the height to which minimum separation must be maintained, 

winds, and atmospheric density.  Winds and atmospheric density come into play because the approach 

speed is an indicated (or calibrated) airspeed, not a true ground speed.  For simplicity, the model uses 

equivalent airspeed to approximate indicated airspeed.  Also, winds will be ignored for the moment and 

addressed later in the paper. 

Accounting for atmospheric density with altitude is desirable.  Assuming a 1976 standard atmosphere, 

the equivalent airspeed at an altitude of 1800 ft is about 3% lower than the true ground speed.  From a FAF 

at 1800 ft altitude to a touchdown crossing height (TCH) at 50 ft atltitude, the elapsed time to threshold is 

about 2 seconds shorter for the scheduled speed as EAS than if one assumes the scheduled speed is TAS.  

The challenge, however, in computing compression distance using EAS is that the conversion of EAS to 

TAS (necessary to apply kinematic principles) changes with altitude as density changes with altitude.  

A. Model with TAS = EAS Assumption (TAS Model) 

Before incorporating the EAS to TAS conversion, the kinematic equations for the approach procedures 

are first formulated assuming the speed schedule is TAS (TAS model).  Later, this paper will show how to 

formulate the EAS to TAS conversion in a way that resembles the TAS model.  The speed schedule for the 

paired approach is depicted in Figure 1.  The slow aircraft's speed schedule can be broken into three 

segments: a constant speed segment, a deceleration segment, and a final approach segment.  The constant 

speed segment begins when the slow aircraft captures the glideslope and ends at the final approach fix.  In 

this region, the aircraft flies a constant airspeed assigned by air traffic control.  When the slow aircraft 

reaches the FAF, it begins the deceleration segment where it decelerates to its final approach speed.  The 

model assumes a constant deceleration that achieves the final approach speed at the stabilized approach 

point (SAP), i.e. 1000 ft AGL.  The final approach segment continues after the SAP; the slow aircraft flies 

its final approach speed to the runway threshold.  Separation monitoring ends when one of the two aircraft 

reaches the threshold so there is no need to model the flare maneuver after crossing the threshold. 

 To compute the compression distance 

at the FAF, one must first calculate the 

time it takes the slow aircraft to travel from 

the FAF to the end of the paired approach.  

If the fast aircraft is not allowed to pass, 

then the paired approach ends for the slow 

aircraft at the threshold.  If the fast aircraft 

is allowed to pass, then the paired approach 

ends when the fast aircraft crosses the 

threshold.  To avoid the wake of the fast 

aircraft, the slow aircraft must be behind by 

no more than the wake-safe distance (DWS).   

The location of the slow aircraft at the end 

of the paired approach will be called the 

procedure termination location for the slow 

aircraft or PTS. 

The flight time from FAF to PTS is 

divided into two computations: the time 

from FAF to SAP and the time from SAP Figure 1. Speed Profiles of Slow and Fast Aircraft 
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to PTS.  The time from FAF to SAP assumes a constant deceleration from the constant segment speed (Vc) 

to the final approach speed (Vf).  Thus, the average speed from FAF to SAP is ½ [Vc + Vf].  Given that the 

FAF and SAP are defined by height above the runway, the distance between these points is a function of 

their altitudes and the glideslope angle: 

 
         

 (   )

    

 
(         )

    

 

(     )

  

   
 

     

(     )
 (1) 

where, 

D(h,) is the distance traveled as a function of altitude and glideslope angle 

Vavg is the average true speed of the aircraft 

hFAF  is the geometric altitude of the FAF in feet, normally 1800 ft above runway elevation 

hSAP  is the geometric altitude of the SAP in feet, normally 1000 ft above runway elevation 

   is the glideslope angle, normally 3 

 Vc is the constant segment speed in knots, nominally 180 KT 

 Vf is the final approach speed in knots 

KT/fps is the conversion from knots to feet per second, 0.5924838 

tFAF→SAP is the flight time from the FAF to the SAP in seconds 

Similarly, the time from SAP to PTS is given by: 
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where, hPTS is the altitude of the procedure termination location for the slow aircraft: 

                   (3) 

In Eq. (3), 

DWS is the wake-safe distance.  If passing is not allowed, this variable is zero. 

  hTCH  is the altitude of threshold crossing height, nominally 50 ft above runway elevation 

In the example of a paired approach without passing, DWS is zero and hPTS equals hTCH.  Given a generic 

runway at sea-level elevation with a TCH of 50 ft AGL, Eq. (2) reduces to: 

 
                  

(         )

      

  

   
 

     

  

 (4) 

Then, the total flight time from FAF to TCH for the slow aircraft landing at the generic runway is: 
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 (5) 

For example, if Vc is 180 KT and Vf is 120 KT, then the tslow  is 150.0 seconds.   

Next, one calculates where the fast aircraft would be tslow seconds in the past.  This calculation depends 

on the separation that the fast aircraft must maintain relative to the slow aircraft at the runway threshold.  In 

the paired procedure without passing, the faster aircraft must maintain a collision free distance (DCS) from 

slower aircraft upon procedure termination.  For the paired approach with passing, the procedure terminates 

for the fast aircraft at the threshold.  As with the slow aircraft, this required separation is converted into a 

procedure termination altitude for the faster aircraft, hPTF:  

                   (6) 

where, 

DCS is the collision-safe distance.  If passing is allowed, this variable is zero. 

  hTCH  is the altitude of the threshold crossing height, nominally 50 ft above runway elevation 

   is the glideslope angle, nominally 3 



 

 

7 

Note that the hTCH in Eq. (6) can differ from hTCH in Eq. (3) to accommodate runways with different 

threshold crossing heights; moreover, because the geometric altitude and not the runway relative altitude is 

used, the runways can also have different elevations.  Similarly, for Eq. (7) to Eq. (15) that follow, hSAP and 

hFAF can differ for the fast aircraft to accommodate different runway elevations or approach geometries.  To 

handle differential glideslopes, the glideslope angle in Eq. (7) to Eq. (15) can also differ from that in Eq. (3) 

except where noted. 

 One aspect of the paired procedure that complicates the computation is the condition on the time and 

deceleration for the fast aircraft.  The fast aircraft decelerates at the same rate as the slow aircraft when and 

if it detects the deceleration of the slow aircraft prior to the fast aircraft reaching the FAF; otherwise, the 

fast aircraft decelerates independently.  The parameter governing this condition is tdelay, the time delay in 

the response of the fast aircraft to changes in the sensed state of the slow aircraft.  This exercise will 

assume that the speed of the slow aircraft is monitored using ADS-B and exhibits a tdelay of 5.0 seconds.  

Table 1 provides a breakdown of the estimated tdelay. 

Table 1. Estimate of Response Delay in Dependent Operations 

ADS-B OUT Latency (from 

navigation measurement)
 7
 

2.0 s 

ADS-B IN Latency 0.5 s 

Speed Guidance Algorithm 0.5 s 

Pilot Reaction Time 2.0 s 

Total 5.0 s 

 

Let tI-fast be the independent flight time of the fast aircraft from the FAF to PTF.  The fast aircraft will 

decelerate independently if (tslow - tI-fast) < tdelay.  The equations for tI-fast are identical to those for tslow but 

hPTF is substituted for hPTS.  For this example using the generic runway, the collision-safe distance, DCS, is 

set to 750 ft. 
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If the value of tI-fast reveals that the fast aircraft will perform an independent deceleration, then the position 

of the x-axis runway coordinate of the fast aircraft when the slow is at the FAF is: 

 
                 (   (             )

   

  
) (10) 

where XFAF is the x-axis runway coordinate of the FAF, nominally -33,392 ft or -5.5 NM.  If XFAF differs 

between the two runways, then use XFAF for the runway of the fast aircraft in Eq. (10). 

If the fast aircraft will perform a dependent deceleration with the slow aircraft, the fast aircraft's total 

flight time, tD-fast, can be broken into three components: 1) tdelay - the delay in dependent operation defined 

in the previous paragraph, 2) tdecel - the time to decelerate to the final approach speed, and 3) tfinal - the time 

flying at the final approach speed.  tdecel is computed using the deceleration of the slow aircraft (due to the 

dependent operation) and the final approach speed of the fast aircraft: 
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Note that the equation for aslow produces deceleration in units of kt/s so that the equation for tdecel produces a 

time in units of seconds.  Also, note that in the case of differential glideslopes, Eq. (11) uses the glideslope 

angle for the slow aircraft.  Now, tfinal becomes the remaining time: 

                                  (13) 

Next, compute the runway x-axis location of the fast aircraft performing a dependent deceleration: 

 
         (        (          

 

 
(     )                 )

   

  
) (14) 

Now, compute the required longitudinal separation at the FAF for the aircraft pair: 

 
          {

           (             )        

           (             )        
 (15) 

If XFAF differs between runways, then use XFAF for the runway of the slow aircraft in Eq. (15).  Equation 

(15) assumes that the runway thresholds are not offset in the x-axis direction.   

The compression distance is the difference between longitudinal separation at the FAF and longitudinal 

separation at the threshold: 

                        (16) 

(Recall that DCS is zero for the paired approach with passing and that DWS is zero for the paired approach 

without passing.  So, at procedure termination, the fast aircraft is either a distance of DCS behind the slow 

aircraft or a distance of DWS ahead of the slow aircraft.) 

Continuing the example, if one computes the compression distance for a paired approach without 

passing where the slow aircraft final approach speed is 120 KT, the fast aircraft final approach speed is 130 

KT, the constant segment speed is 180 KT, and the collision safe distance DCS is 750 ft, then the results are: 

 tslow  = 150.0 seconds 

tI-fast = 137.7 seconds, (tslow - tI-fast) = 12.3 seconds > tdelay so compute XD-fast 

tdecel =   50.3 seconds 

XD-fast = -36159 ft 

SFAF = 2767 ft  

dcompress   =    2017 ft 

B. Including the EAS to TAS Conversion (EAS Model) 

Next, one incorporates the EAS to TAS conversion to fly the speed schedule as EAS: 
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where , P, and T are the atmospheric density, pressure, and temperature respectively and the subscript zero 

indicates the sea-level value.  The second formulation allows the insertion of functions for temperature and 

pressure from the US Standard 1976 atmosphere model for altitudes below 36,152 ft:
8 
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where, 

 g = the standard acceleration due to free fall, 32.17404 ft/s
2 

 h  = the geometric altitude, feet.  Equal to mean sea level altitude. 

 L = the lapse rate, -3.56616x10
-3

 R/ft (converted from SI units in Ref. 8) 

 P0 = sea-level pressure, 2116.22 psf 

 R = the gas constant for air, 1716.55915670803 ft
2
/(s

2
 R) 

  Re = the radius of the Earth, 20855531.5 ft 

 T0 = sea-level temperature, 518.67 R 

 H = the geopotential altitude, feet 

With these equations, the conversion from EAS to TAS becomes: 
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(21) 

Equation (21) computes TAS as a function of geometric altitude, h.  To determine the distance traveled 

over a given time, we recognize that TAS is dr/dt where r is the distance along the glideslope.  Since the 

glideslope angle is constant, we can convert dr/dt to dh/dt using the relation, h = r sin(). 
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The integral for dh does not have a closed form solution.  However, one can construct a closed form 

approximation by converting the integrand to a Taylor series and integrating the first two terms: 
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As indicated by its final formulation, Eq. (24) defines an equivalent airspeed distance (DEAS) that is a 

function of geometric altitude.  Note that removing the second and third order terms reduces Eq. (24) to the 

assumption that TAS = EAS.  Thus, the second and third order terms represent the effect of the EAS→TAS 

conversion on the time to reach sea level.  For example, when starting at a 1000 ft altitude, the higher order 

terms indicate that the EAS→TAS conversion is equivalent to reducing the distance traveled by 139 ft.  

The third order term produces a distance of less than 1 foot below h = 3738 ft.  It can be ignored for 

runways at elevations below 1500 ft. 
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We can substitute DEAS for the h/sin() terms in Eq. (1) through Eq. (12).  For example, the time to 

travel from SAP to PTS, Eq. (1), becomes: 
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This substitution also works for the deceleration segment when deceleration is a constant deceleration 

of the equivalent airspeed because a constant deceleration term can be evaluated in the time integral: 
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Equation (28) is identical to the true airspeed kinematic equation for constant acceleration, with DEAS 

replacing the distance term.  Finally, Eq. (1) through Eq. (12) are modified to use DEAS.  Using example 

values for the generic runway, the final equations for a paired approach without passing are: 
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To compute the runway x-axis coordinate of the fast aircraft when the slow aircraft is at the FAF, one first 

computes the position as a DEAS distance: 
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Then, solve the DEAS formula to determine the starting geometric altitude: 
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      (                                    )         (36) 

                                                 (37) 

The last term, Dfast sin, represents an equivalent airspeed altitude, h'.    Thus, the resulting solution will be 

a conversion from the equivalent airspeed altitude (h') to the geometric altitude (h).  The real cube root of 

Eq. (37) is a complicated formula.  To simplify it, the cube root is expanded into a Taylor series and the 

first four terms of the series are used:   

                                                               (38) 

The runway x-axis coordinate for the fast aircraft is then: 

            (          ) (39) 

As with the TAS model, different values of hTCH, hFAF, and  can be used for the fast aircraft in Eq. (6), the 

DEAS equivalent of Eq. (8), and Eq. (33) to Eq. (39) to accommodate runways with different threshold 

crossing heights, different elevations, or different glideslope angles.   

Finally, the required longitudinal separate at the FAF is: 

                 (40) 

If XFAF differs between the two runways, then use XFAF for the runway of the slow aircraft. Equation (40), 

like Eq. (15), assumes that the runway thresholds are not offset along the x-runway axis direction.  To 

compute the separation compression use Eq. (16). 

Using the prior example of the slow aircraft with a final approach speed of 120 KT and a fast aircraft 

with a final approach speed of 130 KT, the results using the EAS model are: 

 tslow   = 148.1 seconds 

tI-fast  = 135.9 seconds, (tslow - tI-fast) = 12.2 seconds > tdelay so compute XD-fast 

tdecel  =   49.3 seconds 

Dfast  =  36699 ft 

hfast  =    1948 ft 

Xfast  = -36222 ft 

dcompress  =    2080 ft 

SFAF  =    2830 ft 

C. Comparison of  Kinematic Models 

In comparison to the earlier example using the TAS model, the compression length increased from 2017 

ft to 2080 ft, a difference of 63 ft.  So, how can the compression length be larger when the time of flight for 

both aircraft is shorter?  The answer is that the fast aircraft maintains a higher altitude and, therefore, has a 

slightly higher true airspeed, even when the equivalent airspeed is equal to the slow aircraft.  Depending on 

the initial separation, this effect can cause added compression that is greater than the reduced compression 

from the shorter flight time.  It is one limitation of the EAS model.  In the procedure, the fast aircraft uses a 

speed management algorithm that maintains separation through deceleration, effectively causing the fast 

aircraft to track the true airspeed of the slow aircraft.  Therefore, until the fast aircraft decelerates to its final 

approach speed as an equivalent airspeed, the fast aircraft's equivalent airspeed should be slightly lower 

than the equivalent airspeed of the slow.  One could partly compensate for this effect by giving the fast 

aircraft a slightly lower EAS for the constant segment.   

The above example places the fast aircraft about 148 ft above the slow aircraft when the slow aircraft 

reaches the FAF.  If the slow aircraft has an EAS of 180 KT and the fast aircraft is matching the true 

airspeed of the slow aircraft, then the EAS of the fast aircraft would be 179.6 KT when the slow aircraft is 

at the FAF.  Using this slightly lower EAS for Vc for the fast aircraft would reduce the compression 

distance to 2042 ft, a change of 38 ft that leaves a difference between the two models of 25 ft.  This 

adjustment does, however, require at least two iterations of Eq. (29) through Eq. (40).  The first iteration 

approximates hfast in order to adjust Vc for the fast aircraft using Eq. (21), and the second iteration 
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substitutes the adjusted Vc.  Otherwise, there is no simple mechanism to modify the EAS-based model to 

emulate true airspeed matching through deceleration.  Nevertheless, the example results do demonstrate 

that the EAS-based model often provides the more conservative estimate of separation compression.  

Moreover, the EAS-based model remains sufficiently simple to program or to use in generating look-up 

tables; therefore, it can be used in real-time by flight deck or controller systems to generate custom values 

of the front-gate separation for specific aircraft pairs.  

The differences between the EAS kinematic model and the TAS kinematic model are very modest in 

the sea-level example.  The difference in travel time does change substantially with runway elevation.  

Changing runway elevation to 1000 ft in the example above decreases tslow by 4.1 seconds compared to the 

TAS model, almost double the difference at sea level.  However, the difference in separation compression 

is less sensitive to elevation since compression is a function of relative velocity between the aircraft pairs 

and the relative velocity changes more slowly with elevation given that each aircraft experiences nearly the 

same EAS-to-TAS conversion along the path.  The difference in separation compression grows to only 70 

ft or, if setting Vc of the fast aircraft to 179.6 KT to match the true airspeed of the slow aircraft at the FAF, 

the compression difference grows to 32 ft.   

The compression difference, however, is more sensitive to the difference in approach speed between the 

slow and fast aircraft.  If the fast aircraft speed were increased to 140 KT on approach to the generic 

runway, then the difference in separation compression increases to 96 feet or, if setting Vc of the fast 

aircraft to 179.6 KT, the difference increases to 65 ft.  Thus, the EAS model becomes more relevant when 

analyzing the limit on the speed differential for a paired approach procedure.  Also, as paired approaches 

are applied to runway separations as little as 700 feet, wake considerations drive the separation window to 

smaller lengths and require ever tighter performance margins.  Ref. 4 estimated that the fast aircraft must be 

able to maintain position within a separation window of 490 feet to enable parallel, paired approaches 

without passing at 750 ft runway separation.  The differences in separation compression estimates, 

therefore, become a greater percentage of the separation window as runway separation decreases and can 

influence the determination of required aircraft navigation performance and feasible aircraft pairings. 

D. Comparison of Kinematic Models to High Fidelity Simulation 

To validate the EAS model, its predictions of travel time from FAF to runway threshold were compared 

against a high fidelity simulation of a large civil transport.  The high-fidelity simulation is one of the 

models available in the Cockpit Motion Facility at NASA Langley Research Center.
9
 The high-fidelity 

simulation executed the approach using an autothrottle programmed to the speed schedule and an autopilot 

configured to follow localizer and glideslope signals.  Furthermore, sensor errors were disabled so that the 

modeled aircraft would better conform to the approach path.  However, conforming to the speed schedule 

was more challenging.  The high fidelity simulation doesn’t have an autothrottle mode to mimic the 

constant deceleration in the kinematic models.  Moreover, deceleration depends in part on landing gear 

deployment, flaps settings, and speed brake settings, all of which require pilot action.  Therefore, the 

simulation uses a pseudo-pilot algorithm to operate the levers for gear, flaps, and speed brake.  In this 

simulation, the speed-brake deployment is a one-time action at deceleration start, and the lever position is a 

function of the the target deceleration. The speed brake is then retracted prior to achieving the final 

approach speed. Table 2 shows the predictions of travel time using the TAS model, the EAS model, and the 

simulation.  The approach was to KSFO RWY28L (TCH = 57 ft, runway elevation = 13 ft): 

Table 2. Comparison of Approach Times. 

Approach 

Speed (KT) 

Time from FAF to TCH (seconds) 

TAS  

model EAS Model 

High 

Fidelity 

Simulation 

120 149.34 147.58 146.66 

130 140.55 138.87 138.58 

140 132.86 131.25 131.34 

150 126.06 124.52 124.84 

160 120.00 118.52 118.12 
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Except for the 120 KT approach speed, the estimates of travel time from the FAF to the runway 

threshold are nearly the same (within ± 0.4 seconds) for the EAS model and the high fidelity simulation.  

For the 120 KT approach speed, the high fidelity simulation arrives 0.92 seconds earlier than estimated by 

the EAS model.  The 120 KT approach speed requires a deceleration near the limit of what the modeled 

aircraft can achieve when autothrottle is engaged, and the actual speed of the aircraft in the high fidelity 

simulation is closer to 121 KT at the SAP.   When the EAS kinematic model was re-evaluated with an 

approach speed of 121 KT, then the estimated time to threshold changed to 146.47 seconds, which is a 

closer match to the high fidelity simulation.            

E. Variations to the EAS Kinematic Model 

1. Deviations from Standard Day Density 

The EAS model, as presented in section III.B, is tailored to the standard day profile for density in the 

1976 Atmosphere Model. Actual density that departs from the standard day profile will also adjust the 

compression distance.  One can employ the methods used to generate Eq. (24) against adjustments to the 

standard day.  For example, when adjusting density by changing the sea-level temperature, the coefficients 

of Eq. (24) can be formulated as functions of the sea-level temperature (T0) in degrees Rankine: 
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Unfortunately, the conversion back to geometric altitude, i.e. the real root of Eq. (41), is a long formula:
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While leaving T0 as an input parameter, Equation (42) cannot be simplified further using a truncated Taylor 

series in h′ [as was done to obtain Eq. (38)].  It may be possible to eliminate some of the terms as negligible 

but this exercise is left to the reader.  Despite its length, Eq. (42) remains a workable formula for coding 

and executing on computer. Alternatively, one could apply a series of sea-level temperatures to Eq. (41) 

and Eq. (42) in order to produce a series of functions in h′ alone.  Furthermore, the resulting series of 

inverse functions [i.e. those derived from Eq.(41)] could be further simplified using a truncated Taylor 

series.  The resulting coefficients for the series of formulas could then be stored in a look-up table.  This 

alternative would require significantly less computation at the cost of additional memory. 

2. Adding Winds 

The model presented also does not include winds.  Winds speeds are true speeds that are often modeled 

as functions of altitude, i.e. W(h). Thus, in the presences of winds, Eq. (23) changes to: 
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 As solved and simplified by Mathematica™ Release 8.0 
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The integral for dh can be estimated using a Taylor series expansion as was done for Eq. (24).  However, a 

similar algebraic formulation cannot be derived for the deceleration segment because the time and altitude 

terms cannot be segregated into separate integrals: 
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If one makes a simplifying assumption that the wind speed is an equivalent speed rather than a true speed, 

Eq. (44) and Eq. (46) change to: 
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Again, the time and altitude terms for the deceleration segment cannot be segregated into separate integrals 

except in the case where the wind speed is constant with altitude.  In this case, the resulting equations are 

identical to Eq. (24) to Eq. (34) with (VEAS – W) substituted for VEAS.  Therefore, this is the only option for 

generating an algebraic formulation that includes winds. 

3. Adapting the Model to Offset Runways 

As previously discussed, formulation of the models as functions of altitude and glideslope angle 

facilitate the model’s adaptation to runway pairs whose approach geometries may differ by threshold 

crossing height, runway elevation, final approach fix altitude, and glideslope angle.  Accommodating 

runways that are offset in the longitudinal direction requires further adjustment because the equations for 

the procedure termination altitudes [Eq. (4) and Eq. (6)] implicitly assume no offset in the x-axis origin 

between runways.  These equations derive from the assumption that the procedure ends when an aircraft 

crosses the threshold and that longitudinal location is the same whether the slow or fast aircraft crosses the 

threshold first.  With offset runways, the procedure termination altitudes, hPTS and hPTF, now depend on 

which aircraft is expected to cross the threshold first.  The paired-approach without passing is the simpler 

case because the slow aircraft is always expected to cross the threshold first.  For this case, hPTS remains 

unchanged (using Eq. (4) where DWS is zero).  However, Eq. (6) must be modified to include the runway 

offset distance (Doffset) in determining hPTF:  

           (           )      (49) 

However, in the case that allows passing, the fast aircraft can cross the threshold first only if the runway 

offset distance (Doffset) is shorter than wake-safe distance (DWS).  Otherwise, the slow aircraft must cross the 

threshold first if it is to avoid a wake encounter after the first aircraft passes.  In this case, the fast aircraft, 

though ahead of the slow aircraft, is also behind its runway threshold when the procedure terminates.  In 

the case where the fast aircraft reaches the threshold first, hPTF remains unchanged (using Eq. (6) with DCS 

equal to zero) and Eq. (4) must be modified to account for Doffset: 

           (           )      (50) 

In the case where the slow aircraft must cross the threshold first, then hPTS remains unchanged (using Eq. 

(4) where DWS is zero) and Eq. (6) is adjusted for the runway offset as follows: 
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           (           )      (51) 

The equations that compute the runway x-axis distance of the fast aircraft, required separation at the 

FAF (SFAF), and longitudinal compression (dcompress) also need adjustments for offset runways.  Since the 

separation of the fast aircraft relative to the slow is the quantity of interest, the recommended approach is to 

adjust the equations to use the runway coordinates for the slow aircraft as the reference.  For all scenarios, 

Doffset is added to Eq. (10) in the TAS model and Eq. (40) in the EAS model.  In the case of the paired 

approach without passing, no other adjustments are necessary.  However, the TAS model requires 

additional adjustments for the paired approach with passing that depend on which aircraft is expected to 

cross the threshold first.  If the fast aircraft will cross the threshold first, then the TAS model must also add 

Doffset to Eq. (14).  If the slow aircraft will land first, then the TAS model adds the wake-safe distance DWS 

instead of Doffset to Eq. (14).         

F. Model Limitations in Addressing Aircraft Performance Variability 

The equations in this paper model ideal performance; however, the actual performance of aircraft 

varies.  First, the model does not account for path deviation (lateral or along-path flight technical error) 

which can modify the flown distance (and therefore flight time) from FAF to touchdown.  The model also 

does not directly address the variation in the actual altitude where the slow aircraft initiates deceleration.  

Late deceleration will shorten the compression distance; early deceleration will lengthen it.  Nevertheless, 

one can use the model to examine the bounds of late or early deceleration by assigning the altitude of the 

late or early deceleration to the variable hFAF for the slow aircraft.  Likewise, actual deceleration not only 

can vary from the ideal, but it isn’t a square impulse; it ramps up and ramps down.  As demonstrated by the 

comparison with a high-fidelity simulation in section III.D, variability of deceleration appears to have small 

effect.  Even so, one can reformulate the equations to accept a user-defined constant acceleration as an 

input in order to explore the variation bounds for deceleration.  This would require additional equations to 

determine how much of the true (TAS model) or DEAS (EAS model) distance from the FAF to the 

procedure termination height (PTS or PTF) is covered by the deceleration segment and how much remains 

to be flown under the final approach speed.  These equations are necessary to compute both tslow and tI-fast.  

The equations for XD-fast (TAS model) and Dfast (EAS model) are already dependent on an assigned 

acceleration (that of the slow aircraft) and would not need modification.  For example, to compute tslow with 

a user defined acceleration, Eq. (2), Eq. (4), and Eq. (5) would be replaced with 
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where D(h,) is the function for the TAS model [see Eq. (1)] or the EAS model [see Eq. (24)] that converts 

altitude and glideslope angle to glidepath distance from seal level.   

Because much of the distance from FAF to threshold is traveled independently, deviations in actual 

aircraft speed from the scheduled speed can have a large impact on the decrease in longitudinal separation 

between the aircraft.
3
  The TAS and EAS models are both derived using constant speeds and the EAS 

model, in particular, cannot be modified to inject time or distance dependent variations in speed during a 

run.  However, one can assume that, over the course of the approach, the effects of the random component 

of speed variation largely cancel out and that only the bias affects outcome.  Thus, one can explore the 

bounds on speed deviation by applying constant biases to Vf and Vc for the slow and fast aircraft.  The 

worst-case decrease in separation occurs when the negative limit on the velocity bias is applied to the slow 

aircraft and the positive limit on velocity bias is applied to the fast aircraft.
4
  Reference 3 provides an 

example of applying velocity biases to the TAS model to determine the required separation at the FAF that 
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is robust to velocity bias.  Similarly, Ref. 4 provides an example of applying velocity biases to the EAS 

model to determine required separation at the FAF that is robust to velocity bias. 

IV. Conclusions 

A set of algebraic formulas were derived to estimate the travel time and separation loss of aircraft 

participating in a paired approach when the speed schedule of those aircraft is specified using equivalent 

airspeeds.  This model was validated against a high-fidelity model of a civil transport flying the same path 

under autopilot and autothrottle control.  Estimates of time to travel from FAF to threshold generally 

matched the high fidelity simulation within ± 0.4 seconds.  This paper also presented extensions of the EAS 

kinematic model to incorporate differences in sea-level atmospheric density from standard day (using the 

sea-level atmospheric temperature as a model input) and to incorporate constant winds though this 

extension requires treating the wind speed as an equivalent speed rather than a true speed.  However, the 

EAS model could not be extended, algebraically, to wind speed as a function of altitude.  The model also 

assumes an ideal path and does not address the path deviations caused by flight technical error.  

Nevertheless, the model inputs or its equations can be adjusted to explore the deviation bounds in the 

altitude of deceleration start by the slow aircraft, deviation bounds on the average deceleration of each 

aircraft, and bounds on bias in following the speed schedule. 

When the EAS model is compared to similar algebraic formulas derived from the assumption that speed 

schedule is flown as true airspeed (TAS model), the differences in estimates of travel time and separation 

loss are modest.   In the examples presented here, travel time differs up to 4 seconds, and separation loss 

differs by up to a 100 feet.   Nevertheless, the EAS model results are more conservative than the TAS 

model.   Moreover, paired approaches demand ever tighter performance margins as they are applied to 

runways separated by as little as 700 feet.  Under such performance constraints, these modest differences 

have the potential to be significant determinants of required aircraft navigation performance and feasible 

aircraft pairings.  The equations also remain simple enough to implement in real-time decision support 

tools as a higher fidelity alternative to the TAS model.   
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