US 8,993,303 B2

Mar. 31, 2015



US008993303B2

# (12) United States Patent

## Zhou et al.

#### (54) GENETICALLY ENGINEERED CYANOBACTERIA

- (75) Inventors: Ruanbao Zhou, Brookings, SD (US);William Gibbons, Brookings, SD (US)
- (73) Assignee: South Dakota State University, Brookings, SD (US)
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 158 days.
- (21) Appl. No.: 13/405,208
- (22) Filed: Feb. 24, 2012

#### (65) **Prior Publication Data**

US 2012/0276637 A1 Nov. 1, 2012

#### **Related U.S. Application Data**

- (60) Provisional application No. 61/446,366, filed on Feb. 24, 2011, provisional application No. 61/522,685, filed on Aug. 11, 2011.
- (51) Int. Cl.

| C12N 1/21  | (2006.01) |
|------------|-----------|
| C12N 15/00 | (2006.01) |

- (52) U.S. Cl. USPC ...... 435/252.3; 435/243; 435/252.1; 435/320.1
- (58) **Field of Classification Search** None See application file for complete search history.

#### (56) References Cited

#### U.S. PATENT DOCUMENTS

| 6,699,696    | B2   | 3/2004 | Woods et al.            |
|--------------|------|--------|-------------------------|
| 7,531,333    | B2 * | 5/2009 | Miyake et al 435/166    |
| 7,659,097    | B2 * | 2/2010 | Renninger et al 435/157 |
| 7,794,969    | B1   |        | Reppas et al.           |
| 2009/0203070 | A1*  | 8/2009 | Devroe et al 435/69.1   |
| 2010/0003739 |      | 1/2010 | Duhring et al 435/252.3 |
| 2011/0039323 | A1*  | 2/2011 | Singsaas et al 435/167  |

#### FOREIGN PATENT DOCUMENTS

WO 2007084477 A1 7/2007

(10) **Patent No.:** 

(45) Date of Patent:

#### OTHER PUBLICATIONS

A Tomar et al. The Effect of Acetate Pathway Mutations on the Production of Pyruvate in *Escherichia coli*, Applied Microbiology and Biotechnology, 2003, vol. 62, pp. 76.

Mai Li et al. Effect of IpdA Gene Knockout on the Metabolism in *Escherichia coli* Based on Enzyme Activities, Intracellular Metabolite Concentrations and Metabolic Flux Analysis by 13C-labeling Experiments, Journal of Biotechnology, 2006, vol. 122, pp. 254.

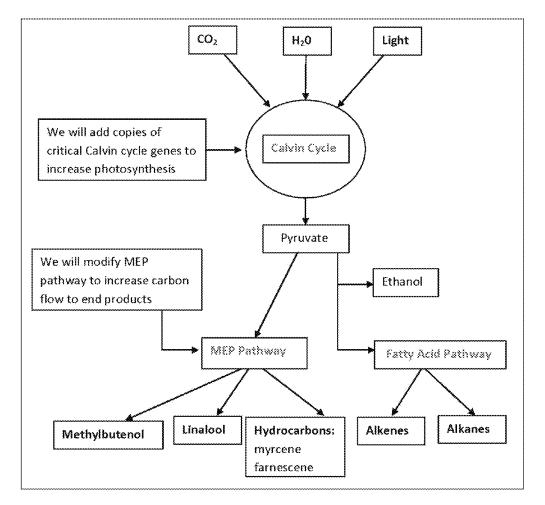
Xiaojie Pan et al. Morphological Characteristics and Phylogenetic Relationship of *Anabaena* Species from Lakes Dianchi and Erhai, China, Hydrobiologia, 2008, vol. 614, pp. 353.

Ruanbao Zhou and C. Peter Wolk, A Two-component System Mediates Developmental Regulation of Biosynthesis of a Heterocyst Polysaccharide, Journal of Biological Chemistry, 2003, vol. 278 (22), pp. 19939.

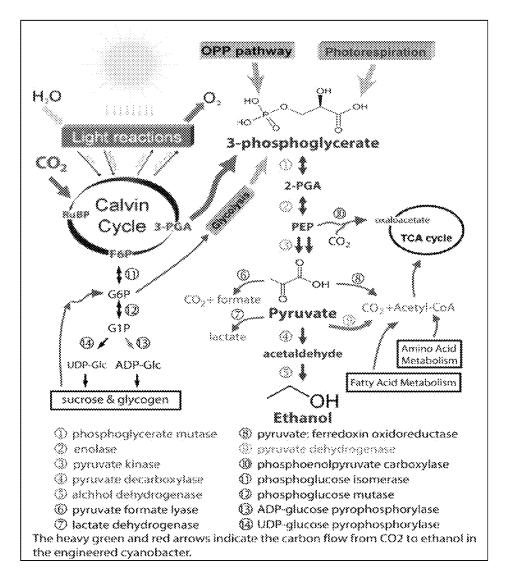
Yoshiko Miyagawa et al. Overexpression of a Cyanobacterial Fructose-1,6-/Sedoheptulose-1,7-Bisphosphatase in Tobacco Enhances Photosynthesis and Growth, Nature Biotechnology, 2001, vol. 19, pp. 965.

T. Iwaki et al. Expression of Foreign Type I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (EC 4.1.1.39) Stimulates Photosynthesis in Cyanobacterium *Synechococcus* PCC7942 Cells, Photosynthesis Research, 2006, vol. 88, pp. 287.

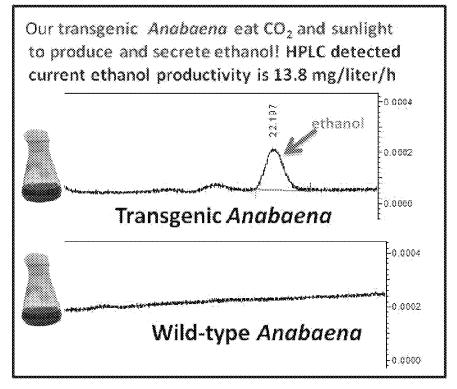
Masahiro Tamoi et al. Contribution of Fructose-1,6-Bisphosphate and Sedoheptulose-1,7-Bisphosphatase to the Photosynthetic Rate and Carbon Flow in the Calvin Cycle in Transgenic Plants, Plant Cell Physiology, 2006, vol. 47 (3), pp. 380.


\* cited by examiner

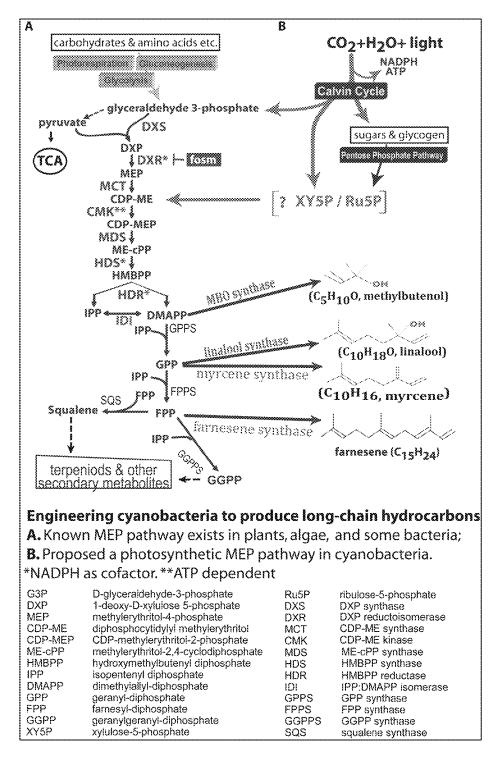
Primary Examiner — Oluwatosin Ogunbiyi (74) Attorney, Agent, or Firm — MDIP LLC

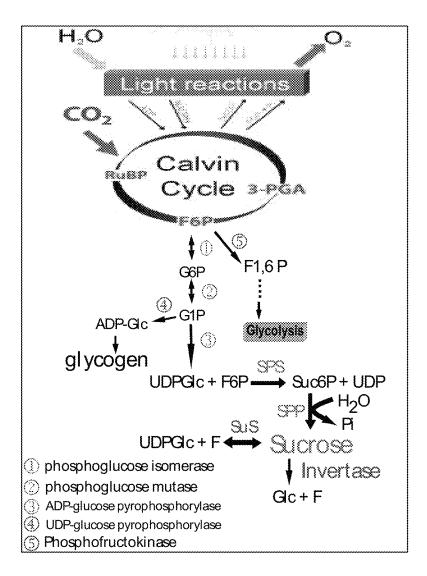

#### (57) ABSTRACT

The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.


#### 10 Claims, 13 Drawing Sheets




**FIG. 1** 




**FIG. 2** 



**FIG. 3** 





**FIG. 5** 

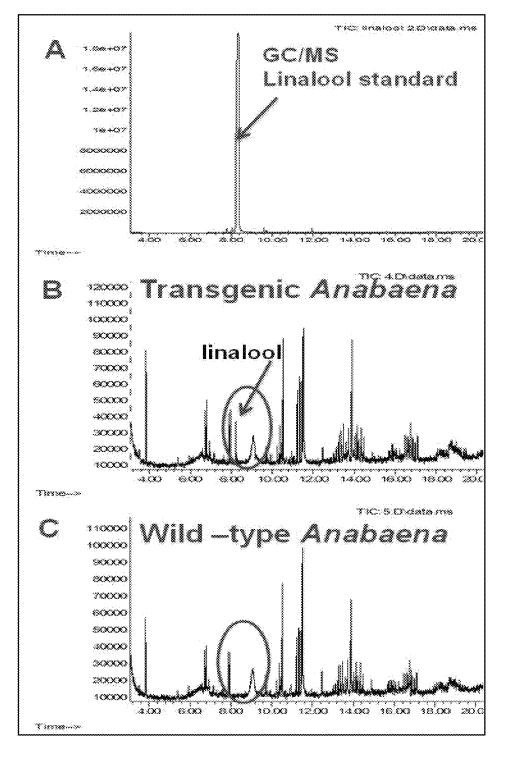



FIG. 6

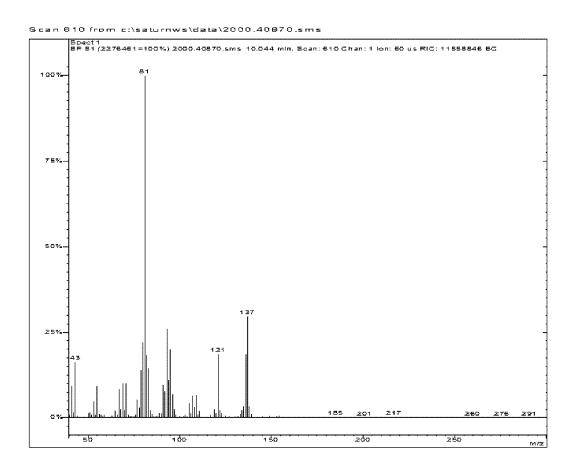



FIG. 7. Mass spectra for linalool standard

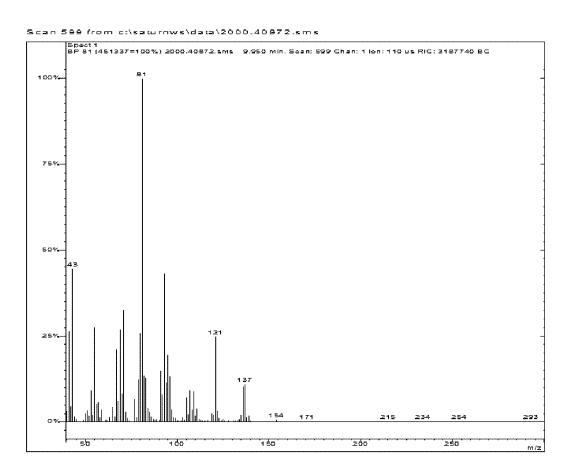



FIG. 8. Mass spectra for linalool produced by engineered *Anabaena* (see FIG. 6B)

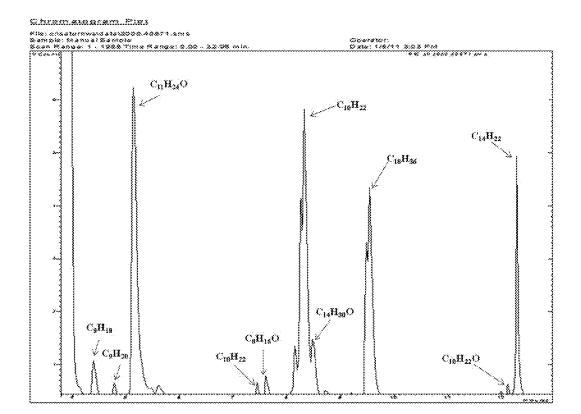



FIG. 9. Hydrocarbons produced by Anabaena cylindrica 29414

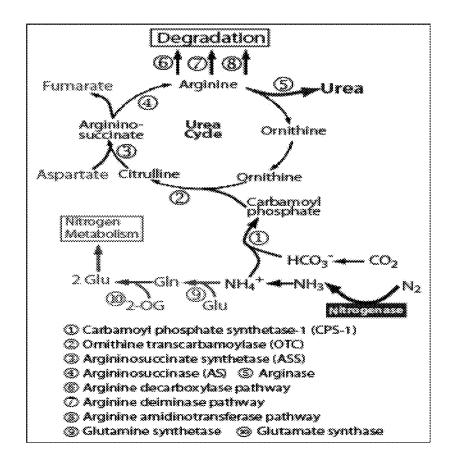



FIG. 10. Engineering Anabaena to synthesize urea using solar energy

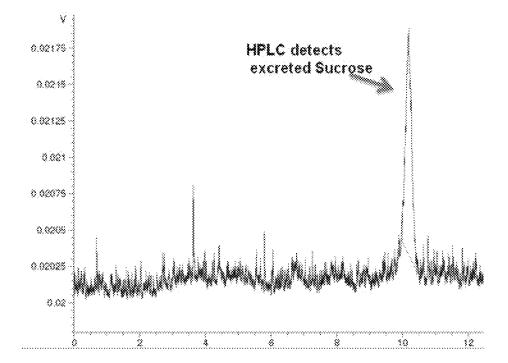



FIG.11. Sucrose produced by Anabaena sp PCC7120

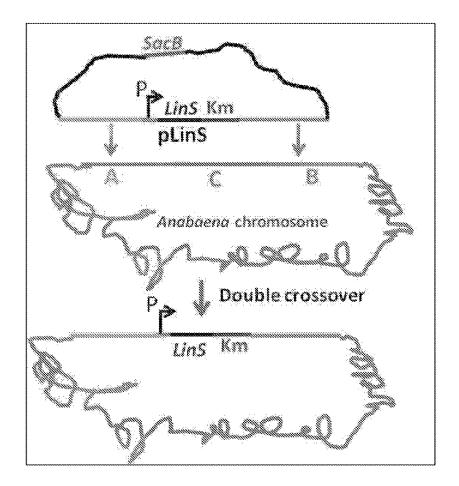



FIG. 12.

A LinS gene is integrated to Anabena chromosome at loci A and B

|                  | Arabidopsis thaliana  | Anabaenasp.<br>PCC 7120 | Anabaena<br>variabilis ATCC<br>29413 | Thennosyne-<br>chococcas<br>elongatusBP-1 | Synechocystis<br>sp.PCC 6803 | Nostoc<br>punctiforme<br>ATCC 29133 |
|------------------|-----------------------|-------------------------|--------------------------------------|-------------------------------------------|------------------------------|-------------------------------------|
|                  |                       | alr0599                 | Ava_4532                             | 186623                                    | sii1945                      | Nptm_F5466                          |
| <b>n</b> 20      | AT 3G 21508 (DXS 1)   | 1E-137                  | 1E-138                               | 15-143                                    | 12-139                       | 15-135                              |
| DXS              | AT 4G 11160 (DXS2)    | 1E-148                  | 1E-149                               | 16-155                                    | 16-149                       | 1Ę-144                              |
|                  | AT 5G 11388 (DXS 3)   | 18-110                  | 1E-110                               | 15-109                                    | 16-103                       | 1E-105                              |
| 0 XR             | 83 5 C 177 M 10       | alr <b>4</b> 351        | Ava_1300                             | th:10-10                                  | sil0019                      | lipun_R5970                         |
| UXK              | AT 1G62798            | 18-151                  | 1E-15'                               | 1E-147                                    | 1E-145                       | 1E-151                              |
|                  | ar 00 0000            | all5167                 | Ava_2414                             | <b>th0605</b>                             | sh0951                       | Hptm_F 5020                         |
| MCT              | AT 2602508            | 28-28                   | 8E-28                                | 58-32                                     | 88-28                        | 35-26                               |
| ~                | AT 20 20220           | alt3230                 | Ava_4887                             | t10500                                    | sil0711                      | lipun_84911                         |
| CMB(             | AT 2G 26338           | 1E-22                   | 2E-22                                | EE -22                                    | 5E-20                        | 28-21                               |
|                  | AT 10 07070           | alr3883                 | Ava_18t1                             | tl:2035                                   | str15-4?                     | Npun_F5826                          |
| MDS              | AT 1663978            | 2E-38                   | 2E-38                                | 2E-38                                     | 6E-36                        | 48-38                               |
|                  | 47.100000             | all2501                 | Ava 0433                             | th:0996                                   | sh2136                       | Npun F5054                          |
| ND S AT JG 60608 |                       | 26-73                   | 4E-73                                | 9E-70                                     | 1E-72                        | 18-72                               |
|                  |                       | all0985                 | Ava 2949                             | ti:1041                                   | sh103.48                     | lipun R3286                         |
| HDR              | AT 4G34318            | 15-148                  | 1E-148                               | 1E-145                                    | 1E-144                       | 1E-142                              |
| ID I             | AT 5G 15448 (1011)    | None                    | None                                 | None                                      | None                         | None                                |
|                  | AT 3G 02758 (1012)    | None                    | None                                 | None                                      | None                         | None                                |
| ~~~~~            |                       | ali0096                 | Ava 1469                             | tli1757                                   | sh0611                       | lipim_P1834                         |
| GPPS             | AT 1672918(GPPS1)     | 1E-95                   | 4E-97                                | 26-38                                     | 4E-99                        | 18-95                               |
|                  | AT 26 34630 (GPPS 2)  | 2E-61                   | 2E-62                                | 2E-58                                     | 2E-61                        | 28-62                               |
|                  |                       | air0096                 | Ava 1459                             | 610020                                    | str0739                      | Npun_R 1834                         |
| FPPS             | AT 5G47778 (FPPS I)   | 6E-04                   | 2E-03                                | SE-06                                     | 5E-04                        | 3E-04                               |
|                  | AT 4G 17190 (FPPS2)   | 48-04                   | 5E-05                                | 5E-05                                     | 6E-03                        | 1E-04                               |
|                  |                       | alr0213                 | Ava_2784                             | til9020                                   | sir0739                      | Npun_F3770                          |
|                  | AT 4G3SC10 (GGPPS T)  | 6E-89                   | 2E-38                                | 1E-99                                     | 7E-88                        | 1E-88                               |
|                  | AT 2623000 (GGPPS2)   | 4E-76                   | 3E-77                                | 3 <b>E-</b> 78                            | 25-75                        | 2E-80                               |
|                  | AT 3G 14350 (GGPPS 3) | 4E-79                   | 6E-79                                | 1E-84                                     | 3E-84                        | 3E-81                               |
| GGPPS            | AT 2G 13640 (GGPPS 9  | 8E-76                   | 1E-76                                | 1E-79                                     | 7E-37                        | 15-79                               |
|                  | AT 1649938 (66PPS6)   | 6E-67                   | 1E-86                                | 3E-65                                     | 7E-77                        | 2E-68                               |
|                  | AT 3G 14530           | 2E-79                   | 3E-79                                | 9E-85                                     | 1E-85                        | \$E-82                              |
|                  | AT 35 32040           | 1E-77                   | 8E-78                                | 4E-81                                     | 4E-81                        | 3E-79                               |
|                  |                       | air1908                 | Aug_4336                             | til 1096                                  | \$110013                     | Npun_R2917                          |
| sas              | AT 4G 31648 (SQS 1)   | 36-08                   | 2E-07                                | 28-16                                     | 2E-09                        | 2E-06                               |
|                  | AT 46 34680 (SQS 2    | 4£45                    | 8E-05                                | 16-13                                     | 1E-07                        | 1E-04                               |
| LinS             | AT 1661608 (TPS 14    | None                    | None                                 | None                                      | None                         | None                                |

\* Arabidops is genes were used for Blast search, single gene found in each genome and its E-value included

# FIG. 13

#### GENETICALLY ENGINEERED CYANOBACTERIA

#### CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/446,366, filed Feb. 24, 2011, and U.S. Provisional Patent Application Ser. No. 61/522,685, filed Aug. 11, 2011, the entire contents of each of which are <sup>10</sup> incorporated herein by reference.

#### STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with U.S. Government Support from the following agencies: USDA (Grant #SA1100114), NSF (Grant #CBET1133951), and NASA (Grant #NNX11AM03A). The U.S. Government has certain rights in this invention.

#### TECHNICAL FIELD

The present disclosure relates to compositions and methods for the production of carbon-based products of interest <sup>25</sup> such as biofuels and high value chemicals by genetically engineered cyanobacteria hosts. The genetically engineered cyanobacteria hosts are optimized for use in production of carbon-based products of interest by strengthening endogenous metabolic pathways of cyanobacteria. In certain <sup>30</sup> instances, competing metabolic pathways are down-regulated. Methods of making and using the genetically engineered cyanobacteria hosts are also described.

#### BACKGROUND

Many existing photoautotrophic organisms are poorly suited for industrial bioprocessing and have therefore not demonstrated commercial viability. Although aquatic photoautotrophs, such as cyanobacteria, may exhibit rapid growth <sup>40</sup> rates and efficient photosynthetic pathways, giving them tremendous potential for sustainable production of carbonbased products of interest from only  $CO_2$ ,  $N_2$ , and sunlight, they have not yet been optimized for production. Such organisms typically require large amounts of water usage as well as <sup>45</sup> time and energy to harvest biomass. Therefore, a need exists to modify existing photoautotroph hosts such that these drawbacks can be overcome.

#### SUMMARY

The present disclosure includes compositions and methods for the production of carbon based products of interest using genetically modified cyanobacteria such as *Anabaena* spp. In certain embodiments, the *Anabaena* spp. are *Anabaena* 55 PCC7120, *Anabaena cylindrica* 29414, or *Anabaena variabilis* ATCC29413. In one aspect of the disclosure, the *Anabaena* spp. is the ethanol producing *Anabaena* sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or the linalool producing *Anabaena* sp. PCC7120 (0 pZR808) strain deposited under ATCC accession number PTA-12832. Generally the *Anabaena* spp. is genetically engineered by expression of at least one recombinant polynucleotide expression construct comprising an enzyme capable of increasing production of a carbon based product of interest. 65

The carbon based product of interest may be ethanol or linolool. In many embodiments, the MEP pathway of the *Anabaena* spp. is up-regulated by modifying at least one gene responsible for control of the MEP pathway in the *Anabaena* spp. Photosynthesis of the *Anabaena* spp. may also be increased through genetic modification. For example, a polynucleotide expression construct comprising a nucleotide sequence encoding RuBisCo and/or RuBisCo activase is contemplated.

In certain embodiments, the *Anabaena* spp. is further genetically modified to produce enzymes capable of increasing specific production of ethanol or linolool. For example, in <sup>10</sup> embodiments that specifically produce ethanol, the *Anabaena* spp. may be genetically engineered to produce decarboxylase (PDC) or alcohol dehydrogenase (ADH). In embodiments specifically producing linolool, the *Anabaena* spp. may be genetically engineered to produce linalool syn-<sup>15</sup> thase.

A disclosed method includes producing a genetically engineered *Anabaena* spp. capable of making a carbon based product of interest by introducing a recombinant enzyme into the *Anabaena* spp, wherein the recombinant enzyme can participate in the *Anabaena* spp's natural metabolic pathway, and modifying at least one competing metabolic pathway to increase production of the carbon based product of interest. In one disclosed aspect, the *Anabaena* spp. is the ethanol producing *Anabaena* sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or the linalool producing *Anabaena* sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832. The natural metabolic pathway may be the MEP pathway or the photosynthetic pathway and the carbon based product of interest may be ethanol or linalool.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 demonstrates the presumptive cyanobacterial carbon metabolic pathways for production of biofuels and high<sup>35</sup> value chemicals.

FIG. **2** demonstrates the modified cyanobacterial carbon metabolic pathway for production of ethanol.

FIG. **3** is ethanol productivity in genetically engineered *Anabaena* as measured by HPLC.

FIG. **4** shows (A) the known MEP pathway as it exists in plants, algae and some bacterial and (B) the proposed synthetic pathway in cyanobacteria.

FIG. **5** shows metabolic pathway for photosynthetic production of sucrose.

FIG. **6** shows (B) linalool production in genetically engineered *Anabaena* as measured by GC/MS and (C) native production of long chain alkanes/alkenes in wild-type *Anabaena* sp. PCC7120.

FIG. 7 shows mass spectra for linalool  $(C_{10}H_{18}O)$  stan-  $^{50}\,$  dard.

FIG. **8** shows mass spectra for linalool produced by engineered *Anabaena*.

FIG. 9 shows hydrocarbons produced by *Anabaena cylindrica* 29414.

FIG. 10 shows engineering  $N_2$ -fixing cyanobacteria to produce urea using solar energy.

FIG. **11** demonstrates sucrose produced by *Anabaena* sp. PCC7120.

FIG. **12** illustrates a LinS gene integrated to *Anabaena* chromosome at loci A and B.

FIG. 13 shows a table of the MEP pathway genes in cyanobacteria.

#### DETAILED DESCRIPTION

For describing invention herein, the exemplary embodiments in detail, it is to be understood that the embodiments are not limited to particular compositions or methods, as the compositions and methods can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. Unless defined otherwise, all techni- 5 cal and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which an embodiment pertains. Many methods and compositions similar, modified, or equivalent to those described herein can be used in the practice of the current embodiments 10 without undue experimentation.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" can include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to "a cytokine" can include a combination 15 of two or more cytokines. The term "or" is generally employed to include "and/or," unless the content clearly dictates otherwise.

As used herein, "about," "approximately," "substantially," and "significantly" will be understood by person of ordinary 20 skill in the art and will vary in some extent depending on the context in which they are used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used, "about" and "approximately" will mean plus or minus  $\leq 10\%$  of particular term and "sub-25 stantially" and "significantly" will mean plus or minus >10%of the particular term.

The term "polynucleotide" refers to a polymeric form of nucleotides of at least 10 bases in length. The term includes DNA molecules (e.g., cDNA or genomic or synthetic DNA) 30 and RNA molecules (e.g., mRNA or synthetic RNA), as well as analogs of DNA or RNA containing non-natural nucleotide analogs, non-native internucleoside bonds, or both. The nucleic acid can be in any topological conformation. For instance, the nucleic acid can be single-stranded, doublestranded, triple-stranded, quadruplexed, partially doublestranded, branched, hairpinned, circular, or in a padlocked conformation. An "isolated" polynucleotide is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural 40 host cell, e.g., ribosomes, polymerases and genomic sequences with which it is naturally associated.

Polynucleotides may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. They may be modified 45 chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, inter- 50 nucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, 55 alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated. In certain embodiments, the polynucleotides are modified such that they contain preferential codon sequence for the 60 host.

The term "percent sequence identity" or "identical" in the context of polynucleotide sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The term "substantial homology" or "substantial similarity," when referring to a polynucleotide, indicates that, when optimally aligned with appropriate

65

nucleotide insertions or deletions with another polynucleotide (or its complementary strand), there is nucleotide sequence identity in at least about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity.

A heterologous sequence is a sequence that is in a different position or in a different amount than what is found in nature, whether or not the heterologous sequence is itself endogenous (originating from the same host cell or progeny thereof) or exogenous (originating from a different host cell or progeny thereof).

A recombinant molecule is a molecule, e.g., a gene or protein, that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the gene is found in nature, (3) is operably linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature. In many embodiments, the recombinant molecule is an enzyme. The term "recombinant" can be used in reference to cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems, as well as proteins and/or mRNAs encoded by such nucleic acids. A coding sequence is considered "recombinant" if it contains an insertion, deletion or a point mutation introduced artificially, e.g., by human intervention.

Molecules are "operably linked" if there is a functional relationship between two parts in which the activity of one part (e.g., the ability to regulate transcription) results in an action on the other part (e.g., transcription of the sequence). Thus, a polynucleotide is "operably linked to a promoter" when there is a functional linkage between a polynucleotide expression control sequence (such as a promoter or other transcription regulation sequences) and a second polynucleotide sequence (e.g., a heterologous polynucleotide), where the expression control sequence directs transcription of the polynucleotide.

An "expression vector" or "construct" refers to a series of polynucleotide elements that are capable of transporting the polynucleotide elements into the host and permitting transcription of a gene in a host cell. Most embodiments require that the host have activity of the gene product as a consequence of being genetically engineered with an expression vector. For example, if the expression vector includes polynucleotide elements encoding a gene for an enzyme, the enzyme should have enzymatic activity after the host is genetically engineered. Typically, the expression vector includes a promoter and a heterologous polynucleotide sequence that is transcribed. Expression vectors or constructs may also include, e.g., transcription termination signals, polyadenylation signals, and enhancer elements. Constructs may also include polynucleotides that make them temperature sensitive, antibiotic resistant, or chemically inducible. Expression vectors can replicate autonomously, or they can replicate by being inserted into the genome of the host cell. In exemplary embodiment, the construct encoding the desired enzyme is present on a "plasmid," which generally refers to a circular double stranded DNA loop into which additional DNA segments may be ligated, but also includes linear double-stranded molecules such as those resulting from amplification by the polymerase chain reaction (PCR) or from treatment of a circular plasmid with a restriction enzyme.

The term "recombinant host cell" or "engineered host cell" (or simply "host cell" or "host") refers to a cell into which a recombinant polynucleotide has been introduced. Recombinant polynucleotides can be used to transform a variety of hosts to produce a carbon-based product of interest. The host must be "competent to express," such that it provides a sufficient cellular environment for expression of endogenous and/ or exogenous polynucleotides. A recombinant host cell may be an isolated cell or cell line grown in culture or may be a cell which resides in a living tissue or organism. Photoautotrophic organism hosts include organisms such as eukaryotic plants and algae, as well as prokaryotic cyanobacteria, green-sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria.

In embodiments, the engineered cell of the invention is an algae and/or cyanobacterial organism selected from the group consisting of Acanthoceras, Acanthococcus, Acaryochloris, Achnanthes, Achnanthidium, Actinastrum, Actinochloris, Actinocyclus, Actinotaenium, Amphichrysis, Amphidinium, 15 Amphikrikos, Amphipleura, Amphiprora, Amphithrix, Amphora, Anabaena, Anabaenopsis, Aneumastus, Ankistrodesmus, Ankyra, Anomoeoneis, Apatococcus, Aphanizomenon, Aphanocapsa, Aphanochaete, Aphanothece, Apiocvstis. Avistonema. Arthrodesmus. Artherospira, 20 Ascochloris, Asterionella, Asterococcus, Audouinella, Aulacoseira, Bacillaria, Balbiania, Bambusina, Bangia, Basichlamys, Batrachospermum, Binuclearia, Bitrichia, Blidingia, Botrdiopsis, Botrydium, Botryococcus, Botryosphaerella, Brachiomonas, Brachvsira, Brachvtrichia, 25 Brebissonia, Bulbochaete, Bumilleria, Bumilleriopsis, Caloneis, Calothrix, Campylodiscus, Capsosiphon, Carteria, Catena, Cavinula, Centritractus, Centronella, Ceratium, Chaetoceros, Chaetochloris, Chaetomorpha, Chaetonella, Chaeto- 30 Chaetonema, Chaetopeltis, Chaetophora, sphaeridium, Chamaesiphon, Chara, Characiochloris, Characiopsis, Characium, Charales, Chilomonas, Chlainomonas, Chlamydoblepharis, Chlamydocapsa, Chlamydomo-Chlamydomonopsis, Chlamydomyxa, nas Chlamydonephris, Chlorangiella, Chlorangiopsis, Chlorella, 35 Chlorobotrys, Chlorobrachis, Chlorochytrium, Chlorococcum, Chlorogloea, Chlorogloeopsis, Chlorogonium, Chlorolobion, Chloromonas, Chlorophysema, Chlorophyta, Chlorosaccus, Chlorosarcina, Choricystis, Chromophyton, Chromulina, Chroococcidiopsis, Chroococcus, Chroodacty- 40 lon, Chroomonas, Chroothece, Chrysamoeba, Chrysapsis, Chrvsidiastrum, Chrvsocapsa, Chrvsocapsella, Chrvsochaete, Chrysochromulina, Chrysococcus, Chrysocrinus, Chrysolepidomonas, Chrysolykos, Chrysonebula, Chrysophyta, Chrysopyxis, Chrysosaccus, Chrysophaerella, Chrysos- 45 tephanosphaera, Clodophora, Clastidium, Closteriopsis, Closterium, Coccomvxa, Cocconeis, Coelastrella, Coelastrum, Coelosphaerium, Coenochloris, Coenococcus, Coenocystis, Colacium, Coleochaete, Collodictyon, Compsogonop-Compsopogon, Conjugatophyta, Conochaete, 50 sis. Coronastrum, Cosmarium, Cosmioneis, Cosmocladium, Crateriportula, Craticula, Crinalium, Crucigenia, Crucigeniella, Cryptoaulax, Cryptomonas, Cryptophyta, Ctenophora, Cyanodictyon, Cyanonephron, Cyanophora, Cyano-Cyclonexis, 55 Cvanothece, Cvanothomonas, phyta. Cyclostephanos, Cyclotella, Cylindrocapsa, Cylindrocystis, Cylindrospermum, Cylindrotheca, Cymatopleura, Cymbella, Cymbellonitzschia, Cystodinium Dactvlococcopsis, Debarya, Denticula, Dermatochrysis, Dermocarpa, Dermocarpella, Desmatractum, Desmidium, Desmococcus, Des- 60 monema, Desmosiphon, Diacanthos, Diacronema, Diadesmis. Diatoma, Diatomella, Dicellula, Dichothrix, Dichotomococcus, Dicranochaete, Dictyochloris, Dictyococcus, Dictyosphaerium, Didymocystis, Didymogenes, Didymosphenia, Dilabifilum, Dimorphococcus, Dinobryon, 65 Dinococcus, Diplochloris, Diploneis, Diplostauron, Distrionella, Docidium, Draparnaldia, Dunaliella, Dysmorphoc6

occus, Ecballocystis, Elakatothrix, Ellerbeckia, Encvonema, Enteromorpha, Entocladia, Entomoneis, Entophysalis, Epichrysis, Epipyxis, Epithemia, Eremosphaera, Euastropsis, Euastrum, Eucapsis, Eucocconeis, Eudorina, Euglena, Euglenophyta, Eunotia, Eustigmatophyta, Eutreptia, Fallacia, Fischerella, Fragilaria, Fragilariforma, Franceia, Frustulia, Curcilla, Geminella, Genicularia, Glaucocystis, Glaucophyta, Glenodiniopsis, Glenodinium, Gloeocapsa, Gloeochaete, Gloeochrysis, Gloeococcus, Gloeocystis, Gloeodendron, Gloeomonas, Gloeoplax, Gloeothece, Gloeotila, Gloeotrichia, Gloiodictyon, Golenkinia, Golenkiniopsis, Gomontia, Gomphocymbella, Gomphonema, Gomphosphaeria, Gonatozygon, Gongrosia, Gongrosira, Goniochloris, Gonium, Gonyostomum, Granulochloris, Granulocystopsis, Groenbladia, Gymnodinium, Gymnozyga. Gyrosigma, Haematococcus, Hafniomonas, Hallassia, Hammatoidea, Hannaea, Hantzschia, Hapalosiphon, Haplotaenium, Haptophyta, Haslea, Hemidinium, Hemitoma, Herib-*Heterothrix*, audiella Heteromastix Hibberdia Hildenbrandia, Hillea, Holopedium, Homoeothrix, Hormanthonema, Hormotila, Hyalobrachion, Hyalocardium, Hyalodiscus, Hyalogonium, Hyalotheca, Hydrianum, Hydrococcus, Hydrocoleum, Hydrocoryne, Hydrodictyon, Hydrosera, Hydrurus, Hyella, Hymenomonas, Isthmochloron, Johannesbaptistia, Juranviella, Karavevia, Kathablepharis, Katodinium, Kephyrion, Keratococcus, Kirchneriella, Klebsormidium, Kolbesia, Koliella, Komarekia, Korshikoviella, Kraskella, Lagerheimia, Lagynion, Lamprothamnium, Lemanea, Lepocinclis, Leptosira, Lobococcus, Lobocvstis, Lobomonas, Luticola, Lyngbya, Malleochloris, Mallomonas, Mantoniella, Marssoniella, Martyana, Mastigocoleus, Gastogloia, Melosira, Merismopedia, Mesostigma, Mesotaenium, Micractinium, Micrasterias, Microchaete, Microcoleus, Micro cystis, Microglena, Micromonas, Microspora, Microthamnion, Mischococcus, Monochrysis, Monodus, Monomastix, Monoraphidium, Monostroma, Mougeotia, Mougeotiopsis, Myochloris, Myromecia, Myxosarcina, Naegeliella, Nannochloris, Nautococcus, Navicula, Neglectella, Neidium, Nephroclamys, Nephrocytium, Nephrodiella, Nephroselmis, Netrium, Nitella, Nitellopsis, Nitzschia, Nodularia, Nostoc, Ochromonas, Oedogonium, Oligochaetophora, Onychonema, Oocardium, Oocystis, Opephora, Ophiocytium, Orthoseira, Oscillatoria, Oxyneis, Pachycladella, Palmella, Palmodictyon, Pnadorina, Pannus, Paralia, Pascherina, Paulschulzia, Pediastrum, Pedinella, Pedinomonas, Pedinopera, Pelagodictyon, Penium, Peranema, Peridiniopsis, Peridinium, Peronia, Petroneis, Phacotus, Phacus, Phaeaster, Phaeodermatium, Phaeophyta, Phaeosphaera, Phaeothamnion, Phormidium, Phycopeltis, Phyllariochloris, Phyllocardium, Phyllomitas, Pinnularia, Pitophora, Placoneis, Planctonema, Planktosphaeria, Planothidium, Plectonema, Pleodorina, Pleurastrum, Pleurocapsa, Pleurocladia, Pleurodiscus, Pleurosigma, Pleurosira, Pleurotaenium, Pocillomonas, Podohedra, Polyblepharides, Polychaetophora, Polyedriella, Polyedriopsis, Polygoniochloris, Polyepidomonas, Polytaenia, Polytoma, Polytomella, Porphyridium, Posteriochromonas, Prasinochloris, Prasinocladus, Prasinophyta, Prasiola, Prochlorphyta, Prochlorothrix, Protoderma, Protosiphon, Provasoliella, Prymnesium, Psammodictyon, Psammothidium, Pseudanabaena, Pseudenoclonium, Psuedocarteria, Pseudochate, Pseudocharacium. Pseudococcomyxa, Pseudodictyosphaerium, Pseudokephyrion, Pseudoncobyrsa, Pseudoquadrigula, Pseudosphaerocystis, Pseudostaurastrum, Pseudostaurosira, Pseudotetrastrum, Pteromonas, Punctastruata, Pyramichlamys, Pyramimonas, Pyrrophyta, Quadrichloris, Quadricoccus, Quadrigula, Radiococcus, Radiofilum,

Raphidiopsis, Raphidocelis, Raphidonema, Raphidophyta, Peimeria, Rhabdoderma, Rhabdomonas, Rhizoclonium, Rhodomonas, Rhodophyta, Rhoicosphenia, Rhopalodia, Rivularia, Rosenvingiella, Rossithidium, Roya, Scenedesmus, Scherffelia, Schizochlamydella, Schizochlamys, Schi- 5 zomeris, Schizothrix, Schroederia, Scolioneis, Scotiella, Scotiellopsis, Scourfieldia, Scytonema, Selenastrum, Selenochloris, Sellaphora, Semiorbis, Siderocelis, Diderocystopsis, Dimonsenia, Siphononema, Sirocladium, Sirogonium, Skeletonema, Sorastrum, Spennatozopsis, Sphaerellocystis, 10 Sphaerellopsis, Sphaerodinium, Sphaeroplea, Sphaerozosma, Spiniferomonas, Spirogyra, Spirotaenia, Spirulina, Spondylomorum, Spondylosium, Sporotetras, Spumella, Staurastrum, Stauerodesmus, Stauroneis, Staurosira, Staurosirella, Stenopterobia, Stephanocostis, Stephanodiscus, 15 Stephanoporos, Stephanosphaera, Stichococcus, Stichogloea, Stigeoclonium, Stigonema, Stipitococcus, Stokesiella, Strombomonas, Stylochrysalis, Stylodinium, Styloyxis, Stylosphaeridium, Surirella, Sykidion, Symploca, Synechococcus, Svnechocvstis, Svnedra, Svnochromonas, Svnura, Tabel- 20 laria, Tabularia, Teilingia, Temnogametum, Tetmemorus, Tetrachlorella, Tetracyclus, Tetradesmus, Tetraedriella, Tetraedron, Tetraselmis, Tetraspora, Tetrastrum, Thalassiosira, Thamniochaete, Thermosynechococcus, Thorakochloris, Thorea, Tolypella, Tolypothrix, Trachelomonas, Trachydis- 25 cus, Trebouxia, Trentepholia, Treubaria, Tribonema, Trichodesmium, Trichodiscus, Trochiscia, Tryblionella, Ulothrix, Uroglena, Uronema, Urosolenia, Urospora, Uva, Vacuolaria, Vaucheria, Volvox, Volvulina, Westella, Woloszynskia, Xanthidium, Xanthophyta, Xenococcus, 30 Zygnema, Zygnemopsis, and Zygonium. In yet other related embodiments, the engineered cell provided by the invention is derived from a Chloroflexus, Chloronema, Oscillochloris, Heliothrix, Herpetosiphon, Roseiflexus, and Thermomicrobium cell; a green sulfur bacteria selected from: Chlorobium, 35 *Clathrochloris*, and *Prosthecochloris*; a purple sulfur bacteria is selected from: Allochromatium, Chromatium, Halochromatium, Isochromatium, Marichromatium, Rhodovulum, Thermochromatium, Thiocapsa, Thiorhodococcus, and Thiocystis; a purple non-sulfur bacteria is selected from: 40 Phaeospirillum, Rhodobaca, Rhodobacter, Rhodomicrobium, Rhodopila, Rhodopseudomonas, Rhodothalassium, Rhodospirillum, Rodovibrio, and Roseospira; an aerobic chemolithotrophic bacteria selected from: nitrifying bacteria. Nitrobacteraceae sp., Nitrobacter sp., Nitrospina sp., Nitro- 45 coccus sp., Nitrospira sp., Nitrosomonas sp., Nitrosococcus sp., Nitrosospira sp., Nitrosolobus sp., Nitrosovibrio sp.; colorless sulfur bacteria such as, Thiovulum sp., Thiobacillus sp., Thiomicrospira sp., Thiosphaera sp., Thermothrix sp.; obligatory chemolithotrophic hydrogen bacteria, Hydrogeno- 50 bacter sp., iron and manganese-oxidizing and/or depositing bacteria, Siderococcus sp., and magnetotactic bacteria, Aquaspirillum sp; an archaeobacteria selected from: methanogenic archaeobacteria, Methanobacterium sp., Methanobrevibacter sp., Methanothermus sp., Methanococcus sp., 55 Methanomicrobium sp., Methanospirillum sp., Methanogenium sp., Methanosarcina sp., Methanolobus sp., Methanothrix sp., Methanococcoides sp., Methanoplanus sp.; extremely thermophilic sulfur-Metabolizers such as Thermoproteus sp., Pyrodictium sp., Sulfolobus sp., Acidianus sp., 60 Bacillus subtilis, Saccharomyces cerevisiae, Streptomyces sp., Ralstonia sp., Rhodococcus sp., Corynebacteria sp., Brevibacteria sp., Mycobacteria sp., and oleaginous yeast; and extremophile selected from Pyrolobus fumarii; Synechococcus lividis, mesophiles, psychrophiles, Psychrobacter, 65 insects, Deinococcus radiodurans, piezophiles, barophiles, hypergravity tolerant organisms, hypogravity tolerant organ8

isms, vacuum tolerant organisms, tardigrades, insects, microbes seeds, dessicant tolerant anhydrobiotic organisms, xerophiles, *Artemia salina*, nematodes, microbes, fungi, lichens, salt tolerant organisms halophiles, halobacteriacea, *Dunaliella salina*, pH tolerant organisms, alkaliphiles, *Natronobacterium, Bacillus firmus* OF4, *Spirulina* spp., *acidophiles, Cyanidium caldarium, Ferroplasma* sp., anaerobes, which cannot tolerate  $O_2$ , *Methanococcus jannaschii*, microaerophils, which tolerate some  $O_2$ , *Clostridium*, aerobes, which require  $O_2$ , gas tolerant organisms, which tolerate pure  $CO_2$ , *Cyanidium caldarium*, metal tolerant organisms, metalotolerants, *Ferroplasma acidarmanus Ralstonia* sp CH34.

In certain embodiments, the host is *Nostoc punctiforme* ATCC29133. In many embodiments, the host is an *Anabaena* spp of cyanobacterium. *Anabaena* provides several advantages above the cyanobacteria currently being genetically modified to produce carbon based products of interest. For example, *Anabaena* is capable of fixing its own  $N_2$  for growth using heterocysts using only solar energy and water, allowing for less investment for growth. In one embodiment, the host is *Anabaena* PCC7120 (*Anabaena* 7120). In another embodiment, the host is *Anabaena variabilis* ATCC29413.

"Carbon-based products of interest" include alcohols such as ethanol, propanol, methylbutenol, linalool, geraniol, isopropanol, butanol, butanetriol, menthol, fatty alcohols, fatty acid esters, wax esters; hydrocarbons (alkanes/alkenes) such as propane, hexane, octane/octane, squalane, myrcene, decene, pinene, farnesene, limonene, diesel, Jet Propellant 8 (JP8); polymers such as terephthalate, 1,3-propanediol, 1,4butanediol, polyols, Polyhydroxyalkanoates (PHA), polybeta-hydroxybutyrate (PHB), acrylate, adipic acid, .epsilon.caprolactone, isoprene, caprolactam, rubber; commodity chemicals such as lactate, Docosahexaenoic acid (DHA), 3-hydroxypropionate, amino acids such as lysine, serine, aspartate, and aspartic acid, sorbitol, ascorbate, ascorbic acid, isopentenol, lanosterol, omega-3 DHA, itaconate, 1,3-butadiene, ethylene, propylene, succinate, citrate, citric acid, sucrose, glutamate, malate, 3-hydroxypropionic acid (HPA), lactic acid, THF, gamma butyrolactone, pyrrolidones, hydroxybutyrate, glutamic acid, levulinic acid, acrylic acid, malonic acid; specialty chemicals including carotenoids such as lycopene, astaxanthin,  $\beta$ -carotene, and canthaxanthin, isoprenoids, itaconic acid; pharmaceuticals and pharmaceutical intermediates such as 7-aminodeacetoxycephalosporanic acid (7-ADCA)/cephalosporin, erythromycin, polyketides, statins, paclitaxel, docetaxel, terpenes, peptides, steroids, omega fatty acids and other such suitable products of interest. Such products are useful in the context of biofuels, i.e. any fuel with one or more hydrocarbons, one or more alcohols, one or more fatty esters or a mixture thereof that derives from a biological source industrial and specialty chemicals, as intermediates used to make additional products, such as nutritional supplements, neutraceuticals, polymers, paraffin replacements, personal care products and pharmaceuticals.

In various embodiments, polynucleotides encoding enzymes are introduced into the host cell such that expression of the enzyme by the host under certain conditions results in increased production of a carbon-based product of interest. In certain cases, introduction takes place through transformation of the host. "Increased production" or "up-regulation" of a carbon-based product of interest includes both augmentation of native production of the carbon-based product of interest as well as production of a carbon-based product of interest in an organism lacking native production. For example, in some instances production will be increased from a measurable initial value whereas in other instances the initial value is zero.

A recombinant expression construct for transformation of a host cell and subsequent integration of the gene(s) of inter- 5 est is prepared by first isolating the constituent polynucleotide sequences. In some embodiments, the gene(s) of interest are homologously integrated into the host cell genome. In other embodiments, the genes are non-homologously integrated into the host cell genome. Generally, constructs containing polynucleotides are introduced into the host cell using a standard protocol, such as the one set out in Golden S S et al. (1987) "Genetic engineering of the Cyanobacteria chromosome" Methods Enzymol 153: 215-231 and in S. S. Golden and L. A. Sherman, J. Bacteriol. 158:36 (1984), incorporated 15 herein by reference. The particular procedure used to introduce the genetic material into the host cell for expression is not particularly critical. Any of the well-known procedures for introducing heterologous polynucleotide sequences into host cells can be used. In certain embodiments, only a single 20 copy of the heterologous polynucleotide is introduced. In other embodiments, more than a single copy, such as two copies, three copies or more than three copies of the heterologous polynucleotide is introduced. As is understood by the skilled artisan, multiple copies of heterologous polynucle- 25 otides may be on a single construct or on more than one construct.

In exemplary embodiments, the disclosed polynucleotides are operably connected to a promoter in the construct. As is understood in the art, a promoter is segment of DNA which 30 acts as a controlling element in the expression of that gene. In one embodiment, the promoter is a native Anabaena promoter. For example, the promoter may be an Anabaena Pnir promoter such as the one described in Desplance, D2005, Combining inducible protein overexpression with NMR- 35 grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 39:405-11 (SEQ ID NO. 1) or one having sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 1. The promoter may also be an Ana- 40 to increase production of ethanol through transformation with baena psbA promoter (SEQ ID NO. 2), Prbc<sub>1</sub> promoter (SEQ ID NO. 3) and/or E. coli Ptac promoter (SEQ ID NO. 4) (Elhai, J. 1993. Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett. 114(2): 179-84) or one having sequence identity of about 76%, 80%, 45 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 2, SEQ ID NO. 3, or SEQ ID NO. 4. In some embodiments, the promoter is a combined dual promoter, i.e. a promoter containing more than one of the above.

In some embodiments, the gene of interest is transiently introduced into the host cell through use of a plasmid or shuttle vector. In other embodiments, the gene of interest is permanently introduced into the chromosome of the host cell. Chromosomal integration techniques are known to the skilled 55 artisan and have been described in Zhou and Wolk, 2002, Identification of an Akinete Marker Gene in Anabaena variabilis, J. Bacteriol., 184(9):2529-2532. Briefly, the gene of interest is fused to a promoter and then subcloned into an integration vector. This construct is introduced into the host 60 cell for double homologous recombination at specific loci on the host cell chromosome. In many embodiments, homologous recombination takes place at two loci of the host cell chromosome. The recombinant cells can be selected by monitoring loss of a conditional lethal gene, such as sacB. Further 65 diagnostic verification by the polymerase chain reaction can be performed. In many embodiments, the gene of interest will

be inserted into the chromosome at the site of a gene that is desired to be deleted or inactivated.

After the host is genetically modified, the host is generally incubated under conditions suitable for production of the carbon-based product of interest. Culture conditions for various hosts are well documented in the literature. Typically, when the host is Anabaena, the host cell will be grown in a photoautotrophic liquid culture in BG-11 media, with an 1 L/min air sparge rate and a pH set point of 7.5, controlled via sparging with  $CO_2$ , and the temperature maintained at  $30^{\circ}$  C.

In many embodiments, strain engineering techniques such as directed evolution and acclimation will be used to improve the performance of various host cells. Strain engineering is known in the art (Hughes, S. R., K. M. Bischoff, W. R. Gibbons, S. S. Bang, R. Pinkelman, P. J. Slininger, N. Qureshi, S. Liu, B. C. Saha, J. S. Jackson, M. C. Cotta, J. O. Rich, and J. Javers. 2011. Random UV-C Mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to Improve Anaerobic Growth on Lignocellulosic Sugars. J. Ind. Microbiol. Biotechnol. DOI 10.1007/x 10295-011-1012-x: Bock, S. A., Fox, S. L. and Gibbons. W. R. 1997. Development of a low cost, industrially suitable medium for production of acetic acid from glucose by Clostridium thermoaceticum. Biotechnol. Applied Bioch. 25:117-125; Gibbons, W. R., N. Pulseher, and E. Ringquist. 1992. Sodium meta bisulfite and pH tolerance of Pleurotus sajor caju under submerged cultivation. Appl. Biochem. Biotechnol. 37:177-189.

As host cells generally possess complex regulatory systems for traits such as product tolerance, productivity, and yield, directed evolution and screening is often used to create global genome-wide alterations needed to develop strains with desired industrial characteristics. Certain embodiments will use directed evolution under elevated linalool concentrations, as well as fluctuating temperature, pH, and CO2/O2 levels to generate stable, heritable genetic improvements in product tolerance, productivity, yield, and robustness to process conditions.

A. Ethanol

In one embodiment, the host cell is genetically engineered an expression vector containing polynucleotides encoding ethanol producing enzymes. As used herein, an ethanol producing enzyme is an enzyme active in the end production of ethanol from a precursor molecule in a metabolic pathway. The polynucleotide encodes pyruvate decarboxylase (SEQ ID NO. 5) and/or alcohol dehydrogenase (SEQ ID NO. 6) in exemplary embodiments. Embodiments also include enzymes having sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 5 and SEQ ID NO. 6. The host is genetically engineered with polynucleotides encoding one or both enzymes. In many embodiments, host cells are engineered to express both enzymes. Known sources of polynucleotides encoding pyruvate decarboxylase and alcohol dehydrogenase exist. For example, the nucleic acid encoding the enzymes may be from organisms such as Zymomonas mobilis, Zymobacter paimae, or Saccharomyces cerevisciae (Ingram L O, Conway T, Clark D P, Sewell G W, Preston J F. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 53(10):2420-5). Any pyruvate decarboxylase (pdc) gene capable of expression in the host may be used in with the disclosed embodiments. In some embodiments, the pdc gene is the Zymomonas mobilis pdc gene. In these embodiments, the pdc gene is often obtained from the Zymomonas mobilis plasmid pLOI295. In other embodiments, the pdc gene is from Zymobacter paimae. The NCBI accession number for the complete pdc

protein sequence from *Zymobacter paimae* is AF474145. Similarly, any alcohol dehydrogenase (adh) gene capable expression in the host may be used with the disclosed embodiments. In some embodiments, the adh gene is the *Zymomonas mobilis* adhII gene. In these embodiments, the adh gene is often obtained from the *Zymomonas mobilis* plasmid pLOI295.

Polynucleotides encoding genes such as omrA, lmrA, and lmrCD, which increase the ability of the host to handle commercially relevant amounts of ethanol, may be included on 10 the same or a different vector as the polynucleotides encoding the pdc and adh genes. Bourdineaud J P, Nehmé B, Tesse S, Lonvaud-Funel A. 2004. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int. J. Food Microbiol. 92(1):1-15 14. For example, in some embodiments, the expression vector comprising the pdc/adh genes further comprises the omrA gene. In other embodiments, the expression vector comprising the pdc/adh genes further comprises the lmrA gene. In yet other embodiments, the expression vector comprising the 20 pdc/adh genes further comprises the lmrCD gene. And in still further embodiments, the expression vector comprising the pdc/adh genes further comprises polynucleotides encoding the omrA, lmrA, and lmrCD genes.

In host cells producing increased ethanol, the synthesis of 25 pyruvate is additionally up-regulated in certain embodiments. In these embodiments, phosphohoglycerate mutase, enolase, and/or pyruvate kinase, are over-expressed. A construct containing genes of one or more of the above enzymes is designed using genes from *Z. mobilis* and *S. cerevisiae*. The construct 30 is then used to genetically engineer a host.

Ethanol producing Anabaena sp. PCC7120 (pZR672) strain was deposited at the American Type Culture Collection on Feb. 27, 2012, and given accession number PTA-12833. PTA-12833 was deposited with the American Type Culture 35 Collection ATCC at 10801 University Blvd. Manassas Va. 20110-2209 USA. The deposit was made under the provisions of the Budapest Treaty on the International Recognition of Deposited microorganisms for the Purposes of Patent Procedure and Regulations thereunder Budapest Treaty). Main- 40 tenance of a viable culture is assured for thirty years from the date of deposit. The organism will be made available by the ATCC under the terms of the Budapest Treaty, and subject to an agreement between the Applicants and the ATCC which assures unrestricted availability of the deposited cells to the 45 public upon the granting of patent from the instant application.

B. Sucrose

In yet another embodiment, the host cell is engineered to increase the production and excretion of sucrose through 50 transformation with an expression vector containing polynucleotides encoding sucrose producing enzymes. As used herein, a sucrose producing enzyme is an enzyme active in the end production of sucrose from a precursor molecule in a photosynthetic pathway. In these embodiments, a polynucle- 55 otide encoding sucrose-phosphate synthase (SPS) and/or sucrose-phosphate phosphatase (SPP) is introduced into the host cell and expressed such that the host cell increases its production of sucrose. Known sources of SPS and SPP exist and any SPS or SPP gene capable of expression may be used 60 with the disclosed embodiments. For example, polynucleotide encoding SPS and SPP may be from organisms such as sugar beet and sugar cane such as those in SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 9. In other embodiments, the polynucleotides have sequence identity of about 76%, 80%, 65 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 7, SEQ ID NO. 8, and SEQ ID

NO. 9. In an alternative embodiment, the polynucleotide encoding SPS and is from cyanobacteria such as *Synchocystis, Anabaena*, or the like. Polynucleotides of SPS from cyanobacteria are shown in SEQ ID NO. 10 and SEQ ID NO.

11. In certain embodiments, SPS polynucleotides have sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 10 and SEQ ID NO. 11.

In exemplary embodiments, the expression vector encoding SPS and/or SPP includes a promoter. For example, in some embodiments, the expression vector includes an *Anabaena* PpsbA promoter. In this embodiment the expression vector may be shuttle vector pRL489, such as the one described in Elhai J 1993 Strong and regulated promoters in the cyanobacterium *Anabaena* PCC7120. *FEMS Microbiol. Lett.* 114(2): 179-84.

In many embodiments where sucrose production has been increased, intracellular sucrose concentrations are reduced by over-expression of sucrose exporter genes. A sucrose exporter gene is a gene encoding a polypeptide involved in the transport of sucrose out of the cell. An example sucrose exporter gene includes the sucrose exporter gene from maize, i.e. ZmSUT1 (Slewinski et al., 2009. Sucrose transporter 1 functions in phloem loading in maize leaves. J. Exp. Bot. 60 (3):881-892). A sucrose exporter gene is demonstrated by SEQ ID NO. 12. In some embodiments, the sucrose exporter genes have sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 12. The host in certain embodiments is genetically engineered with a sucrose exporter gene which is on the same construct as SPS and/or SPP. In other embodiments, the sucrose exporter genes may be from sugarcane and cloned into a separate expression vector or integrated into the chromosome of the host cells. Reinders A, Sivitz A B, Hsi A, Grof C P, Perroux J M, Ward J M. 2006. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Plant Cell Environ. 29(10):1871-80 demonstrates the sucrose exporter gene of SEQ ID NO. 13. In exemplary embodiments, the sucrose exporter genes have sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 13 C. Urea

Additionally, other urea cycle pathway intermediates are up-regulated and non-urea producing metabolic pathways are down-regulated or blocked in exemplary embodiments. For example, in one embodiment the urea cycle genes, i.e. CPS-1, OTC, ASS, and AS, are up-regulated. Polynucleotides encoding the genes are operably connected to an *Anabaena* PglnA promoter and the host cell is genetically engineered with the construct.

D. Long Chain Alkanes

In still another embodiment, host cells are engineered to increase production of long chain hydrocarbons such as alkanes/alkenes, i.e. C8-C18. In many embodiments with increased production of long chain hydrocarbons, secretion of the long chain hydrocarbons is also increased. Anabaena is innately capable of producing and secreting long-chain alkanes/alkenes. Long chain alkanes/alkenes can be produced in Anabaena from both the fatty acid pathway and the MEP pathway. In the fatty acid pathway, acyl-ACP reductase (AR) combined with aldehyde decarbonylase (AD) convert fatty acid to alkanes/alkenes Schirmer A, Rude M A, Li X, Popova E, del Cardayre S B. 2010. Microbial biosynthesis of alkanes. Science. 329(5991):559-62. In embodiments where host cells are engineered to increase production of long chain alkanes, the host cell is genetically engineered with a polynucleotide encoding AR and/or AD. Known sources of AR

and AD exist in many cyanobacteria and any AR and AD gene capable of expression may be used with the disclosed embodiments. In many embodiments, the AR and/or AD genes are native *Anabaena* genes, i.e. native AR and/or AD are over-expressed. For example, in one embodiment the 5 AR/AD genes will be from *Anabaena cylindrica* 29414 such as those demonstrated by SEQ ID NO. 14 and SEQ ID NO. 15. In other embodiments, the AR and AD genes have sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ 10 ID NO. 14 and SEQ ID NO. 15.

E. Long-Chain Hydrocarbons from Isoprenoid Biosynthesis Pathway

In still another embodiment, the host cell is engineered to increase the production of carbon-based products of interest 15 from the native isoprenoid biosynthesis pathway, i.e. the 2-Cmethyl-D-erythritol 4-phosphate (MEP) pathway. In many embodiments, excretion of the carbon-based products of interest is also increased. DMAPP and IPP, the early precursors for many carbon-based products of interest are made 20 through MEP pathway in Anabaena. In heterotrophic organisms, DMAPP and IPP are made from precursors mainly derived from glucose through gluconeogenesis. However, as demonstrated in FIG. 4 photosynthetic organisms produce DMAPP and IPP from precursors directly synthesized from 25 CO<sub>2</sub> via the Calvin cycle and perhaps also from photorespiration. Cyanobacteria, in addition to initiating the MEP pathway via glyceraldehyde-3-phosphate (G3P) and pyruvate, can use phosphorylated sugars directly from the Calvin cycle as precursors for entering into the MEP pathway. Due to their 30 higher photosynthetic efficiency and greater innate MEP pathway flux for making DMAPP and IPP precursors, cyanobacteria, such as Anabaena are especially suited for engineering production of excreted carbon-based products of interest. Therefore, genetically engineering photosynthetic organisms 35 such as Anabaena to produce MEP pathway carbon-based products of interest has greater advantages than genetically engineering heterotrophic organisms.

In some embodiments, components of the MEP pathway are up-regulated to manipulate the DMAPP and IPP pool so 40 as to maximize production of carbon-based products of interest. This up-regulation is achieved through transformation of the host by an expression vector with polynucleotides containing one or more of the eight genes of the MEP pathway. FIG. 4 and FIG. 13 show the individual components of the 45 MEP pathway. The genes responsible for the MEP pathway include dxs, dxr, mct, cmk, mds, hds, hdr, and idi. In many cases, the MEP pathway polynucleotide expression may be constructed as a synthetic operon. This operon is fused to an Anabaena psbA promoter in pZR807 (a pNIR derivative 50 shuttle vector) in many embodiments. In certain embodiments, the dxr, hds, and hdr are from Svnechocvsitis sp. PCC6803. In Synechocysitis, the corresponding genes are sll0019, slr2136, and slr0348 respectively. In another embodiment, DXS will be overexpreesed. Kuzuyama T, 55 Takagi M, Takahashi S, Seto H.2000. Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 182(4):891-7, Cordoba E, 60 Salmi M, Leon P. 2009. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot. 60(10):2933-43, Alper H, Fischer C, Nevoigt E, Stephanopoulos G. 2005. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA. 102:12678-83, 65 Alper H, Stephanopoulos G. 2008. Uncovering the gene knockout landscape for improved lycopene production in E.

14

*coli. Appl. Microbiol. Biotechnol.* 78:801-10. In this embodiment, to overexpress DXS, the DXS gene (alr0599) from *Anabaena* will be PCR amplified with primers containing restriction sites and a ribosome binding site. The resulting PCR product will be fused to a nitrate-inducible promoter Pnir and cloned into pZR807, a shuttle plasmid that can replicate both in *E. coli* and *Anabaena*. This construction will be introduced into *Anabaena* for overexpression of DXS.

The genes of the MEP pathway are generally placed into the operon in the pathway order, although this is not required. The genes may be flanked with restriction nuclease sites non-native to the applicable genes to make insertion and deletion of specific genes more convenient. When the restriction sites are intended to allow removal of a portion of the operon and replacement with another sequence, different restriction enzyme sites are used on each side of the portion of the operon. When the restriction sites are intended to allow removal of a portion of the operon and not be replaced, the same restriction nuclease site exists on both sides. In most embodiments, restriction nuclease sites are engineered to produce sticky-ends. Polynucleotide sequences for individual genes have engineered ribosome binding sites in many embodiments. In some instances, the genes additionally include spacer sequences for enhancing translation of target genes.

a. Linalool (C10H18O)

Linalool ( $C_{10}H_{18}O$ ) is a carbon-based product of interest produced from the MEP pathway where the universal isoprenoid intermediate geranyl disphosphate (GPP) is converted to linalool by linalool synthase (LinS) (see FIG. 4). In these embodiments, host is genetically engineered with a polynucleotide encoding LinS such that the host cell has up-regulated production of linalool. Known sources of LinS genes exist and any LinS gene capable of being expressed may be used with the disclosed embodiments. For example, polynucleotide encoding LinS may be from a Norway Spruce. In many embodiments, the polynucleotide encoding LinS is not native to *Anabaena*. LinS genes such as CbLinS, McLinS, and LaLinS are well studied and contemplated for use in the disclosed embodiments.

TABLE 1

| Genes                | s required f | or linalool pro  | duction i  | in engineering            | cyanobacteria                                         |
|----------------------|--------------|------------------|------------|---------------------------|-------------------------------------------------------|
|                      | Gene<br>name | Accession<br>No. | Km<br>(µM) | Organism                  | References                                            |
| linalool<br>synthase | LaLINS       | DQ263741         | 47.4       | Lavandula<br>angustifolia | Landmann<br>et al., 2007                              |
|                      | Mc Lis       | AY083653         | 25         | Mentha<br>citrata         | Crowell et al.,<br>2002                               |
|                      | CbLis        | U58314           | 0.9        | Clarkia<br>breweri        | Pichersky<br>et al., 1995<br>Dudareva<br>et al., 1996 |

In exemplary embodiments, the expression vector encoding LinS includes a promoter. For example, in some embodiments, the expression vector includes an *Anabaena* Pnir promoter. In this embodiment the expression vector may be a shuttle vector pZR807.

In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as LinS. This transformation may include a single expression vector or multiple expression vectors. In other embodiments, a LinS gene is fused to a promoter and then subcloned into an integration vector and this resulting construction pLinS is then introduced into the host cell for double

homologous recombination. The double recombinants are then selected by loss of a conditional lethal gene such as sacB.

Linalool producing Anabaena sp. PCC7120 (pZR808) strain was deposited at the American Type Culture Collection on Feb. 27, 2012, and given accession number PTA-12832. 5 PTA-12832 was deposited with the American Type Culture Collection (ATCC) at 10801 University Blvd., Manassas, Va. 20110-2209 (USA). The deposit was made under the provisions of the Budapest Treaty on the International Recognition of Deposited microorganisms for the Purposes of Patent Pro- 10 cedure and Regulations thereunder (Budapest Treaty). Maintenance of a viable culture is assured for thirty years from the date of deposit. The organism will be made available by the ATCC under the terms of the Budapest Treaty, and subject to an agreement between the Applicants and the ATCC which assures unrestricted availability of the deposited cells to the public upon the granting of patent from the instant application.

b. Methylbutenol (C<sub>5</sub>H<sub>10</sub>O)

Another carbon-based product of interest produced by an 20 intermediate product from the MEP pathway, i.e. DMAPP, is methylbutenol (MBO). Methylbutenol is produced in the MEP pathway when DMAPP is converted to methylbutenol by methylbutenol synthase (MboS). In these embodiments, host cell is genetically engineered with a polynucleotide 25 encoding MboS such that the host cell has up-regulated production of methylbutenol. Known sources of MboS exist and any MboS gene capable of being expressed may be used with the disclosed embodiments. In certain embodiments, the polynucleotide encoding MboS is from Pinus sabiniana and 30 listed as below. Gray D W, Breneman S R, Topper L A, Sharkey T D. 2011, Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. J Biol. Chem. 286(23):20582-90. SEQ ID NO. 16. In other 35 embodiments, MboS have sequence identity of about 76%, 80%, 85%, at least about 90%, and at least about 95%, 96%, 97%, 98% or 99% to SEQ ID NO. 16.

In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP path- 40 way as well as MboS. This transformation may include a single expression vector or multiple expression vectors.

c. Myrcene  $(C_{10}H_{16})$ 

Yet another carbon-based product of interest produced from an intermediate of the MEP pathway is myrcene. 45 Myrcene is produced in the MEP pathway where the universal isoprenoid intermediate geranyl disphosphate (GPP) is converted to myrcene by myrcene synthase (MyrS) Dudareva N, Martin D, Kish C M, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J. 2003. (E)-beta-ocimene and myrcene 50 synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell. 15(5):1227-41. Martin D M, Fäldt J, Bohlmann J. 2004. Functional characterization of nine Norway Spruce TPS genes and evolution of 55 gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135(4):1908-27. Lijima Y, Davidovich-Rikanati R, Fridman E, Gang D R, Bar E, Lewinsohn E, Pichersky E. 2004. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes 60 in the peltate glands of three cultivars of basil. Plant Physiol. 136(3):3724-36. No MyrS gene is founded in cyanobacterial genomes. In these embodiments, host is genetically engineered with a polynucleotide encoding MyrS such that the host cell has increased production of myrcene. Known 65 sources of MyrS exist and any MyrS gene capable of being expressed may be used with the disclosed embodiments. In

many embodiments, the polynucleotides encoding MyrS may be chosen from the organisms listed in the following table:

TABLE 2

| Myrcene synthase gene required for engineering<br>cyanobacteria to produce myrcence |                                        |                                              |                                                                      |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                                                     | Gene<br>Name                           | Accession<br>No.                             | Organism                                                             |  |  |  |  |  |  |  |  |  |
| Myrcene synthase<br>(MyrS)                                                          | Ag.2.                                  | U87908                                       | Abies grandis                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                     | Amale20<br>PaTPs-Myr<br>MyS<br>Ama0c15 | AA041726<br>AY473626<br>AAV63791<br>AY195608 | Antirrhinum majus<br>Norway Spruce<br>Ocimum basilicum<br>Snapdragon |  |  |  |  |  |  |  |  |  |

In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as MyrS. This transformation may include a single expression vector or multiple expression vectors.

d. Farnesene (C<sub>15</sub>H<sub>24</sub>)

And still another carbon based product of interest produced by MEP pathway is farnesene. Farnesene is produced in the MEP pathway by conversion of geranyl-diphosphate (GPP) to farnesyl-diphosphate (FPP) by FPP synthase (FPPS). Subsequently, FPP is converted to farnesene by farnesene synthase (FarS) Maruyama T, Ito M, Honda G. 2001. Molecular cloning, functional expression and characterization of (E)beta farnesene synthase from Citrus junos. Biol. Pharm. Bull. 24:1171-5 and Picaud S, Brodelius M, Brodelius P E. 2005. Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry. 66(9):961-7. In Anabaena, only a putative FPPS gene exists and no FarS gene is found. In these embodiments, host cell is genetically engineered with a polynucleotide encoding FPPS and FarS such that the host cell has increased production of farnesene. Known sources of FPPS and FarS exist and any FPPS or FarS gene capable of being expressed may be used with the disclosed embodiments. In many embodiments, the polynucleotides encoding FPPS and FarS are chosen from the organisms listed in the following table:

TABLE 3

|                                            | Gene<br>Name | Accession<br>No. | Organism                 |
|--------------------------------------------|--------------|------------------|--------------------------|
| Farnesyl<br>diphosphate<br>synthase (FPPS) | FDSI         | AY308477         | Artemisis tridentate     |
|                                            | TbFPPS       | AY158342         | Trypanosoma brucei       |
|                                            | FPS2         | NP_974565        | Arabidopsis thaliana     |
|                                            | ispA         | NP-414955        | <i>E. coli</i> K-12      |
|                                            | pFPS2        | U20771           | Lupinus albus            |
| Farnesene synthase<br>(FarS)               | AFS1         | AY182241         | Malus domestica          |
|                                            | CJFS         | AF374462         | Citrus junos             |
|                                            | CmTpsDul     | EU158099         | Cucumis melo L.          |
|                                            | FS           | AY835398         | Artemisis annua          |
|                                            | PmeTPS4      | AY906867         | Pseudotsuga<br>menziesii |

In certain embodiments, the FPPS and FarS will be from the same organism. In other embodiments, the constructs will include FPPS and FarS from different organisms. In many embodiments, a host cell is genetically engineered with both polynucleotide encoding genes of the MEP pathway as well as FPPS and FarS. This transformation may include a single expression vector or multiple expression vectors.

45

65

In most embodiments, production of carbon-based products of interest is further optimized. For example, photosynthesis is optimized and/or competing metabolic pathways are blocked or inactivated. Photosynthetic rates can be increased by the over-expression of RuBisCo and RuBisCo activase. Hudson G S, Evans J R, von Caemmerer S, Arvidsson Y B, Andrews T J. 1992. Reduction of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Content by Antisense RNA Reduces Photosynthesis in Transgenic Tobacco Plants. Plant Physiol. 98, 294-302 and Peterhansel C, Niessen M, Kebeish R M. 2008. Metabolic engineering towards the enhancement of photosynthesis. Photochem. Photobiol. 84:1317-23. In embodiments where host cells producing the carbon-based products of interest using CO<sub>2</sub> and H<sub>2</sub>O as the starting material, the hosts are often additionally genetically engineered 15 with polynucleotides encoding RuBisCo and RuBisCo activase.

When carbon-based products of interest are produced from the MEP pathway, glycogen synthesis, which competes with the MEP metabolic pathway in the host is down-regulated or 20 blocked in many embodiments. Glycogen synthesis is downregulated or blocked by the down-regulation or block of ADPglucose pyrophosphorylase (ADP-GPPase) activity. Pyruvate dehydrogenase (PDH) is additionally or alternatively blocked in these embodiments. GPP flux may be optimized 25 by downregulating farnesyl-disphosphate synthase (FPPS). Additionally, in certain embodiments genes for the tolerance of a host cell to economically relevant concentrations of the carbon based product of interest are included. In embodiments where competing carbon pathways are blocked or partially inactivated, this may be done using any method known in the art. For example, enzymes in competing pathways can be knocked out or have their activity blocked or reduced. In certain embodiments, unmarked gene deletion created by double-crossover to delete target genes is used to delete Anabaena genes.

#### EXAMPLES

The invention may be further clarified by reference to the following Examples, which serve to exemplify some of the 40 embodiments and not to limit the invention in any way. The experiments were performed using the methodology described below.

#### Example 1

#### Conjugation

Briefly, host cells are harvested by centrifugation and resuspended in medium at a concentration of about  $2-5 \times 10^8$  50 cells per ml. To one ml of this cell solution is added the appropriate construct to a final concentration of 2 µg/ml. Host cells are incubated in the dark for 8 hours followed by a 16 h light incubation prior to plating on media plates containing antibiotic. Plates are incubated under standard growth condi-55 tions (30° C. light intensity of 100 µmol photons m-2 S-1). Antibiotic resistant colonies are chosen and the genetically modified host cells are grown, bubbling with air at 30° C. and a light intensity of 100 µmol photons m-2 S-1 in liquid 60 medium containing an appropriate antibiotic

#### Example 2

#### Culture Growth

Transgenic cyanobacter cultures will be grown in liquid BG-11 medium in a lighted shaker (Innova 44R, New Brunswick Scientific) at 30° C. and 150 µmol photons m-2 s-1. One week-old cultures will be used to re-inoculate 500 ml Erlenmeyer flasks containing 100 ml liquid BG11, which will then be incubated at 30° C. and 150 µmol photons m-2 s-1 with a 24 h lighting set. Heterotrophic cultures will be supplemented with 100 g L-1 glucose. Samples will be collected at regular intervals and analyzed for product production, as well as chlorophyll content. Chlorophyll will be measured with a spectrophotometer.

#### Example 3

#### Ethanol Production

Both  $pdc_{zm}$  and  $adhB_{zm}$  coding regions, with an engineered optimized SD sequence (ribosome binding site) immediately upstream of their initiation codons were PCR amplified from pLOI295, which contains both  $pdc_{zm}$  and  $adhB_{zm}$  in an artificial operon. See Ingram L O et al. 1987 Genetic Engineering of Ethanol Production in Escherichia coli. Appl. Environ. Microbiol. 53(10):2420-5. The DNA fragment was fused to Anabaena nitrate inducible promoter (nir) in shuttle vector. See Desplancq, D. et al. 2005 Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 39:405-11 and Frias et al. 2000. Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol. Microbiol. 38:613-25. This construct, named pZR672, was introduced into Anabaena by conjugation. See Zhou, R. and Wolk, C. P. 2002. Identification of an akinete marker gene in Anabaena variabilis. J Bacteriol. 184:2529-32; Wolk, C. P. et al. 1984 Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc Natl Acad Sci USA. 81:1561-5; and Zhou, R. and Wolk, C. P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J Biol. Chem. 278:19939-46. Genetically engineered hosts were selected in a nitrate-minus (AA/8 medium) Kan plate. Tests of ethanol production were done using well established protocols. Current ethanol productivity, as shown in FIG. **3** is about 13.8 mg/liter/h/ $1.0A_{700}$ .

#### Example 4

#### Sucrose Production

Both sps and spp coding regions, with an engineered optimized SD sequence (ribosome binding site) immediately upstream of their initiation codons will be PCR amplified from sugarcane/sugar beet cDNA. The DNA fragment will be fused to Anabaena nitrate inducible promoter (nir) in shuttle vector pNIR. This construct will be introduced into Anabaena by conjugation. See Wolk, C. P. et al. 1984 Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria, Proc Natl Acad Sci USA. 81:1561-5. Genetically transformed Anabaena will be selected in a nitrate-containing (AA/8 N medium) Km plate. Antibiotic resistant colonies will be chosen and the genetically modified host cells will be grown, bubbling with air at 30° C. and a light intensity of 100 µmol photons m-2 s-1 in liquid medium containing appropriate antibiotic. HPLC tests of sucrose production by Anabaena sp. PCC7120 are demonstrated in FIG. 11.

Sucrose degradation will be reduced by blocking invertases and sucrose synthases (SuS) (see FIG. 5). Two genes, alr0819 and alr1521, coding for Anabaena invertases and two genes, all4985 and all1059, coding for sucrose synthases will be inactivated in a double crossover approach, such as the one demonstrated in Zhou, R., Wolk, C. P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. *J. Biol. Chem.* 278:19939-66. Phosphofructokinase (PFK) will also be down-regulated in certain embodiments. The genes coding for *Anabaena* PFK, all7335 and alr1919, will be down-regulated or knocked out using a double crossover approach or through expression of the antisense gene. In one embodiment, one PFK gene will be knocked out, while the other will be down-regulated. In another embodiment, both PFK genes will be down-regulated.

#### Example 5

#### Urea Production

a. Create a novel strain with more closely spaced heterocysts. It is known that overexpression of patA gene in Ana- 20 baena or inactivation of patN gene in Nostoc punctiforme led to more closely spaced single heterocysts, with an average vegetative cell interval of 3.2 cells (Meeks, J. C., E. L. Campbell, M. L. Summers, and F. C. Wong. 2002. Cellular Differentiation in the cyanobacterium Nostoc punctiforme. Arch. 25 Microbiol. 178: 395-403; Liang J, Scappino L, Haselkorn R. 1992. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc. Natl. Acad. Sci. USA. 89(12):5655-9)). A novel Anabaena will be 30 created by combining over-expression of patA and inactivation of patN in Anabaena. This patA+patN- strain will serve as a model strain for further genetic modification to produce urea.

b. Manipulate nitrogen flux in patA+patN- strain. Ana- 35 baena will be engineered to convert surplus ammonia to urea. All 5 human homologous genes required for urea cycle are found in the Anabaena genome, as well as genes coding for urea transporters. The urea cycle's final reaction is arginasecatalyzed hydrolysis of arginine to yield urea and regenerate 40 ornithine (FIG. 10). Initially an authentic arginase LeARG1 from tomato will be overexpressed in patA<sup>+</sup>patN<sup>-</sup> strain and inactivate its urease Alr3666. Chen H, McCaig B C, Melotto M, He SY, Howe GA. 2004, Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J. Biol. 45 Chem. 279(44):45998-6007. To overexpress these genes in Anabaena, the Anabaena PglnA, a constitutively strong promoter that functions in both vegetative cells and heterocysts, will be fused to urea cycle genes and followed by overexpression of them in the patA<sup>+</sup>patN<sup>-</sup> urease<sup>-</sup>LeARG<sup>+</sup> strain. 50

c. Shut down the cyanophycin synthesis in patA<sup>+</sup>patN<sup>-</sup> urease<sup>-</sup>LeARG<sup>+</sup> strain. Cyanophycin synthesis will be blocked and fixed nitrogen will be redirected to excreted urea. A single gene, all3879, encoding cyanophycin synthetase will be knocked out by a double crossover approach (Zhou R, 55 Wolk C P. 2003. A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:19939-46).

The disclosed genetically engineered urea-producing *Anabaena* strains will be grown in a liquid N<sub>2</sub>-medium (Bg11<sub>0</sub> 60 medium which contains no combined nitrogen) in a lighted shaker (Innova 44R, New Brunswick Scientific) at 30° C. and 150 µmol photons m-2 s-1. One week-old cultures will be used to re-inoculate 4-liter Erlenmeyer flasks containing 1000 ml liquid BG11<sub>0</sub>, which will then be incubated at 30° C. 65 and 150 µmol photons m-2 s-1 with a 24 h lighting set. Samples will be collected at regular intervals (24 h) and

analyzed for urea production. Urea excreted in the culture fluid will be measured by HPLC. Results will be used to guide further genetic manipulations.

#### Example 6

#### Long Chain Hydrocarbon Production and Isoprenoid Biosynthetic Pathway Product Production

#### a. Linalool Production

To engineer *Anabaena* to produce linalool, CbLinS, McLinS, and LaLinS (see Table 1) will be transferred into *Anabaena*. The coding region of the three genes, with N-terminal plastid targeted sequence deletion, was cloned imme-15 diately downstream of the engineered translation initiation sequence (Shine-Dalargno sequence) under a dual promoter (Pnir/PsbA) in shuttle vector pZR807, a pNIR derived plasmid that replicates in *Anabaena*. Each construct will be introduced into *Anabaena* by conjugation.

Transgenic *Anabaena* cultures will be grown in liquid BG-11 medium in a lighted shaker (Innova 44R, New Brunswick Scientific) at 30° C. and 150 µmol photons m-2 s-1. One week-old cultures will be used to re-inoculate 500 ml Erlenmeyer flasks containing 100 ml liquid BG11, which will then be incubated at 30° C. and 150 µmol photons m-2 s-1 with a 24 h lighting set. Heterotrophic cultures will be supplemented with 100 g L-1 glucose. Samples will be collected at regular intervals and analyzed for linalool production, as well as chlorophyll content.

Chlorophyll will be measured with a spectrophotometer. To measure volatile linalool, 2 ml culture samples will be placed a sealed 20 ml headspace tubes, and incubated at 30° C. for 2 hour. Volatiles will be sampled with a headspace sampler and measured by GC-MS. Linalool will be identified by comparison with genuine standard from GC-Standard grade liquid linalool. Linalool emission rates will be calculated in nmol g-1 chlorophyll h-1 over 2 hour incubation by headspace analysis. Linalool in the culture fluid will be measured by HPLC. Results will be used to guide further genetic manipulations. FIG. 6. demonstrates the production of linalool in transgenic *Anabaena*.

b. Methylbutenol Production

To engineer Anabaena to produce methylbutenol (MBO), methylbutenol synthase (MboS) will be transferred into Anabaena. The coding region of the MboS, with N-terminal plastid targeted sequence deletion, was cloned immediately downstream of the engineered translation initiation sequence (Shine-Dalargno sequence) under a dual promoter (Pnir/ PsbA) in shuttle vector pZR807, a pNIR derived plasmid that replicates in Anabaena. Each construct was introduced into Anabaena by conjugation. Genetically engineered MBOproducing Anabaena strains (see above) will be grown in a liquid Bg11 medium which contains combined nitrogen in a lighted shaker (Innova 44R, New Brunswick Scientific) at 30° C. and 150 µmol photons m-2 s-1. One week-old cultures will be used to re-inoculate 4-liter Erlenmeyer flasks containing 1000 ml liquid BG11, which will then be incubated at 30° C. and 150 µmol photons m-2 s-1 with a 24 h lighting set. Samples will be collected at regular intervals (24 h) and analyzed for MBO production. MBO excreted in the culture fluid will be measured by HPLC or GC/MS. Results will be used to guide further genetic manipulations.

c. Myrcene Production

To engineer *Anabaena* to produce myrcene, three MyrS genes in Table 2, i.e. ag2, ama0c15, and AtTPS 10 will be transferred into the host. The coding region of the three genes, with N-terminal plastid targeted sequence deletion will be

cloned immediately downstream of the engineered translation initiation sequence (Shine-Dalgarno sequence) under Anabaena psbA promoter (PpsbA) in shuttle vector pZR807, a plasmid that replicates in Anabaena and bears kanamycin resistance gene Kan<sup>R</sup>. The constructs will be individually 5 introduced into the host by conjugation. Genetically engineered Anabaena will be selected in a nitrate-containing AA/N medium agar plate supplemented with kanamycin sulfate. In certain experiments, a nitrate-inducible promoter will be used to replace the PpsbA promoter. In some experiments, 10 an epitope tagged MyrS will be designed. The construct allows the 3' of MyrS gene in frame to link to FLAG<sub>2</sub>-His<sub>6</sub> epitope tag engineered into the pZR807 vector once the MyrS gene stop codon is removed. Genetically engineered myrcene-producing Anabaena strains will be grown as 1 described for linalool-producing strain. The myrcene production will measured by GC/MS as described for linalool measurement.

#### d. Farnesene Production

FPPS and FarS genes from Artmisia will be constructed as 20an operon under the control of the psbA promoter in shuttle vector pZR807. The construct will be individually introduced into Anabaena by conjugation. Genetically engineered Anabaena will be selected in a nitrate-containing AA/N medium agar plate supplemented with kanamycin sulfate. In certain 25 embodiments, a nitrate-inducible promoter will be used to replace the PpsbA promoter. In some embodiments, an epitope tagged FarS will be designed. The construct allows the 3' of FarS gene in frame to link to FLAG<sub>2</sub>-His<sub>6</sub> epitope tag engineered into the pZR807 vector once the FarS gene stop 30 codon is removed. Farnesene produced by engineered Anabaena will be measured as described for linalool measurement.

#### Example 7

#### Optimization of Production of Carbon Based Products of Interest

a. RuBisCo/RuBisCo Activase

The native RuBisCo genes rbcL/S (slr009/slr0012) and the putative RuBisCo activase (slr0011) gene will be over-expressed in hosts producing the carbon based product of interest. These three genes will be PCR amplified and fused to a strong Anabaena promoter PpsbA and subcloned into a 45 shuttle vector for conjugation.

FBP/SBPase will be over-expressed to boost RUBP levels. Hosts producing carbon based products of interest will be genetically engineered with FBP/SBPase from Synechococcus PCC794. See Miyagawa Y, Tamoi M, Shigeoka S. 2001. 50 Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19(10):965-9 and Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka 5.2006. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphos-55 phatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. *Plant Cell Physiol.* 47(3): 380-90

#### b. ADP-GPPase

ADP-GPPase will be inactivated or deleted in certain 60 genetically engineered Anabaena. ADP-GPPase may be inactivated using a double crossover knockout approach. This approach is well documented in Zhou R and Wolk C P. 2002 Identification of an akinete marker gene in Anabaena variabilis. J. Bacteriol. 184:2529-32 and Zhou R and Wolk C P 65 2003 A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J.

22

Biol. Chem. 278:19939-46. In Anabaena, the ADP-GPPase gene is all4645. As shown in FIG. 12, for example, LinS gene fused to Anabaena promoter is subcloned to an integration vector (fragment A and B are from *Anabaena* chromosome) and this resulting construction pLinS is then introduced to Anabaena for double homologous recombination at loci A and B of Anabaena chromosome. The double recombinants will be selected on the sucrose/Km plate by losing the conditional lethal gene sacB in the vector portion (Cai Y P, Wolk C P. 1990. Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J. Bacteriol. June; 172(6):3138-3145). The completely segregated double recombinants will be further verified by diagnostic PCR. Thus, the LinS/Km cassette from integration plasmid pLinS has replaced the gene all4645 (pink C in FIG. 12) in the double recombinants. In this example, gene all4645 has been deleted from Anabaena chromosome.

c. PDH

Anabaena PDH will be inactivated in some experiments. The internal fragment of alr4745, one of the three genes encoding Anabaena PDH multienzyme complex, will be amplified from Anabaena 7120 genomic DNA and cloned into pRL278, a plasmid designed for conjugative transfer into cyanobacteria. The alr4745 will be knocked out according to the method disclosed in Zhou R and Wolk C P 2003 A twocomponent system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J. Biol. Chem. 278:19939-46.

d. GGPPS/SQS

If a decrease in the FPP flux to terpeniods is desired, geranylgeranyl diphosphate synthase (GGPPS) and/or squalene synthase (SQS) expression will be down-regulated. 35 SQS and or GGPS antisense sequences will be used to downregulate GGPPS and/or SQS. The construct may additionally include an inducible promoter. The inducible promoter will be inducible by nitrate in many experiments. The gppS antisense sequence will be cloned downstream of a nitrate-inducible promoter and conjugatively transferred into hosts genetically engineered to produce target products. Down-regulating GPPS will be achieved by inducing antisense RNA expression with the addition of nitrate to the growth medium when cell density reaches the maximum.

e. FPPS

40

GPP flux will be optimized by down-regulating farnesyldisphosphate synthase (FPPS). FPPS will be over-expressed in the antisense direction under an inducible promoter. The fppS antisense sequence will be cloned downstream of a nitrate-inducible promoter and conjugatively transferred into hosts genetically engineered to produce linalool or myrcene. Down-regulating FPPS is achieved by inducing antisense RNA expression with the addition of nitrate to the growth medium when cell density reaches the maximum.

f. Pyruvate Synthesis

Pyruvate synthesis will be increased by over-expressing phosphoglycerate mutase, enolase, and pyruvate kinase (See FIG. 2). Three robust genes from Z. mobilis and from S. cerevisiae will be constructed as an artificial operon and fused to a PsbA1 promoter and then cloned into an integrative vector to insert the enzyme genes within the coding region of alr4745 (encoding PDH-E3). This allows for increased synthesis of pyruvate while concurrently inactivating PDH.

GP3 flux may be altered by over-expressing certain ratelimiting enzymes. The DXS gene (alr0599) from Anabaena and the Arabidopsis IDI gene (AT5G16440) will be PCR amplified with primers containing restriction sites and a ribosome binding site. The resulting PCR product will be fused to a nitrate-inducible promoter Pnir and cloned into pZR807.

All of the references cited herein are incorporated by reference in their entireties.

From the above discussion, one skilled in the art can ascertain the essential characteristics of the invention, and without departing from the spirit and scope thereof, can make various

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 16 <210> SEQ ID NO 1 <211> LENGTH: 590 <212> TYPE: DNA <213> ORGANISM: Anabaena sp. <220> FEATURE: <221> NAME/KEY: misc feature <223> OTHER INFORMATION: Anabaena Pnir promoter sequence <400> SEQUENCE: 1 gatctagcta ctcattagtt aagtgtaatg cagaaaacgc atattctcta ttaaacttac 60 gcattaatac gagaattttg tagctactta tactatttta cctgagatcc cgacataacc 120 ttagaagtat cgaaatcgtt acataaacat tcacacaaac cacttgacaa atttagccaa 180 tgtaaaagac tacagtttct ccccggttta gttctagagt taccttcagt gaaacatcgg 240 cggcgtgtca gtcattgaag tagcataaat caattcaaaa taccctgcgg gaaggctgcg 300 ccaacaaaat taaatatttg gtttttcact attagagcat cgattcatta atcaaaaacc 360 ttacccccca gcccccttcc cttgtaggga agtgggagcc aaactcccct ctccgcgtcg 420 gagcgaaaag tctgagcgga ggtttcctcc gaacagaact tttaaagaga gaggggttgg 480 gggagaggtt ctttcaagat tactaaattg ctatcactag acctcgtaga actagcaaag 540 actacgggtg gattgatctt gagcaaaaaa actttatgag aacgaattcg 590 <210> SEQ ID NO 2 <211> LENGTH: 161 <212> TYPE: DNA <213> ORGANISM: Anabaena sp. <220> FEATURE: <221> NAME/KEY: misc\_feature <223> OTHER INFORMATION: Anabaena psbA1 promoter sequence <400> SEQUENCE: 2 ggatteecaa agataggggg aataattaac attaagaatt attaatteat gggtttttag 60 tctaqtaaat ttqcqtqaat tcatqtaaat tttatqaqac aqqcqcaaqt ctaaaaaaaq 120 cgtctgaatt aatctgcaca aatccaaagc aatcataaaa a 161 <210> SEO ID NO 3 <211> LENGTH: 402 <212> TYPE: DNA <213> ORGANISM: Anabaena sp. <220> FEATURE: <221> NAME/KEY: misc feature <223> OTHER INFORMATION: Anabaena PrbcL promoter sequence <400> SEQUENCE: 3 gttaacaaaa cgtttaaaaac tttatgtaat aacaaattta aatatgtaag ttaagaactt 60 tcaaagaata acttatgcca tttcttgata tattgtgaga caagttacaa attacgtggt 120 gtgcaatttt ttcatcttgc gctgattact ctactaaata tccgtcaagt aaattggctc 180 ttagctcgtc tcctgtcaat aaaggaggtc ggcaagagtg cagaagcggg aatgtgtgaa 240 aactaaccca attcattaaa taccccgaaa tataggggaa tcatctcata ctttccgtaa 300

changes and modifications of the embodiments to adapt to various uses and conditions. Thus, various modifications of the embodiments, in addition to those shown and described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

| _ | C | 0 | n   | t | i. | n   | u | e | d |  |
|---|---|---|-----|---|----|-----|---|---|---|--|
|   | 0 | 0 | тт. | ~ | -  | τ.τ | u | ~ | a |  |

|                                                                                                                                                                                                                        | 360 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| aattttttaa ctatggcaag aggaaaaagt aaaagcgtta ac                                                                                                                                                                         | 402 |
| <210> SEQ ID NO 4<br><211> LENGTH: 244<br><212> TYPE: DNA<br><213> ORGANISM: E. coli<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: E. coli tac promoter sequence                       |     |
| <400> SEQUENCE: 4                                                                                                                                                                                                      |     |
| cgactgcacg gtgaccaatg cttctggcgt caggcagcca tcggaagctg tggtatggct                                                                                                                                                      | 60  |
| gtgcaggtcg taaatcactg cataattcgt gtcgctcaag gcgcactccc gttctggata                                                                                                                                                      | 120 |
| atgttttttg cgccgacatc ataacggttc tggcaaatat tctgaaatga gctgttgaca                                                                                                                                                      | 180 |
| attaatcatc ggctcgtata atgtgtggaa ttgtgagcgg ataacaattt cacacaggaa                                                                                                                                                      | 240 |
| acag                                                                                                                                                                                                                   | 244 |
| <210> SEQ ID NO 5<br><211> LENGTH: 568<br><212> TYPE: PRT<br><213> ORGANISM: Zymomonas mobilis subsp. mobilis CP4<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Pyruvate Decarboxylase |     |
| <400> SEQUENCE: 5                                                                                                                                                                                                      |     |
| Met Ser Tyr Thr Val Gly Thr Tyr Leu Ala Glu Arg Leu Val Gln Ile<br>1 5 10 15                                                                                                                                           |     |
| Gly Leu Lys His His Phe Ala Val Ala Gly Asp Tyr Asn Leu Val Leu<br>20 25 30                                                                                                                                            |     |
| Leu Asp Asn Leu Leu Asn Lys Asn Met Glu Gln Val Tyr Cys Cys<br>35 40 45                                                                                                                                                |     |
| Asn Glu Leu Asn Cys Gly Phe Ser Ala Glu Gly Tyr Ala Arg Ala Lys<br>50 55 60                                                                                                                                            |     |
| Gly Ala Ala Ala Val Val Thr Tyr Ser Val Gly Ala Leu Ser Ala<br>65 70 75 80                                                                                                                                             |     |
| Phe Asp Ala Ile Gly Gly Ala Tyr Ala Glu Asn Leu Pro Val Ile Leu<br>85 90 95                                                                                                                                            |     |
| Ile Ser Gly Ala Pro Asn Asn Asn Asp His Ala Ala Gly His Val Leu<br>100 105 110                                                                                                                                         |     |
| His His Ala Leu Gly Lys Thr Asp Tyr His Tyr Gln Leu Glu Met Ala<br>115 120 125                                                                                                                                         |     |
| Lys Asn Ile Thr Ala Ala Ala Glu Ala Ile Tyr Thr Pro Glu Glu Ala<br>130 135 140                                                                                                                                         |     |
| Pro Ala Lys Ile Asp His Val Ile Lys Thr Ala Leu Arg Glu Lys Lys<br>145 150 155 160                                                                                                                                     |     |
| Pro Val Tyr Leu Glu Ile Ala Cys Asn Ile Ala Ser Met Pro Cys Ala<br>165 170 175                                                                                                                                         |     |
| Ala Pro Gly Pro Ala Ser Ala Leu Phe Asn Asp Glu Ala Ser Asp Glu<br>180 185 190                                                                                                                                         |     |
| Ala Ser Leu Asn Ala Ala Val Glu Glu Thr Leu Lys Phe Ile Ala Asn<br>195 200 205                                                                                                                                         |     |
| Arg Asp Lys Val Ala Val Leu Val Gly Ser Lys Leu Arg Ala Ala Gly<br>210 215 220                                                                                                                                         |     |

| Alla Giu Giu Ala Ala Val Lyø Phe Ala Asp Ala Leu Gly Gly Ala Val 235         Ala Thr Met Ala Ala Ala Ala Lyø Ser Phe Phe Pro Glu Glu Asn Pro His 255         TY Ile Gly Thr Ser Trp Gly Glu Val Ser Tyr Pro Gly Val Glu Lyø 265         Thr Met Lyø Glu Ala Asp Ala Val Val Ser Tyr Pro Gly Val Glu Lyø 270         Thr Met Lyø Glu Ala Asp Ala Val Val Asr Pro Val Phe Asn 275         Asp Tyr Ser Thr Thr Gly Trp Thr Asp Ile Pro Asp Pro Lyø Lyø Leu 300         Yal Leu Ala Glu Pro Arg Ser Val Val Val Aan Gly Val Arg Phe Pro 305         Ser Val His Leu Lyø Asp Tyr Leu Thr Arg Leu Ala Glr Gly Glu Asp 735         Ya Lyø Thr Gly Ala Leu Asp Phe Phe Pro Ser Ala Pro Leu Val Asn Ala 365         Glu 11e Ala Arg Gln Val Glu Lyø 375         345         Safs Tyr Ala Yal Clu Thr Gly Asp Pro Ana Asp Pro Ser Ala Pro Leu Val Asn Ala 365         Glu 11e Ala Arg Gln Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly 400         370       Ang Ya Glu Ala Asp Yal Glu Yyr Ala Yal Glu Atg 440         Arg Asn Tir Gly Ala Arg Val Glu Yyr Glu Met Gln Trp Gly His Ile Gly 415         Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Lye Glu Arg 440         440       455         Glu Ala Asn Gly Tyr Asp Ser Gly Ala Gly Lye Gly Pro 440         450       Asp Gly Tyr Thr The Gly Met Gln Trp Gly His Ile Gly 415         Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Gly Leu Met Glu Arg 445         Asp Asn Tir Gly Tyr Thr The Glu Val Met Ile His Asp Gly Pro 455         Glu Ala Glu N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                           |                                             |                                     |                    |       |       |     |     |     |       | -     | con | tin | ued |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------|-------------------------------------|--------------------|-------|-------|-----|-----|-----|-------|-------|-----|-----|-----|-----|
| 245         260         265           Tyr lle Gly Thr Ser Trp Gly Glu Val Ser Tyr Pro Gly Val Glu Lys 270         Glu Ala Asp Ala Val Ile Ala Leu Ala Pro Val Phe Asn 275           Thr Met Lyg Glu Ala Asp Ala Val Ile Ala Leu Ala Pro Asp Pro Lys Lys Leu 290         Glu Ala Asp Ala Val Val Val Asp Oly Val Arg Phe Pro 305           Asp Tyr Ser Thr Thr Gly Trp Thr Asp Ile Pro Asp To Lys Lys Leu 300         Glu Val Arg Phe Pro 316           Yal Leu Ala Glu Pro Arg Ser Val Val Val Ala And Cly Val Arg Phe Pro 325         Glu Ala Ala Pro Ala Asp Pro Ser Ala Pro Leu Asn Ala 355           Glu Jie Ala Arg Gln Val Glu Ang Pro Ser Ala Pro Leu Asn Ala 365         Glu Ala Arg Gln Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly 407           Glu Jie Ala Arg Gln Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly 403         Glu Arg 420           Yar Ser Val Pro Ala Ala Pro Ala Arg Pro 242         Glu Arg 440           Yar Ser Val Pro Ala Ala Pro Ala Arg Pro 241         Glu Arg 440           Yar Ser Val Pro Ala Ala Pro Ala Arg Fire Glu Euu Thr Pro Asn Thr Thr Val 370           Glu Val Arg Glu Tyr Glu Arg Glu Tyr Glu Met Glu Trp Gly His Ile Glu 410           Yar Asn Asn Tr Gly Tyr Thr Ile Glu Yar Ala Val Gly Ala Pro Glu Arg 420           Yar Asn Asn Tr Gly Tyr Thr Arg Pro Fire Asn Ala Gly Leu Met Glu Yar 440           Yar Asn Asn Tr Gly Tyr Thr Arg Pro Fire Gly Ala Ala Asn Ser 515           Yar Asn Asn Tr Gly Tyr Thr Arg Pro Yar Ala Gly Leu Met Glu Val Arg 450           Yar Asn Asn Tr Gly Tyr Asg Ser Gly Ala Gly Leu Met Glu Arg 455                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | Glu                                       | Glu                                         | Ala                                 | Ala                |       | Lys   | Phe | Ala | Asp |       | Leu   | Gly | Gly | Ala |     |
| 260       265       270         Thr Met Lyg Glu Ala Aep Ala Yal Ile Ala Leu Ala Pro Val Phe Aen 280         Asp Tyr Ser Thr Thr Gly Trp Thr Aep Ile Pro App Pro Lys Lys Leu 300         Yal Leu Ala Glu Pro Arg Ser Val Val Val Am Gly Val Arg Phe Pro 310         Ser Val His Leu Lyg Asp Tyr Leu Thr Arg Leu Ala Gln Lys Val Ser 320         Ser Val His Leu Lyg Asp Tyr Leu Thr Arg Leu Ala Gln Lys Val Ser 330         Yar Lys Thr Gly Ala Leu App Phe Phe Lys Ser Leu Asn Ala Gly Glu 340         Leu Lys Lys Ala Ala Pro Ala Asp Pro Ser Ala Pro Leu Val Asn Ala 350         Glu Tle Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val 370         Jas Ang Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly 410         Yar Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg 443         Ato Val Ala Glu Val Glu Yyr Glu Met Gln Trp Gly His Ile Gly 410         Yar Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg 443         Ato Val Ala Glu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln 445         Glu Val Ala Glu Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu 445         Yar Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro 480         Tyr Asn Asn Ile Lyg Asn Trp Asp Tyr Ala Gly Lyg Gly Leu Lyg Ala Si         Soo       Soo         Yar Asn Asn Ile Lyg Asn Trp Gly Lyg Arg Val Ala Ala Ala Asn Ser 510         Soo       Soo         Yar Asn Asn Ile Lyg Trp Gly Lyg Arg Val Ala Ala Ala Asn Ser 510 <td< td=""><td>Ala</td><td>Thr</td><td>Met</td><td>Ala</td><td></td><td>Ala</td><td>Lys</td><td>Ser</td><td>Phe</td><td></td><td>Pro</td><td>Glu</td><td>Glu</td><td>Asn</td><td></td><td>His</td></td<>                                                                                                                                                                                                                                                                                                                                 | Ala                                  | Thr                                       | Met                                         | Ala                                 |                    | Ala   | Lys   | Ser | Phe |     | Pro   | Glu   | Glu | Asn |     | His |
| 275       280       285         Asp Tyr Ser Thr Thr Gly Trp Thr Asp Ile Pro Asp Pro Lys Lys Leu       300         Val Leu Ala       Glu Pro Arg Ser Val Val Val Asm Gly Val Arg Phe Pro         335       ual As Glu Pro Arg Ser Val Val Val Asm Gly Val Arg Phe Pro         336       ual Ass Glu Pro Arg Ser Val Val Val Asm Gly Val Arg Phe Pro         335       Thr Gly Ala Leu Asp Phe Phe Lys Ser Leu Asn Ala Glu Glu Glu         340       345         10       Lys Lys Thr Gly Ala Leu Asp Phe Phe Lys Ser Leu Asn Ala Glu Asn Ala         355       Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asm Thr Thr Val         370       Ser Val Pro Ala Ala Pro Ala Sep Pro Ser Ala Pro Leu Val Asn Ala         375       Ala Glu Thr Gly Asp Ser Trp Phe Asn Ala Gln Arg Met Lys Leu         370       Ser Val Pro Ala Ala Pro Glu Tyr Glu Met Gln Trp Gly His Ile Gly         420       Arg Asn Ile Leu Met Val Glu Tyr Glu Met Gln Trp Gly His Ile Cly         420       Arg Asn Ile Leu Met Val Gly Asp Cly Ser Phe Gln Leu Thr Ala Gln         445       Ang Asp Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro         445       Asp Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe         445       Asn Gly Asp Ser Gly Ala Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn So         500       Tyr Glu Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn So         501       Tyr Gly Gly Tyr Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tyr                                  | Ile                                       | Gly                                         |                                     | Ser                | Trp   | Gly   | Glu |     | Ser | Tyr   | Pro   | Gly |     | Glu | Lys |
| 290       295       300         Val       Leu       Ala       Glu       Pro       Ain       Ser       Val       Val       Val       Ain       Glu       Val       Ser       Val       Val       Ain       Glu       Val       Ser       Val       Val       Val       Ain       Glu       Val       Ser       Jaco       Jaco </td <td>Thr</td> <td>Met</td> <td></td> <td>Glu</td> <td>Ala</td> <td>Asp</td> <td>Ala</td> <td></td> <td>Ile</td> <td>Ala</td> <td>Leu</td> <td>Ala</td> <td></td> <td>Val</td> <td>Phe</td> <td>Asn</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thr                                  | Met                                       |                                             | Glu                                 | Ala                | Asp   | Ala   |     | Ile | Ala | Leu   | Ala   |     | Val | Phe | Asn |
| 305       310       315       320         Ser Val His Leu Lys Asp Tyr Leu Thr Arg Leu Ala Gln Lys Val Ser<br>325       333       320         Lys Lys Thr Gly Ala Leu Asp Phe Phe Lys Ser Leu Asn Ala Gly Glu<br>335       330       350       360         Leu Lys Lys Ala Ala Pro Ala Asp Pro Ser Ala Pro Leu Val Asn Ala<br>355       360       360       360       360         Glu Ile Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>370       375       390       315       400         Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly<br>400       410       415       410         Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly<br>410       415       410       415         Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420       440       440       416         Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>450       440       455       440         Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro<br>470       470       480       480         Tyr Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>480       495       480       495         Lys Thr Gly Gly Gly Tyr Asp Ser Gly Ala Gly Leu Met Glu Asp 525       510       480       510         Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala La Leu Ala Asn 525       540       540       540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asp                                  |                                           | Ser                                         | Thr                                 | Thr                | Gly   |       | Thr | Asp | Ile | Pro   |       | Pro | Lys | Lys | Leu |
| 325330335Lys Lys Thr Gly Ala Leu Asp Phe Phe Lys Ser Leu Asn Ala Gly Glu<br>340Ala Pro Ala Asp Pho Ser Ala Pro Leu Val Asn Ala<br>360Leu Lys Lys Ala Ala Pro Ala Asp Pro Ser Ala Pro Leu Val Asn Ala<br>355Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>365Glu Ile Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>370Glu Arg Met Lys Leu<br>400Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly<br>410Glu Arg<br>415Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>445Glu Val Ala Gln Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>445Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>465Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro<br>445Arg Asn Tir Gly Tyr Thr Ile Glu Val Met Glu Val Phe<br>480Tyr Asn Asn Tyr Gly Tyr Asp Ser Gly Ala Gly Leu Met Glu Val Phe<br>485Sec Gly Ala Ala Leu Ala Asn<br>525Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530Sec Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>555Thr Asp Gly Pro Val Lys Tyr Gly Lys Arg Val Ala Ala Ala Asn Ser<br>540Callox SEQ ID NO 6<br><2110 NO 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | Leu                                       | Ala                                         | Glu                                 | Pro                |       | Ser   | Val | Val | Val |       | Gly   | Val | Arg | Phe |     |
| 340345350Leu Lys Lys Ala Ala Pro Ala Asp Pro Ser Ala Pro Leu Val Asn Ala<br>355360Glu Ile Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>370370375Sata390Sata390Sata390SataGln Arg Met Lys Leu<br>400Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly<br>405Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420Arg Asn Ile Leu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>445Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>450Yan Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>470465Nan Asn Tyr Gly Gly Tyr Asp Ser Gly Ala Gly Leu Met Glu Val Phe<br>485495Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Leu Met Glu Val Phe<br>485496Yan Asn Gly Gly Tyr Asp Ser Gly Ala Gly Leu Glu Asp Cys<br>500Lys Thr Gly Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530SataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSataSata <t< td=""><td>Ser</td><td>Val</td><td>His</td><td>Leu</td><td></td><td>Asp</td><td>Tyr</td><td>Leu</td><td>Thr</td><td></td><td>Leu</td><td>Ala</td><td>Gln</td><td>Lys</td><td></td><td>Ser</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ser                                  | Val                                       | His                                         | Leu                                 |                    | Asp   | Tyr   | Leu | Thr |     | Leu   | Ala   | Gln | Lys |     | Ser |
| 355       360       365         Glu Ile Ala Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>370       370       Arg Gln Val Glu Ala Leu Leu Thr Pro Asn Thr Thr Val<br>375         11e Ala Glu Thr Gly Asp Ser Trp Phe Asn Ala Gln Arg Met Lys Leu<br>395       110       Arg Met Lys Leu<br>395       110         11e Ala Glu Thr Gly Asp Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly<br>400       110       110       110         11r Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420       410       410       410         11r Ser Val Pro Ala Ala Phe Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>435       110       Ang Asn 110       110       110       110       110         11u Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>450       470       470       480         11u Val Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>465       470       470       480         11v Asn Asn Tie Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>490       495       480       480         11v Asn Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn<br>500       520       112       Asn<br>521       510       140         11v Thr Sig Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530       550       112       114       Ala Ala Asn Ser<br>550       560         11y Tyr Eyr Tyr Sig Cleu Leu<br>565       115       110       116       114 <td< td=""><td>Lys</td><td>Lys</td><td>Thr</td><td></td><td>Ala</td><td>Leu</td><td>Asp</td><td>Phe</td><td></td><td>Lys</td><td>Ser</td><td>Leu</td><td>Asn</td><td></td><td>Gly</td><td>Glu</td></td<>                                                                                                                                                                                                                                                                                                                                                                             | Lys                                  | Lys                                       | Thr                                         |                                     | Ala                | Leu   | Asp   | Phe |     | Lys | Ser   | Leu   | Asn |     | Gly | Glu |
| 370       375       380         Ile Ala Glu Thr Gly Asp 300       Ser Trp Phe Asn Ala Gln Arg Met Lys Leu 400         385       Ala Glu Thr Gly Asp 300       Ser Trp Phe Asn Ala Gln Trp Gly His Ile Gly 400         Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His Ile Gly 410       Glu Arg 410         Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg 420       Ang 420         Arg Asn Ile Leu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln 435       Glu Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro 455         Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro 475       480         Yr Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro 485       485         Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 510       Yas Asn 500         Yr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Lys Gly Leu Lys Ala 510       Yas Asn 500         Yr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530       Set 535         Thr Gly Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Ser 560       Yas 555         Arg Lys Pro Val Asn Lys Leu Leu 565       Set 755         Set Yr Pro Val Asn Lys Lymonnas mobilis CP4       Set 710         Set Yr Pre Pre Sat Set Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Leu                                  | Lys                                       |                                             | Ala                                 | Ala                | Pro   | Ala   |     | Pro | Ser | Ala   | Pro   |     | Val | Asn | Ala |
| 385390395400Pro Asn Gly Ala Arg Val Glu Tyr Glu Met Gln Trp Gly His IIe Gly<br>405Glu Tyr Glu Met Gln Trp Gly His IIe Gly<br>410Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420Arg Gly Ser Phe Gln Leu Thr Ala Gln<br>445Arg Asn IIe Leu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>455Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val IIe IIe Phe Leu<br>460Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val IIe His Asp Gly Pro<br>455His Asp Gly Pro<br>470IIe Asn Asn Tyr Gly Tyr Thr IIe Glu Val Met IIe His Asp Gly Pro<br>465Arg Asn IIe Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>490Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>500SooThr Gly Gly Glu Leu Ala Glu Ala IIe Lys Val Ala Leu Ala Asn<br>515Thr Asp Gly Pro Thr Leu IIe Glu Cys Phe IIe Gly Arg Glu Asp Cys<br>535Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>545<210> SEQ ID NO 6<br><211> LEMGTH: 383<br><212> TYPE: PRT<br><213> CRGANISM: Zymomonas mobilis CP4<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Alcohol Dehydrogenase II<400> SEQUENCE: 6Met Ala Ser Ser Thr Phe Tyr IIe Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Glu                                  |                                           | Ala                                         | Arg                                 | Gln                | Val   |       | Ala | Leu | Leu | Thr   |       | Asn | Thr | Thr | Val |
| 405410415Trp Ser Val Pro Ala Ala Phe Gly Tyr Ala Val Gly Ala Pro Glu Arg<br>420425Arg Asn Ile Leu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>435430Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>450460Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro<br>465460Tyr Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>465470Tyr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>485480Tyr Asn Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>500510Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn<br>515510Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530540Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>555560Arg Lys Pro Val Asn Lys Leu Leu<br>265565<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | Ala                                       | Glu                                         | Thr                                 | Gly                |       | Ser   | Trp | Phe | Asn |       | Gln   | Arg | Met | Lys |     |
| 420425430Arg Asn Ile Leu Met Val Gly Asp Gly Ser Phe Gln Leu Thr Ala Gln<br>435Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>460Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu<br>450455Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile His Asp Gly Pro<br>465460Ile Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>485480Tyr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>485480Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>505500Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn<br>515525Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530555Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>555560Arg Lys Pro Val Asn Lys Leu Leu<br>565560<210> SEQ ID NO 6<br><211> LENGTH: 383<br><212> TYPE: PRT<213> ORGANISM: Zymomonas mobilis CP4<br><223> OTHER INFORMATION: Alcohol Dehydrogenase II<400> SEQUENCE: 6Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pro                                  | Asn                                       | Gly                                         | Ala                                 |                    | Val   | Glu   | Tyr | Glu |     | Gln   | Trp   | Gly | His |     | Gly |
| 435       440       445         Glu Val Ala Gln Met Val Arg Leu Lys Leu Pro Val Ile Ile Phe Leu       450         450       455       460         11e Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro       465         7yr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe       485         485       485       505         Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala       510         Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn       515         Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys       530         Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser       560         Arg Lys Pro Val Asn Lys Leu Leu       565         <210> SEQ ID NO 6       525         <211> LENGTH: 383       2212> TYPE: PRT         <212> ORGANISM: Zymomonas mobilis CP4       523> OTHER INFORMATION: Alcohol Dehydrogenase II         <400> SEQUENCE: 6       400> SEQUENCE: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trp                                  | Ser                                       | Val                                         |                                     | Ala                | Ala   | Phe   | Gly |     | Ala | Val   | Gly   | Ala |     | Glu | Arg |
| 450 455 460<br>Ile Asn Asn Tyr Gly Tyr Thr Ile Glu Val Met Ile His Asp Gly Pro<br>465 470 470 470 475 490 495<br>Tyr Asn Asn Ile Lys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>485 490 495<br>Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>500 Tyr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn<br>515 50 Thr Gly Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530 Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>540 550 Seq ID NO 6<br>2210> SEQ ID NO 6<br>2211> LENGTH: 383<br>2212> TYPE: PRT<br>2313> ORGANISM: Zymomonas mobilis CP4<br>2223> OTHER INFORMATION: Alcohol Dehydrogenase II<br><400> SEQUENCE: 6<br>Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arg                                  | Asn                                       |                                             | Leu                                 | Met                | Val   | Gly   |     | Gly | Ser | Phe   | Gln   |     | Thr | Ala | Gln |
| 465470475480Tyr Asn Asn IIeLys Asn Trp Asp Tyr Ala Gly Leu Met Glu Val Phe<br>485Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>500Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala<br>505Second Second | Glu                                  |                                           | Ala                                         | Gln                                 | Met                | Val   |       | Leu | Lys | Leu | Pro   |       | Ile | Ile | Phe | Leu |
| 485       490       495         Asn Gly Asn Gly Gly Tyr Asp Ser Gly Ala Gly Lys Gly Leu Lys Ala 500       500       500         Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 515       510       510         Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn 525       510       510         Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys 530       540       540         Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser 550       560         Arg Lys Pro Val Asn Lys Leu Leu 565       560         <210> SEQ ID NO 6       555         <211> LENGTH: 383       212> TYPE: PRT         <222> FEATURE:       221> NAME/KEY: misc_feature         <223> OTHER INFORMATION: Alcohol Dehydrogenase II         <400> SEQUENCE: 6         Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Asn                                       | Asn                                         | Tyr                                 | Gly                |       | Thr   | Ile | Glu | Val |       | Ile   | His | Aab | Gly |     |
| 500505510Lys Thr Gly Gly Glu Leu Ala Glu Ala Ile Lys Val Ala Leu Ala Asn<br>515520Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys<br>530535Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser<br>540540550Arg Lys Pro Val Asn Lys Leu Leu<br>565<210> SEQ ID NO 6<br><211> LENGTH: 383<br><212> TYPE: PRT<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Alcohol Dehydrogenase II<400> SEQUENCE: 6Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tyr                                  | Asn                                       | Asn                                         | Ile                                 |                    | Asn   | Trp   | Aab | Tyr |     | Gly   | Leu   | Met | Glu |     | Phe |
| 515       520       525         Thr Asp Gly Pro Thr Leu Ile Glu Cys Phe Ile Gly Arg Glu Asp Cys       530         Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Asn Ser       540         545       550         Arg Lys Pro Val Asn Lys Leu Leu       565         <210> SEQ ID NO 6         <211> LENGTH: 383         <212> TYPE: PRT         <213> ORGANISM: Zymomonas mobilis CP4         <220> FEATURE:         <221> NAME/KEY: misc_feature         <223> OTHER INFORMATION: Alcohol Dehydrogenase II         <400> SEQUENCE: 6         Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Asn                                  | Gly                                       | Asn                                         |                                     | Gly                | Tyr   | Asp   | Ser |     | Ala | Gly   | Lys   | Gly |     | Lys | Ala |
| 530       535       540         Thr Glu Glu Leu Val Lys Trp Gly Lys Arg Val Ala Ala Ala Ala Asn Ser         545       550       555         Arg Lys Pro Val Asn Lys Leu Leu         565         <210> SEQ ID NO 6         <211> LENGTH: 383         <212> TYPE: PRT         <213> ORGANISM: Zymomonas mobilis CP4         <220> FEATURE:         <221> NAME/KEY: misc_feature         <223> OTHER INFORMATION: Alcohol Dehydrogenase II         <400> SEQUENCE: 6         Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lys                                  | Thr                                       |                                             | Gly                                 | Glu                | Leu   | Ala   |     | Ala | Ile | Lys   | Val   |     | Leu | Ala | Asn |
| 545 550 555 560<br>Arg Lys Pro Val Asn Lys Leu Leu<br>565<br><210> SEQ ID NO 6<br><211> LENGTH: 383<br><212> TYPE: PRT<br><213> ORGANISM: Zymomonas mobilis CP4<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Alcohol Dehydrogenase II<br><400> SEQUENCE: 6<br>Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thr                                  | -                                         | Gly                                         | Pro                                 | Thr                | Leu   |       | Glu | Суз | Phe | Ile   | -     | Arg | Glu | Asp | Суз |
| 565<br><210> SEQ ID NO 6<br><211> LENGTH: 383<br><212> TYPE: PRT<br><213> ORGANISM: Zymomonas mobilis CP4<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Alcohol Dehydrogenase II<br><400> SEQUENCE: 6<br>Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | Glu                                       | Glu                                         | Leu                                 | Val                | -     | Trp   | Gly | Lys | Arg |       | Ala   | Ala | Ala | Asn |     |
| <pre>&lt;211&gt; LENGTH: 383 &lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Zymomonas mobilis CP4 &lt;220&gt; FEATURE: &lt;221&gt; NAME/KEY: misc_feature &lt;223&gt; OTHER INFORMATION: Alcohol Dehydrogenase II &lt;400&gt; SEQUENCE: 6 Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arg                                  | Lys                                       | Pro                                         | Val                                 |                    | ГÀа   | Leu   | Leu |     |     |       |       |     |     |     |     |
| Met Ala Ser Ser Thr Phe Tyr Ile Pro Phe Val Asn Glu Met Gly Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <213<br><213<br><213<br><220<br><223 | 1> LH<br>2> TY<br>3> OH<br>0> FH<br>1> NA | ENGTI<br>(PE :<br>RGAN)<br>EATUI<br>AME / I | H: 38<br>PRT<br>ISM:<br>RE:<br>KEY: | 33<br>Zymo<br>miso | c_fea | ature | è   |     |     | ogena | ase : | II  |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <400                                 | )> SH                                     | EQUEI                                       | NCE:                                | 6                  |       |       |     |     |     |       |       |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | Ala                                       | Ser                                         | Ser                                 |                    | Phe   | Tyr   | Ile | Pro |     | Val   | Asn   | Glu | Met |     | Glu |

| Gly                                  | Ser                                                                                                                                                                                                                                   | Leu        | Glu        | Lys        | Ala        | Ile        | Lys        | Asp        | Leu        | Asn        | Gly        | Ser        | Gly        | Phe        | Lys        |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Agn                                  | Ala                                                                                                                                                                                                                                   | Leu        | 20<br>Tle  | Val        | Ser        | Agn        | Ala        | 25<br>Phe  | Met        | Agn        | Lvg        | Ser        | 30<br>Glv  | Val        | Val        |
| Abii                                 | ΑIα                                                                                                                                                                                                                                   | 35<br>35   | 110        | Var        | Der        | црр        | 40         | THE        | Hec        | ASII       | цур        | 45         | ULY        | var        | Vai        |
| Lys                                  | Gln<br>50                                                                                                                                                                                                                             | Val        | Ala        | Asp        | Leu        | Leu<br>55  | Lys        | Ala        | Gln        | Gly        | Ile<br>60  | Asn        | Ser        | Ala        | Val        |
| Tyr<br>65                            | Asp                                                                                                                                                                                                                                   | Gly        | Val        | Met        | Pro<br>70  | Asn        | Pro        | Thr        | Val        | Thr<br>75  | Ala        | Val        | Leu        | Glu        | Gly<br>80  |
| Leu                                  | Lys                                                                                                                                                                                                                                   | Ile        | Leu        | Lуя<br>85  | Asp        | Asn        | Asn        | Ser        | Asp<br>90  | Phe        | Val        | Ile        | Ser        | Leu<br>95  | Gly        |
| Gly                                  | Gly                                                                                                                                                                                                                                   | Ser        | Pro<br>100 | His        | Asp        | Сүз        | Ala        | Lys<br>105 | Ala        | Ile        | Ala        | Leu        | Val<br>110 | Ala        | Thr        |
| Asn                                  | Gly                                                                                                                                                                                                                                   | Gly<br>115 | Glu        | Val        | Lys        | Asp        | Tyr<br>120 | Glu        | Gly        | Ile        | Asp        | Lys<br>125 | Ser        | Lys        | Lys        |
| Pro                                  | Ala<br>130                                                                                                                                                                                                                            | Leu        | Pro        | Leu        | Met        | Ser<br>135 | Ile        | Asn        | Thr        | Thr        | Ala<br>140 | Gly        | Thr        | Ala        | Ser        |
| Glu<br>145                           | Met                                                                                                                                                                                                                                   | Thr        | Arg        | Phe        | Суз<br>150 | Ile        | Ile        | Thr        | Asp        | Glu<br>155 | Val        | Arg        | His        | Val        | Lys<br>160 |
| Met                                  | Ala                                                                                                                                                                                                                                   | Ile        | Val        | Asp<br>165 | Arg        | His        | Val        | Thr        | Pro<br>170 | Met        | Val        | Ser        | Val        | Asn<br>175 | Asp        |
| Pro                                  | Leu                                                                                                                                                                                                                                   | Leu        | Met<br>180 | Val        | Gly        | Met        | Pro        | Lys<br>185 | Gly        | Leu        | Thr        | Ala        | Ala<br>190 | Thr        | Gly        |
| Met                                  | Asp                                                                                                                                                                                                                                   | Ala<br>195 | Leu        | Thr        | His        | Ala        | Phe<br>200 | Glu        | Ala        | Tyr        | Ser        | Ser<br>205 | Thr        | Ala        | Ala        |
| Thr                                  | Pro<br>210                                                                                                                                                                                                                            | Ile        | Thr        | Asp        | Ala        | Cys<br>215 | Ala        | Leu        | Lys        | Ala        | Ala<br>220 | Ser        | Met        | Ile        | Ala        |
| Lys<br>225                           | Asn                                                                                                                                                                                                                                   | Leu        | Гла        | Thr        | Ala<br>230 | Суз        | Asb        | Asn        | Gly        | Lys<br>235 | Asp        | Met        | Pro        | Ala        | Arg<br>240 |
| Glu                                  | Ala                                                                                                                                                                                                                                   | Met        | Ala        | Tyr<br>245 | Ala        | Gln        | Phe        | Leu        | Ala<br>250 | Gly        | Met        | Ala        | Phe        | Asn<br>255 | Asn        |
| Ala                                  | Ser                                                                                                                                                                                                                                   | Leu        | Gly<br>260 | Tyr        | Val        | His        | Ala        | Met<br>265 | Ala        | His        | Gln        | Leu        | Gly<br>270 | Gly        | Tyr        |
| Tyr                                  | Asn                                                                                                                                                                                                                                   | Leu<br>275 | Pro        | His        | Gly        | Val        | Cys<br>280 | Asn        | Ala        | Val        | Leu        | Leu<br>285 | Pro        | His        | Val        |
| Leu                                  | Ala<br>290                                                                                                                                                                                                                            | Tyr        | Asn        | Ala        | Ser        | Val<br>295 | Val        | Ala        | Gly        | Arg        | Leu<br>300 | ГЛа        | Asp        | Val        | Gly        |
| Val<br>305                           | Ala                                                                                                                                                                                                                                   | Met        | Gly        | Leu        | Asp<br>310 | Ile        | Ala        | Asn        | Leu        | Gly<br>315 | Asp        | ГЛа        | Glu        | Gly        | Ala<br>320 |
| Glu                                  | Ala                                                                                                                                                                                                                                   | Thr        | Ile        | Gln<br>325 | Ala        | Val        | Arg        | Asp        | Leu<br>330 | Ala        | Ala        | Ser        | Ile        | Gly<br>335 | Ile        |
| Pro                                  | Ala                                                                                                                                                                                                                                   | Asn        | Leu<br>340 | Thr        | Glu        | Leu        | Gly        | Ala<br>345 | Гла        | Lys        | Glu        | Asp        | Val<br>350 | Pro        | Leu        |
| Leu                                  | Ala                                                                                                                                                                                                                                   | Asp<br>355 | His        | Ala        | Leu        | ГЛа        | Asp<br>360 | Ala        | Сув        | Ala        | Leu        | Thr<br>365 | Asn        | Pro        | Arg        |
| Gln                                  | Gly<br>370                                                                                                                                                                                                                            | Asp        | Gln        | Lys        | Glu        | Val<br>375 | Glu        | Glu        | Leu        | Phe        | Leu<br>380 | Ser        | Ala        | Phe        |            |
| <213<br><213<br><213<br><220<br><223 | <210> SEQ ID NO 7<br><211> LENGTH: 1045<br><212> TYPE: PRT<br><213> ORGANISM: Beta vulgaris subsp. vulgaris<br><220> FEATURE:<br><221> NAME/KEY: misc_feature<br><223> OTHER INFORMATION: Sugar beet sucrose-phosphate synthase (SPS) |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| < 40       | 0> SI      | EQUEI      | NCE :      | 7          |            |            |            |            |            |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Met        | Ala        | Gly        | Asn        | Asp        | Trp        | Ile        | Asn        | Ser        | Tyr        | Leu        | Glu        | Ala        | Ile        | Leu        | Asp        |
| 1          |            | - 1        |            | 5          |            |            |            |            | 10         |            |            |            |            | 15         | 1          |
| Val        | Gly        | Pro        | Gly<br>20  | Leu        | Asp        | Asp        | Ala        | Lys<br>25  | Ser        | Ser        | Leu        | Leu        | Leu<br>30  | Arg        | Glu        |
| Arg        | Gly        | Arg<br>35  | Phe        | Ser        | Pro        | Thr        | Arg<br>40  | Tyr        | Phe        | Val        | Glu        | Glu<br>45  | Val        | Ile        | Thr        |
| Gly        | Phe<br>50  | Asp        | Glu        | Thr        | Asp        | Leu<br>55  | His        | Arg        | Ser        | Trp        | Val<br>60  | Arg        | Ala        | Gln        | Ala        |
| Thr<br>65  | Arg        | Ser        | Pro        | Gln        | Glu<br>70  | Arg        | Asn        | Thr        | Arg        | Leu<br>75  | Glu        | Asn        | Met        | Cys        | Trp<br>80  |
| Arg        | Ile        | Trp        | Asn        | Leu<br>85  | Ala        | Arg        | Gln        | ГЛа        | Lуз<br>90  | Gln        | Leu        | Glu        | Asn        | Glu<br>95  | Glu        |
| Ala        | Gln        | Arg        | Lys<br>100 | Thr        | ГЛа        | Arg        | Arg        | Met<br>105 | Glu        | Leu        | Glu        | Arg        | Gly<br>110 | Arg        | Arg        |
| Glu        | Ala        | Thr<br>115 | Ala        | Asp        | Met        | Ser        | Glu<br>120 | Asp        | Leu        | Ser        | Glu        | Gly<br>125 | Glu        | Lys        | Asp        |
| Ile        | Ser<br>130 | Ala        | His        | Gly        | Aap        | Ser<br>135 | Thr        | Arg        | Pro        | Arg        | Leu<br>140 | Pro        | Arg        | Ile        | Asn        |
| Ser<br>145 | Leu        | Asp        | Ala        | Met        | Glu<br>150 | Thr        | Trp        | Ile        | Ser        | Gln<br>155 | Gln        | ГЛа        | Glu        | Lys        | Lys<br>160 |
| Leu        | Tyr        | Leu        | Val        | Leu<br>165 | Ile        | Ser        | Leu        | His        | Gly<br>170 | Leu        | Ile        | Arg        | Gly        | Glu<br>175 | Asn        |
| Met        | Glu        | Leu        | Gly<br>180 | Arg        | Asp        | Ser        | Asp        | Thr<br>185 | Gly        | Gly        | Gln        | Val        | Lys<br>190 | Tyr        | Val        |
| Val        | Glu        | Leu<br>195 | Ala        | Arg        | Ala        | Leu        | Gly<br>200 | Ser        | Met        | Pro        | Gly        | Val<br>205 | Tyr        | Arg        | Val        |
| Asp        | Leu<br>210 | Leu        | Thr        | Arg        | Gln        | Val<br>215 | Ser        | Ser        | Pro        | Asp        | Val<br>220 | Asp        | Trp        | Ser        | Tyr        |
| Gly<br>225 | Glu        | Pro        | Thr        | Glu        | Met<br>230 | Leu        | Asn        | Pro        | Arg        | Asp<br>235 | Ser        | Asn        | Gly        | Phe        | Asp<br>240 |
| Asp        | Asp        | Asp        | Asp        | Glu<br>245 | Met        | Gly        | Glu        | Ser        | Ser<br>250 | Gly        | Ala        | Tyr        | Ile        | Val<br>255 | Arg        |
| Ile        | Pro        | Phe        | Gly<br>260 | Pro        | Arg        | Asp        | Lys        | Tyr<br>265 | Ile        | Ala        | Lys        | Glu        | Glu<br>270 | Leu        | Trp        |
| Pro        | Tyr        | Ile<br>275 | Pro        | Glu        | Phe        | Val        | Asp<br>280 | Gly        | Ala        | Leu        | Asn        | His<br>285 | Ile        | Val        | Gln        |
| Met        | Ser<br>290 | Lys        | Val        | Leu        | Gly        | Glu<br>295 | Gln        | Ile        | Gly        | Ser        | Gly<br>300 | Glu        | Thr        | Val        | Trp        |
| Pro<br>305 | Val        | Ala        | Ile        | His        | Gly<br>310 | His        | Tyr        | Ala        | Asp        | Ala<br>315 | Gly        | Aap        | Ser        | Ala        | Ala<br>320 |
| Leu        | Leu        | Ser        | Gly        | Gly<br>325 | Leu        | Asn        | Val        | Pro        | Met<br>330 | Leu        | Leu        | Thr        | Gly        | His<br>335 | Ser        |
| Leu        | Gly        | Arg        | Asp<br>340 | Lys        | Leu        | Glu        | Gln        | Leu<br>345 | Leu        | Lys        | Gln        | Gly        | Arg<br>350 | Met        | Ser        |
| ГЛа        | Asp        | Asp<br>355 | Ile        | Asn        | Asn        | Thr        | Tyr<br>360 | Lys        | Ile        | Met        | Arg        | Arg<br>365 | Ile        | Glu        | Ala        |
| Glu        | Glu<br>370 | Leu        | Ser        | Leu        | Asp        | Ala<br>375 | Ser        | Glu        | Ile        | Val        | Ile<br>380 | Thr        | Ser        | Thr        | Arg        |
| Gln<br>385 | Glu        | Ile        | Glu        | Glu        | Gln<br>390 | Trp        | His        | Leu        | Tyr        | Asp<br>395 | Gly        | Phe        | Asp        | Pro        | Val<br>400 |
| Leu        | Glu        | Arg        | ГЛа        | Leu<br>405 | Arg        | Ala        | Arg        | Met        | Lys<br>410 | Arg        | Gly        | Val        | Ser        | Cys<br>415 | Tyr        |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| Gly        | Arg        | Phe        | Met<br>420 | Pro        | Arg        | Met        | Val        | Val<br>425 | Ile        | Pro        | Pro        | Gly        | Met<br>430 | Glu        | Phe        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | His        | Ile<br>435 | Val        | Pro        | His        | Glu        | Gly<br>440 | Asp        | Met        | Asp        | Gly        | Glu<br>445 | Thr        | Glu        | Glu        |
| Thr        | Glu<br>450 | Glu        | His        | Pro        | Thr        | Ser<br>455 | Pro        | Asp        | Pro        | Pro        | Ile<br>460 | Trp        | Ala        | Glu        | Ile        |
| Met<br>465 | Arg        | Phe        | Phe        | Ser        | Lys<br>470 | Pro        | Arg        | Lys        | Pro        | Met<br>475 | Ile        | Leu        | Ala        | Leu        | Ala<br>480 |
| Arg        | Pro        | Asp        | Pro        | Lys<br>485 | ГЛЗ        | Asn        | Ile        | Thr        | Thr<br>490 | Leu        | Val        | ГЛа        | Ala        | Phe<br>495 | Gly        |
| Glu        | Суз        | Arg        | Pro<br>500 | Leu        | Arg        | Glu        | Leu        | Ala<br>505 | Asn        | Leu        | Thr        | Leu        | Ile<br>510 | Met        | Gly        |
|            | Arg        | 515        |            |            |            |            | 520        |            |            |            |            | 525        |            |            |            |
|            | Ser<br>530 |            |            | -          |            | 535        | -          |            | -          |            | 540        | -          | -          |            |            |
| 545        | Tyr        |            | -          |            | 550        | -          |            |            | -          | 555        |            |            |            | -          | 560        |
|            | Ala        |            | -          | 565        | -          | -          |            |            | 570        |            |            |            |            | 575        |            |
|            | Phe        | -          | 580        |            |            |            |            | 585        |            |            |            | _          | 590        |            |            |
|            | Ala        | 595        | -          |            | -          | -          | 600        |            | -          |            |            | 605        |            |            | _          |
|            | Gly<br>610 |            |            |            | -          | 615        |            |            |            |            | 620        |            |            |            |            |
| 625        | Leu        | -          |            |            | 630        | -          | -          |            |            | 635        |            | -          | -          |            | 640        |
|            | Gly        |            | -          | 645        |            |            |            | -          | 650        | _          |            |            |            | 655        | -          |
|            | Tyr        |            | 660        | -          |            |            |            | 665        | -          |            | -          |            | 670        |            | _          |
|            | Arg        | 675        |            |            |            |            | 680        |            |            |            |            | 685        |            |            |            |
|            | Asp<br>690 |            |            |            |            | 695        |            |            |            |            | 700        |            |            |            |            |
| 705        | Val        |            |            |            | 710        |            |            |            |            | 715        |            |            |            |            | 720        |
|            | Thr        | -          |            | 725        |            | -          |            |            | 730        | -          |            | -          |            | 735        | -          |
|            | His        |            | 740        |            |            |            |            | 745        |            |            |            |            | 750        |            |            |
| Ala        | Ser        | Ser<br>755 | ГЛЗ        | Tyr        | Pro        | Ala        | Phe<br>760 | Arg        | Arg        | Arg        | ГАЗ        | Leu<br>765 | Ile        | Tyr        | Val        |
| Ile        | Ala<br>770 | Val        | Asp        | Gly        | Asp        | Tyr<br>775 | Glu        | Asp        | Gly        | Leu        | Phe<br>780 | Asp        | Ile        | Val        | Arg        |
| Arg<br>785 | Ile        | Phe        | Asp        | Ala        | Ala<br>790 | Gly        | Lys        | Glu        | Гла        | Ile<br>795 | Glu        | Gly        | Ser        | Ile        | Gly<br>800 |
| Phe        | Ile        | Leu        | Ser        | Thr<br>805 | Ser        | Tyr        | Ser        | Met        | Pro<br>810 | Glu        | Ile        | Gln        | Asn        | Tyr<br>815 | Leu        |
| Leu        | Ser        | Lys        | Gly<br>820 | Phe        | Asn        | Leu        | His        | Asp<br>825 | Phe        | Asp        | Ala        | Tyr        | Ile<br>830 | Суз        | Asn        |

|                                      |                |                                             |                                    |                     |            |              |             |            |            |            | -          | COII        | CIII       | ueu        |            |
|--------------------------------------|----------------|---------------------------------------------|------------------------------------|---------------------|------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|------------|
| Ser                                  | Gly            | Ser<br>835                                  | Glu                                | Leu                 | Tyr        | Tyr          | Ser<br>840  | Ser        | Leu        | Asn        | Ser        | Glu<br>845  | Glu        | Ser        | Asn        |
| Ile                                  | Ile<br>850     | Ala                                         | Asp                                | Ser                 | Asp        | Tyr<br>855   | His         | Ser        | His        | Ile        | Glu<br>860 | Tyr         | Arg        | Trp        | Gly        |
| Gly<br>865                           | Glu            | Gly                                         | Leu                                | Arg                 | Arg<br>870 |              | Leu         | Leu        | Arg        | Trp<br>875 | Ala        | Ala         | Ser        | Ile        | Thr<br>880 |
| Glu                                  | Гла            | Asn                                         | Gly                                | Glu<br>885          | Asn        | Glu          | Glu         | Gln        | Val<br>890 | Ile        | Thr        | Glu         | Asp        | Glu<br>895 | Glu        |
| Val                                  | Ser            | Thr                                         | Gly<br>900                         | -                   | Суз        | Phe          | Ala         | Phe<br>905 | -          | Ile        | Гла        | Asn         | Gln<br>910 | Asn        | Гуз        |
| Val                                  | Pro            | Pro<br>915                                  | Thr                                | Lys                 | Glu        | Leu          | Arg<br>920  | -          | Ser        | Met        | Arg        | Ile<br>925  | Gln        | Ala        | Leu        |
| Arg                                  | Суз<br>930     | His                                         | Val                                | Ile                 | Tyr        | Cys<br>935   | Gln         | Asn        | Gly        | Ser        | Lys<br>940 | Met         | Asn        | Val        | Ile        |
| Pro<br>945                           | Val            | Leu                                         | Ala                                | Ser                 | Arg<br>950 |              | Gln         | Ala        | Leu        | Arg<br>955 | Tyr        | Leu         | Tyr        | Val        | Arg<br>960 |
| Trp                                  | Gly            | Val                                         | Glu                                | Leu<br>965          | Ser        | Lys          | Met         | Val        | Val<br>970 | Phe        | Val        | Gly         | Glu        | Cys<br>975 | Gly        |
| Asp                                  | Thr            | Asp                                         | Tyr<br>980                         | Glu                 | Gly        | Leu          | Leu         | Gly<br>985 |            | Val        | His        | Гла         | Thr<br>990 | Val        | Ile        |
| Leu                                  | Lys            | Gly<br>995                                  | Val                                | Ser                 | Asn        | Thr          | Ala<br>1000 |            | u Arç      | g Se:      | r Leı      | 1 Hi:<br>10 |            | la A:      | sn Arg     |
| Ser                                  | Tyr<br>1010    |                                             | o Lei                              | u Se:               | r Hi:      | s Va<br>10   | 1 Va<br>15  | al Se      | er Le      | eu A       | -          | er 1<br>020 | Pro i      | Asn 1      | lle        |
| Gly                                  | Glu<br>102!    |                                             | l Se:                              | r Ly:               | s Gly      |              | s Se        | er Se      | er Se      | er G       | lu I       |             | Gln :      | Ser 1      | Ile        |
| Val                                  | Thr<br>1040    |                                             | s Lei                              | u Se:               | r Ly:      | s Ala<br>104 |             |            |            |            |            |             |            |            |            |
| <21:<br><21:<br><21:<br><22:<br><22: | 0> F1<br>1> N2 | ENGTI<br>YPE :<br>RGANI<br>EATUI<br>AME / I | H: 1<br>PRT<br>ISM:<br>RE:<br>KEY: | 060<br>Saco<br>miso | c_fea      | ature        |             |            |            |            |            | phat        | e aλı      | ntha       | se (SPS)   |
| <40                                  | )> SI          | EQUEI                                       | NCE :                              | 8                   |            |              |             |            |            |            |            |             |            |            |            |
| Met<br>1                             | Ala            | -                                           |                                    | _                   | -          |              | Asn         |            | -          |            | Glu        |             |            |            | Asp        |
| Ala                                  | Gly            | Gly                                         | Ala<br>20                          | Ala                 | Gly        | Glu          | Ile         | Ser<br>25  | Ala        | Ala        | Ala        | Gly         | Ser<br>30  | Gly        | Gly        |
| Gly                                  | Gly            | Asp<br>35                                   | Gly                                | Thr                 | Ala        | Gly          | Glu<br>40   | Lys        | Arg        | Asp        | ГЛа        | Ser<br>45   | Ser        | Leu        | Met        |
| Leu                                  | Arg<br>50      | Glu                                         | Arg                                | Gly                 | Arg        | Phe<br>55    | Asn         | Pro        | Ala        | Arg        | Tyr<br>60  | Phe         | Val        | Glu        | Glu        |
| Val<br>65                            | Ile            | Ser                                         | Gly                                | Phe                 | Asp<br>70  | Glu          | Thr         | Asp        | Leu        | Tyr<br>75  | Lys        | Thr         | Trp        | Val        | Arg<br>80  |
| Thr                                  | Ser            | Ala                                         | Met                                | Arg<br>85           | Ser        | Pro          | Gln         | Glu        | Arg<br>90  | Asn        | Thr        | Arg         | Leu        | Glu<br>95  | Asn        |
| Met                                  | Ser            | Trp                                         | Arg<br>100                         |                     | Trp        | Asn          | Leu         | Ala<br>105 |            | Lys        | Lys        | ГÀа         | Gln<br>110 |            | ГЛа        |
| Gly                                  | Glu            |                                             |                                    | Ser                 | Arg        | Leu          | Ser         |            | Arg        | Arg        | Met        |             |            | Glu        | Гуз        |
| Ala                                  | -              | 115<br>Gln                                  | Tyr                                | Ala                 | Ala        |              | 120<br>Asp  | Leu        | Ser        | Glu        |            | 125<br>Leu  | Ser        | Glu        | Gly        |
|                                      | 130            |                                             |                                    |                     |            | 135          |             |            |            |            | 140        |             |            |            |            |

| Glu<br>145 | Lys        | Gly        | Glu        | Thr        | Asn<br>150 | Asn        | Glu        | Pro        | Ser        | Ile<br>155 | His        | Asp        | Glu        | Ser        | Met<br>160 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg        | Thr        | Arg        | Met        | Pro<br>165 | Arg        | Ile        | Gly        | Ser        | Thr<br>170 | Asp        | Ala        | Ile        | Glu        | Thr<br>175 | Trp        |
| Ala        | Asn        | Gln        | His<br>180 | Lys        | Asp        | Lys        | Lys        | Leu<br>185 | Tyr        | Ile        | Val        | Leu        | Ile<br>190 | Ser        | Ile        |
| His        | Gly        | Leu<br>195 | Ile        | Arg        | Gly        | Glu        | Asn<br>200 | Met        | Glu        | Leu        | Gly        | Arg<br>205 | Asp        | Ser        | Asp        |
| Thr        | Gly<br>210 | Gly        | Gln        | Val        | ГЛа        | Tyr<br>215 | Val        | Val        | Glu        | Leu        | Ala<br>220 | Arg        | Ala        | Leu        | Gly        |
| Ser<br>225 | Thr        | Pro        | Gly        | Val        | Tyr<br>230 | Arg        | Val        | Asp        | Leu        | Leu<br>235 | Thr        | Arg        | Gln        | Ile        | Ser<br>240 |
| Ala        | Pro        | Asp        | Val        | Asp<br>245 | Trp        | Ser        | Tyr        | Gly        | Glu<br>250 | Pro        | Thr        | Glu        | Met        | Leu<br>255 | Ser        |
| Pro        | Ile        | Ser        | Ser<br>260 | Glu        | Asn        | Phe        | Gly        | His<br>265 | Glu        | Leu        | Gly        | Glu        | Ser<br>270 | Ser        | Gly        |
| Ala        | Tyr        | Ile<br>275 | Val        | Arg        | Ile        | Pro        | Phe<br>280 | Gly        | Pro        | Arg        | Asp        | Lys<br>285 | Tyr        | Ile        | Pro        |
| Lys        | Glu<br>290 | His        | Leu        | Trp        | Pro        | His<br>295 | Ile        | Gln        | Glu        | Phe        | Val<br>300 | Aab        | Gly        | Ala        | Leu        |
| Val<br>305 | His        | Ile        | Met        | Gln        | Met<br>310 | Ser        | LÀa        | Val        | Leu        | Gly<br>315 | Glu        | Gln        | Ile        | Gly        | Ser<br>320 |
| Gly        | Gln        | Pro        | Val        | Trp<br>325 | Pro        | Val        | Val        | Ile        | His<br>330 | Gly        | His        | Tyr        | Ala        | Asp<br>335 | Ala        |
| Gly        | Asp        | Ser        | Ala<br>340 | Ala        | Leu        | Leu        | Ser        | Gly<br>345 | Ala        | Leu        | Asn        | Val        | Pro<br>350 | Met        | Val        |
| Phe        | Thr        | Gly<br>355 | His        | Ser        | Leu        | Gly        | Arg<br>360 | Asp        | ГЛа        | Leu        | Glu        | Gln<br>365 | Ile        | Leu        | Lys        |
| Gln        | Gly<br>370 | Arg        | Gln        | Thr        | Arg        | Asp<br>375 | Glu        | Ile        | Asn        | Ala        | Thr<br>380 | Tyr        | Lys        | Ile        | Met        |
| Arg<br>385 | Arg        | Ile        | Glu        | Ala        | Glu<br>390 | Glu        | Leu        | Суз        | Leu        | Asp<br>395 | Thr        | Ser        | Glu        | Ile        | Ile<br>400 |
| Ile        | Thr        | Ser        | Thr        | Arg<br>405 | Gln        | Glu        | Ile        | Glu        | Gln<br>410 | Gln        | Trp        | Gly        | Leu        | Tyr<br>415 | Asp        |
| Gly        | Phe        | Asp        | Leu<br>420 | Thr        | Met        | Ala        | Arg        | Lys<br>425 | Leu        | Arg        | Ala        | Arg        | Ile<br>430 | Lys        | Arg        |
| Gly        | Val        | Ser<br>435 | Сүз        | Phe        | Gly        | Arg        | Tyr<br>440 | Met        | Pro        | Arg        | Met        | Ile<br>445 | Ala        | Ile        | Pro        |
| Pro        | Gly<br>450 | Met        | Glu        | Phe        | Ser        | His<br>455 | Ile        | Ala        | Pro        | His        | Asp<br>460 | Val        | Aab        | Leu        | Asp        |
| Ser<br>465 | Glu        | Glu        | Gly        | Asn        | Glu<br>470 | Asp        | Gly        | Ser        | Gly        | Ser<br>475 | Pro        | Asp        | Pro        | Pro        | Ile<br>480 |
| Trp        | Ala        | Asp        | Ile        | Met<br>485 | Arg        | Phe        | Phe        | Ser        | Asn<br>490 | Pro        | Arg        | Γλa        | Pro        | Met<br>495 | Ile        |
| Leu        | Ala        | Leu        | Ala<br>500 | Arg        | Pro        | Aab        | Pro        | Lys<br>505 | Lys        | Asn        | Ile        | Thr        | Thr<br>510 | Leu        | Val        |
| Lys        | Ala        | Phe<br>515 | Gly        | Glu        | His        | Arg        | Glu<br>520 | Leu        | Arg        | Asn        | Leu        | Ala<br>525 | Asn        | Leu        | Thr        |
| Leu        | Ile<br>530 | Met        | Gly        | Asn        | Arg        | Asp<br>535 | Val        | Ile        | Asp        | Glu        | Met<br>540 | Ser        | Ser        | Thr        | Asn        |
| Ala<br>545 | Ala        | Val        | Leu        | Thr        | Ser<br>550 | Val        | Leu        | Lys        | Leu        | Ile<br>555 | Asp        | Lys        | Tyr        | Asp        | Leu<br>560 |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| Tyr        | Gly        | Gln        | Val        | Ala<br>565 | Tyr        | Pro        | Lys        | His        | His<br>570 | Lys        | Gln        | Phe        | Glu        | Val<br>575 | Pro        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Aap        | Ile        | Tyr        | Arg<br>580 | Leu        | Ala        | Ala        | Arg        | Thr<br>585 |            | Gly        | Val        | Phe        | Ile<br>590 | Asn        | Суз        |
| Ala        | Phe        | Ile<br>595 | Glu        | Pro        | Phe        | Gly        | Leu<br>600 |            | Leu        | Ile        | Glu        | Ala<br>605 | Ala        | Ala        | Tyr        |
| Gly        | Leu<br>610 | Pro        | Ile        | Val        | Ala        | Thr<br>615 | Arg        | Asn        | Gly        | Gly        | Pro<br>620 | Val        | Asp        | Ile        | His        |
| Arg<br>625 | Val        | Leu        | Asp        | Asn        | Gly<br>630 | Ile        | Leu        | Val        | Asp        | Pro<br>635 | His        | Asn        | Gln        | Asn        | Glu<br>640 |
| Ile        | Gly        | Glu        | Ala        | Leu<br>645 | Tyr        | Lys        | Leu        | Val        | Ser<br>650 | Asp        | Lys        | Gln        | Leu        | Trp<br>655 | Thr        |
| Arg        | Суз        | Arg        | Gln<br>660 | Asn        | Gly        | Leu        | Lys        | Asn<br>665 | Ile        | His        | Gln        | Phe        | Ser<br>670 | Trp        | Pro        |
| Glu        | His        | Cys<br>675 | Lys        | Asn        | Tyr        | Leu        | Ala<br>680 |            | Val        | Val        | Thr        | Leu<br>685 | Lys        | Pro        | Arg        |
| His        | Pro<br>690 | Arg        | Trp        | Gln        | Lys        | Asn<br>695 | Asp        | Val        | Ala        | Thr        | Glu<br>700 | Ile        | Ser        | Glu        | Ala        |
| Asp<br>705 | Ser        | Pro        | Glu        | Asp        | Ser<br>710 | Leu        | Arg        | Asp        | Ile        | His<br>715 | Asp        | Ile        | Ser        | Leu        | Asn<br>720 |
| Leu        | Gln        | Leu        | Ser        | Leu<br>725 | Asp        | Ser        | Glu        | Lys        | Ser<br>730 | Gly        | Ser        | Lys        | Glu        | Gly<br>735 | Asn        |
| Ser        | Asn        | Thr        | Val<br>740 | Arg        | Arg        | His        | Leu        | Glu<br>745 | Asp        | Ala        | Val        | Gln        | Lys<br>750 | Leu        | Ser        |
| Gly        | Val        | Ser<br>755 | Asp        | Ile        | Lys        | Lys        | Asp<br>760 | Gly        | Pro        | Gly        | Glu        | Asn<br>765 | Gly        | Lys        | Trp        |
| Pro        | Ser<br>770 | Leu        | Arg        | Arg        | Arg        | Lys<br>775 | His        | Ile        | Ile        | Val        | Ile<br>780 | Ala        | Val        | Asp        | Ser        |
| Val<br>785 | Gln        | Asp        | Ala        | Asp        | Phe<br>790 | Val        | Gln        | Val        | Ile        | Lys<br>795 | Asn        | Ile        | Phe        | Glu        | Ala<br>800 |
| Ser        | Ser        | Asn        | Glu        | Arg<br>805 | Ser        | Ser        | Gly        | Ala        | Val<br>810 | Gly        | Phe        | Val        | Leu        | Ser<br>815 | Thr        |
| Ala        | Arg        | Ala        | Ile<br>820 | Ser        | Glu        | Ile        | His        | Ala<br>825 | Leu        | Leu        | Ile        | Ser        | Gly<br>830 | Arg        | Ile        |
| Glu        | Ala        | Ser<br>835 | Asp        | Phe        | Asp        | Ala        | Phe<br>840 | Ile        | Суз        | Asn        | Ser        | Gly<br>845 | Ser        | Asp        | Leu        |
| Суз        | Tyr<br>850 | Pro        | Ser        | Ser        | Ser        | Ser<br>855 | Glu        | Asp        | Met        | Leu        | Ser<br>860 | Pro        | Ala        | Glu        | Leu        |
| Pro<br>865 | Phe        | Met        | Ile        | Asp        | Leu<br>870 | Asp        | Tyr        | His        | Ser        | Gln<br>875 | Ile        | Glu        | Tyr        | Arg        | Trp<br>880 |
| Gly        | Gly        | Glu        | Gly        | Leu<br>885 | Arg        | Lys        | Thr        | Leu        | Ile<br>890 | Arg        | Trp        | Ala        | Ala        | Glu<br>895 | Lys        |
| Asn        | Asn        | Glu        | Ser<br>900 | Gly        | Gln        | ГЛа        | Ile        | Leu<br>905 | Val        | Glu        | Asp        | Glu        | Glu<br>910 | Сув        | Ser        |
| Ser        | Thr        | Tyr<br>915 | Сүз        | Ile        | Ser        | Phe        | Lys<br>920 | Val        | Ser        | Asn        | Thr        | Ala<br>925 | Ala        | Ala        | Pro        |
| Pro        | Val<br>930 | Lys        | Glu        | Ile        | Arg        | Arg<br>935 | Thr        | Met        | Arg        | Ile        | Gln<br>940 | Ala        | Leu        | Arg        | Сув        |
| His<br>945 | Val        | Leu        | Tyr        | Ser        | His<br>950 | Asp        | Gly        | Ser        | Lys        | Leu<br>955 | Asn        | Val        | Ile        | Pro        | Val<br>960 |
|            | Ala        | Ser        | Arg        | Ser<br>965 | Gln        | Ala        | Leu        | Arg        | Tyr<br>970 | Leu        | Tyr        | Ile        | Arg        | Trp<br>975 |            |
| Val        | Glu        | Leu        | Ser        |            | Ile        | Thr        | Val        | Ile        |            | Gly        | Glu        | Cys        | Gly        |            | Thr        |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

|                                                      |                |                                                  |                                            |                            |            |              |             |            |            |            |            | con         | tin        | ued        |             |
|------------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------|----------------------------|------------|--------------|-------------|------------|------------|------------|------------|-------------|------------|------------|-------------|
|                                                      |                |                                                  | 980                                        |                            |            |              |             | 985        |            |            |            |             | 990        |            |             |
| Asp                                                  | Tyr            | Glu<br>995                                       | Gly                                        | Leu                        | Leu        | Gly          | Gly<br>1000 |            | l Hi       | з Ly       | s Thi      | r Il.<br>10 |            | le L       | eu Lys      |
| Gly                                                  | Ser<br>101(    |                                                  | e Ası                                      | n Th:                      | r Ala      | a Pro<br>103 |             | sn G       | ln Va      | al H       |            | la 1<br>020 | Asn 2      | Arg :      | Ser         |
| Tyr                                                  | Ser<br>1025    |                                                  | u Gli                                      | n Asj                      | p Va:      | l Va<br>103  |             | er Pl      | he Gi      | lu L       | -          | ln (<br>035 | Gly :      | Ile :      | Ser         |
| Ser                                                  | Ile<br>1040    |                                                  | u Gl                                       | у Ту:                      | r Gly      | y Pro<br>104 |             | ap A       | sn L       | eu L       | -          | er 1<br>050 | Ala 1      | Leu i      | Arg         |
| Gln                                                  | Phe<br>1055    |                                                  | y Ile                                      | e Lei                      | u Ly:      | s As]<br>100 |             |            |            |            |            |             |            |            |             |
| <211<br><212<br><213<br><220<br><221<br><221<br><221 | D> FH<br>L> NA | ENGTH<br>(PE:<br>RGAN)<br>EATUH<br>AME/I<br>THER | H: 4:<br>PRT<br>ISM:<br>RE:<br>KEY:<br>INF | 20<br>Saco<br>miso<br>ORMA | c_fea      | ature        | e           |            |            | ose j      | phosj      | phat        | e pho      | ospha      | atase (SPP) |
|                                                      |                |                                                  |                                            |                            | Glv        | Ser          | Val         | Ara        | Leu        | Met        | Tle        | Val         | Ser        | Asp        | Leu         |
| 1                                                    | F              | -1-                                              |                                            | 5                          |            |              |             | 5          | 10         |            |            |             |            | 15         |             |
| Aab                                                  | His            | Thr                                              | Met<br>20                                  | Val                        | Asp        | His          | His         | Asp<br>25  | Glu        | Glu        | Asn        | Leu         | Ser<br>30  | Leu        | Leu         |
| Arg                                                  | Phe            | Gly<br>35                                        | Ala                                        | Leu                        | Trp        | Glu          | Ser<br>40   | Val        | Tyr        | Сув        | Glu        | Asp<br>45   | Ser        | Leu        | Leu         |
| Val                                                  | Phe<br>50      | Ser                                              | Thr                                        | Gly                        | Arg        | Ser<br>55    | Pro         | Thr        | Leu        | Tyr        | Lүз<br>60  | Glu         | Leu        | Arg        | Lys         |
| Glu<br>65                                            | Lys            | Pro                                              | Met                                        | Leu                        | Thr<br>70  | Pro          | Asp         | Ile        | Thr        | Ile<br>75  | Met        | Ser         | Val        | Gly        | Thr<br>80   |
| Glu                                                  | Ile            | Thr                                              | Tyr                                        | Gly<br>85                  | Glu        | Ala          | Met         | Val        | Pro<br>90  | Asp        | Asp        | Gly         | Trp        | Glu<br>95  | Gln         |
| Tyr                                                  | Leu            | Asn                                              | Asn<br>100                                 | Lys                        | Trp        | Asp          | Arg         | Asn<br>105 | Ile        | Val        | Val        | Glu         | Glu<br>110 | Thr        | Ala         |
| Ser                                                  | Phe            | Ser<br>115                                       | Glu                                        | Leu                        | Lys        | Leu          | Gln<br>120  | Pro        | Glu        | Thr        | Glu        | Gln<br>125  | Arg        | Pro        | His         |
| ГЛа                                                  | Val<br>130     | Ser                                              | Phe                                        | Leu                        | Val        | Asp<br>135   | ГЛа         | Lys        | Ser        | Ala        | Gln<br>140 | Glu         | Val        | Ile        | Гла         |
| Ser<br>145                                           | Val            | Ala                                              | Glu                                        | Arg                        | Leu<br>150 | Aab          | Lys         | Arg        | Gly        | Leu<br>155 | Asp        | Ala         | ГÀа        | Ile        | Ile<br>160  |
| Tyr                                                  | Ser            | Gly                                              | Gly                                        | Gln<br>165                 | Asp        | Leu          | Asp         | Ile        | Leu<br>170 | Pro        | Gln        | Gly         | Ala        | Gly<br>175 | Гла         |
| Gly                                                  | Gln            | Ala                                              | Leu<br>180                                 | Ala                        | Tyr        | Leu          | Leu         | Lys<br>185 |            | Leu        | Ser        | Ser         | Cys<br>190 | Gly        | Гла         |
| Pro                                                  | Pro            | Asn<br>195                                       | Asn                                        | Thr                        | Leu        | Val          | Суз<br>200  | Gly        | Asp        | Ser        | Gly        | Asn<br>205  | Asp        | Ala        | Glu         |
| Leu                                                  | Phe<br>210     | Ser                                              | Ile                                        | Pro                        | Gly        | Val<br>215   | Met         | Val        | Ser        | Asn        | Ala<br>220 | Gln         | Glu        | Glu        | Leu         |
| Leu<br>225                                           | Gln            | Trp                                              | Tyr                                        | Ala                        | Glu<br>230 | Asn          | Ala         | ГЛа        | Asp        | Asn<br>235 | Pro        | ГЛа         | Ile        | Ile        | His<br>240  |
| Ala                                                  | Asn            | Glu                                              | Arg                                        | Cys<br>245                 | Ala        | Ala          | Gly         | Ile        | Ile<br>250 | Gln        | Ala        | Ile         | Gly        | His<br>255 | Phe         |
| Lys                                                  | Leu            | Gly                                              | Pro<br>260                                 | Asn                        | Ile        | Ser          | Pro         | Arg<br>265 | Asp        | Val        | Asp        | Phe         | Pro<br>270 | Tyr        | Ala         |
|                                                      |                |                                                  | 200                                        |                            |            |              |             | 200        |            |            |            |             | 270        |            |             |

42

| LysGluAlsSerProSerAspAlaValLysPreTyrVal275GluLysTrpArgArgAlaGluValFroLysSerAspSerVal280JoTyrPheLysAsmIleThrHisAlaAsmGlyValIleIleHis305JoTyrPheLysAsmIleThrHisAlaAsmGlyAspSerValAspSerValAspSerYalAspAspSerYalAspAspAspSerYalYalAspAspSerYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalYalY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |             |      |             |      |       |       |     |     |     |     | <u></u> | ιIII | uea |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|------|-------------|------|-------|-------|-----|-----|-----|-----|---------|------|-----|-----------|
| 290       295       300         11e       Va       Ya       Phe       Jan       In       Th       Hi       Ala       Ann       Gly       Val       Ine       Ine       His         200       Na       Gly       Leu       Glu       Leu       His       Ala       Ann       Gly       Val       Ala       Glu       Glu       Ser       Val       Ala       Glu       Ser       Val       Ala       Glu       Ser       Val       Ala       Glu       Ser       Val       Ala       Pro       Ala       Ala       Val       Ala       Ser       Val       Ala       Pro       Ala       Ala       Pro       Ala       Ala       Pro       Ala       Ala       Pro       Ala       Ala       Ala       Ala       Ala       Ala       Ala <td>LYa</td> <td>Glu</td> <td></td> <td>Ser</td> <td>Phe</td> <td>ГЛа</td> <td>Pro</td> <td></td> <td>Asp</td> <td>Ala</td> <td>Val</td> <td>Val</td> <td>-</td> <td>Phe</td> <td>Tyr</td> <td>Val</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LYa       | Glu            |             | Ser  | Phe         | ГЛа  | Pro   |       | Asp | Ala | Val | Val | -       | Phe  | Tyr | Val       |
| 305     310     315     320       2070     Ala     Gly     Leu     Gly     Als     Gly     Leu     Gly     Als     Gly     Leu     Gly     Ser     File     Arg     Als     Gly     Gly     Als     Gly     Ang     Als     Gly     Ang     Ang     Gly     Ang     Ang     Gly     Ang     Ang     Gly     Gly     Gly     Ser     Ang     Cry     Gly     Gly     Ang     File     Als     Gly     Gly     Gly     Ser     Try     Gly     Ang     File     Als     Gly     Gly     Gly     Ser     Try     Gly     Ang     File     Als     Gly     Gly     Gly     Ser     Try     Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                | Glu         | Lys  | Trp         | Arg  |       | Ala   | Glu | Val | Pro |     | Ser     | Asp  | Ser | Val       |
| 325         330         335           Ser Cya         Ty         Gly App         Lya         Gln         Gly         Lya         Ly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Lys            | Tyr         | Phe  | Lys         |      | Ile   | Thr   | His | Ala |     | Gly | Val     | Ile  | Ile |           |
| 340       345       350         Arg Leu       Als II       Th       Gln       Th       Gly       Ser       Aop       Ser       Ty       Yal       Val       Arg       Kei       Val       Arg       Kei       Yal       Val       Arg       Kei       Yal       Val       Arg       Kei       Yal       Val       Arg       Kei       Yal       Val       Kei       Kei       Ser       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pro       | Ala            | Gly         | Leu  |             | Leu  | Ser   | Leu   | His |     | Ser | Ile | Asp     | Ala  |     | Gly       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ser       | Суз            | Tyr         |      | Asp         | ГЛЗ  | Gln   | Gly   |     | Lys | Tyr | Arg | Ala     |      | Val | Asp       |
| 370       375       380         Leu       Ala       Leu       L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arg       | Leu            |             | Ile  | Thr         | Gln  | Thr   | -     | Ser | Asp | Ser | Trp |         | Val  | Arg | Phe       |
| 385390395400His Ile Gln Lys Thr Trp Leu Asn Gly Tyr ArgSer Ser Gly Val Glu Gln 415Ala Phe Lys Val 420<210> SEQ ID N0 10<211> LENGTH: 720<212> TYPE: PET<213> ORGANISM: Synechocystis sp.<221> NMEK/KEY: misc_feature<221> NMEK/KEY: misc_feature<221> NMEK/KEY: misc_feature<221> NMEK/KEY: misc_feature<221> NME/KEY: misc_feature<211< NME/KEY: misc_feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _         |                | Trp         | Glu  | Ser         | Glu  | -     | Asp   | Val | Arg | Val | -   | Ser     | Leu  | Ser | Ser       |
| 405         410         415           Ala Phe Lys Val<br>420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Ala            | Leu         | Val  | Leu         |      | Ala   | Glu   | Ser | Pro |     | Gly | Phe     | Val  | Leu |           |
| 420<br>(210) SEQ ID NO 10<br>(212) TYPE: PRT<br>(213) CRGANISM: Synechocystis sp. $(220) FEATURE:(221) NAME/KEY: misc_feature)(223) OTHER INFORMATION: Synechocystis sucrose phosphate synthase (400) SEQUENCE: 10Met Ser Tyr Ser Ser Lys Tyr Ile Leu Leu Ile Ser Val His Gly Glu Glu Asn Leu Glu Leu Gly Arg Asp Ala Asp Thr Gly Gly Glu Asn Leu Glu Leu Ala Arg Ala Leu Val Lys Asn Pro10 10 10 10 10 10 10 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | His       | Ile            | Gln         | Lys  |             |      | Leu   | Asn   | Gly |     | Ser | Ser | Gly     | Val  |     | Gln       |
| <pre>&lt;211&gt; LENGTH: 720<br/>&lt;212&gt; TYPE: PRT<br/>&lt;223&gt; ORGANISM: Synechocystis sp.<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: Synechocystis sucrose phosphate synthase<br/>&lt;400&gt; SEQUENCE: 10<br/>Met Ser Tyr Ser Ser Lys Tyr Ile Leu Leu Ile Ser Val His Gly Leu<br/>1 5 10<br/>Met Ser Tyr Var Ser Lys Tyr Ile Leu Cly Arg Asp Ala Asp Thr Gly Gly<br/>20 25 An Pro Ats Asp Pro Ats Pro Ats Pro Ats Pro Ats Pro Ats Pro Ats Asp Pro Ats Pro Ats Asp Pro Ats Asp Pro Ats Asp Pro Ats Pro Pro Ats Pro Ats Pro Pro Ats Pro Ats Pro Ats Pro Ats Pro Ats Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro</pre> | Ala       | Phe            | Lys         |      |             |      |       |       |     |     |     |     |         |      |     |           |
| 1     5     10     11     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31     31 <td< th=""><th>&lt;223</th><th>8&gt; 01<br/>)&gt; SE</th><th>HER<br/>QUEI</th><th>INFO</th><th>DRMAT<br/>10</th><th>TION</th><th>: Syr</th><th>necho</th><th>-</th><th></th><th></th><th>_</th><th></th><th>-</th><th>-</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <223      | 8> 01<br>)> SE | HER<br>QUEI | INFO | DRMAT<br>10 | TION | : Syr | necho | -   |     |     | _   |         | -    | -   |           |
| 202530GlnThrLysTyrValLeuGluLeuAlaArgAlaLeuValLysAsnProGlnValAlaArgValAspLeuGluThrArgLeuThrArgLeuIleLysAspProLysValAspAlaArgValAspTyrAlaGlnProArgGluLeuIleLysAspProLysValAspAlaAspTyrAlaGlnProArgGluLeuIleAspAspArgAla65NoAlaAspTyrAlaGlnProArgGluLeuIleAspAspArgAla61IleValArgIleGluCysGlyProGluGluTyrIleAlaLysGlu61IleValArgIleGluCysGlyProGluGluTyrIleAlaLysGlu61IleValAspTyrLeuAspAspProAspFisTyrIleAlaLysGlu61IleValGluCysGlyProAspAspProIleAspTyrAlaIle61IlysGluIlysAspAspAspAspIleAspIleIls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | Ser            | Tyr         | Ser  |             | Lys  | Tyr   | Ile   | Leu |     | Ile | Ser | Val     | His  |     | Leu       |
| 35       40       45         Gn       Va       Ar       Va       Ar       Va       Sr       Va       Ar       Ar <t< td=""><td>Ile</td><td>Arg</td><td>Gly</td><td></td><td>Asn</td><td>Leu</td><td>Glu</td><td>Leu</td><td></td><td>Arg</td><td>Asp</td><td>Ala</td><td>Asp</td><td></td><td>Gly</td><td>Gly</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ile       | Arg            | Gly         |      | Asn         | Leu  | Glu   | Leu   |     | Arg | Asp | Ala | Asp     |      | Gly | Gly       |
| 50       56         Val       Asp       Asp       Asp       Tyr       Ala       Pro       Arg       Gu       Leu       Asp       Asp       Asp       Tyr       Ala       Pro       Arg       Gu       Leu       Asp       Gu       State       Asp       Asp       Inte       Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gln       | Thr            |             | Tyr  | Val         | Leu  | Glu   |       | Ala | Arg | Ala | Leu |         | Lys  | Asn | Pro       |
| 65707580Gln Ile Val Arg Ile Glu Cys Gly ProGlu Glu Tyr Ile Ala Lys GluMet Leu Trp Asp Tyr Leu Asp Asn PheAla Asp His Ala Leu Asp Tyr100Tr Glu Leu Pro Asp Val Ile His Ser His Tyr Ala115Glu Gly Tyr Val Gly Thr Arg Leu Ser His Gln Leu Gly Ile Pro130Tyr Val Gly Thr Arg Leu Gly Arg Ser Lys Arg Thr Arg Leu145Find Gly Ile Lys Ala Asp Glu Ile Glu Ser Arg Tyr Asn Met165165164Arg Arg Ile Asn Ala Glu Glu Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg180Thr Ser Thr His Gln Glu Ile Ala Glu Glu Glu Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gln       |                | Ala         | Arg  | Val         | Asp  |       | Leu   | Thr | Arg | Leu |     | Lys     | Asp  | Pro | Lys       |
| 85       90       95         Met Leu Trp Asp Tyr Leu Asp Asn Phe Ala Asp His Ala Leu Asp Tyr 100       110         Leu Lys Glu Gln Pro Glu Leu Pro Asp Val Ile His Ser His Tyr 115       110         Asp Ala Gly Tyr Val Gly Thr Arg Leu Ser His Gln Leu Gly Ile Pro 130       140         Leu Val His Thr Gly His Ser Leu Gly Arg Ser Lys Arg Thr Arg Leu 160       160         Leu Leu Ser Gly Ile Lys Ala Asp Glu Ile Glu Ser Arg Tyr Asn Met 160       170         Asp Ala Arg Arg Ile Asn Ala Glu Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg 190       185         Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Val<br>65 | Asp            | Ala         | Asp  |             |      |       | Pro   |     |     |     | Ile | Gly     | Asp  | Arg | Ala<br>80 |
| 100105110Leu Lys Glu Gln Pro Glu Leu Pro Asp Val Ile His Ser His Tyr Ala<br>115115Asp Ala Gly Tyr Val Gly Thr Arg Leu Ser His Gln Leu Gly Ile Pro<br>130135Leu Val His Thr Gly His Ser Leu Gly Arg Ser Lys Arg Thr Arg Leu<br>155160Leu Leu Ser Gly Ile Lys Ala Asp Glu Ile Glu Ser Arg Tyr Asn Met<br>165Ala Arg Arg Ile Asn Ala Glu Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg<br>180Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gln       | Ile            | Val         | Arg  |             | Glu  | СЛа   | Gly   | Pro |     | Glu | Tyr | Ile     | Ala  | -   | Glu       |
| 115120125AspAlaGlyTyrValGlyThrArgLeuSerHisGlnLeuGlyIlePro130130ThrGlyThrArgLeuSerHisGlnLeuGlyIlePro140HisThrGlyHisSerLeuGlyArgSerLysArgArgSerLysArgThrArgLeu145ValHisThrGlyHisSerLeuGlySerArgThrArgLeu145LeuSerGlyIleLysAlaAspGluIleGlySerArgThrArgHei145ArgArgIleLysAlaAspGluIleGlySerArgTyrAsnMetTr146ArgArgIleAsnAlaGluGluGluThrLeuGlySerAlaArgArg180HisSinGluGluIleAlaGluGluGluTyrAlaGluTyrValIleThrSerThrHisGluGluIleAlaGluGluTyrValIleThrSerThrHisGluGluIleAlaGluTyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Met       | Leu            | Trp         |      | Tyr         | Leu  | Asb   | Asn   |     | Ala | Asp | His | Ala     |      | Asp | Tyr       |
| 130135140Leu Val His Thr Gly His Ser Leu Gly Arg Ser Lys Arg Thr Arg Leu<br>150155160Leu Leu Ser Gly Ile Lys Ala Asp Glu Ile Glu Ser Arg Tyr Asn Met<br>165170175Ala Arg Arg Ile Asn Ala Glu Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg<br>180185190Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Leu       | Lys            |             | Gln  | Pro         | Glu  | Leu   |       | Asp | Val | Ile | His |         | His  | Tyr | Ala       |
| 145     150     155     160       Leu Leu Ser Gly Ile Lys Ala Asp Glu Ile Glu Ser Arg Tyr Asn Met 165     170     175       Ala Arg Arg Ile Asn Ala Glu Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg 180     185     190       Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         |                | Gly         | Tyr  | Val         | Gly  |       | Arg   | Leu | Ser | His |     | Leu     | Gly  | Ile | Pro       |
| 165170175Ala Arg Arg Ile Asn Ala Glu Glu Glu Thr Leu Gly Ser Ala Ala Arg<br>180185190Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Val            | His         | Thr  | Gly         |      | Ser   | Leu   | Gly | Arg |     | ГЛа | Arg     | Thr  | Arg |           |
| 180 185 190<br>Val Ile Thr Ser Thr His Gln Glu Ile Ala Glu Gln Tyr Ala Gln Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leu       | Leu            | Ser         | Gly  |             | Lys  | Ala   | Asp   | Glu |     | Glu | Ser | Arg     | Tyr  |     | Met       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ala       | Arg            | Arg         |      | Asn         | Ala  | Glu   | Glu   |     | Thr | Leu | Gly | Ser     |      | Ala | Arg       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17-1      |                |             |      |             |      |       |       |     |     |     |     |         |      |     |           |

\_

| Asp        | Tyr<br>210 | Tyr        | Gln        | Pro        | Asp        | Gln<br>215 | Met        | Leu        | Val        | Ile        | Pro<br>220 | Pro        | Gly        | Thr        | Asp        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu<br>225 | Glu        | Lys        | Phe        | Tyr        | Pro<br>230 | Pro        | Lys        | Gly        | Asn        | Glu<br>235 | Trp        | Glu        | Thr        | Pro        | Ile<br>240 |
| Val        | Gln        | Glu        | Leu        | Gln<br>245 | Arg        | Phe        | Leu        | Arg        | His<br>250 | Pro        | Arg        | Lys        | Pro        | Ile<br>255 | Ile        |
| Leu        | Ala        | Leu        | Ser<br>260 | Arg        | Pro        | Asp        | Pro        | Arg<br>265 | Lys        | Asn        | Ile        | His        | Lys<br>270 | Leu        | Ile        |
| Ala        | Ala        | Tyr<br>275 | Gly        | Gln        | Ser        | Pro        | Gln<br>280 | Leu        | Gln        | Ala        | Gln        | Ala<br>285 | Asn        | Leu        | Val        |
| Ile        | Val<br>290 | Ala        | Gly        | Asn        | Arg        | Asp<br>295 | Asp        | Ile        | Thr        | Asp        | Leu<br>300 | Asp        | Gln        | Gly        | Pro        |
| Arg<br>305 | Glu        | Val        | Leu        | Thr        | Asp<br>310 | Leu        | Leu        | Leu        | Thr        | Ile<br>315 | Asp        | Arg        | Tyr        | Asp        | Leu<br>320 |
| Tyr        | Gly        | Lys        | Val        | Ala<br>325 | Tyr        | Pro        | Lys        | Gln        | Asn<br>330 | Gln        | Ala        | Glu        | Asp        | Val<br>335 | Tyr        |
| Ala        | Leu        | Phe        | Arg<br>340 | Leu        | Thr        | Ala        | Leu        | Ser<br>345 | Gln        | Gly        | Val        | Phe        | Ile<br>350 | Asn        | Pro        |
| Ala        | Leu        | Thr<br>355 | Glu        | Pro        | Phe        | Gly        | Leu<br>360 | Thr        | Leu        | Ile        | Glu        | Ala<br>365 | Ala        | Ala        | Сүз        |
| Gly        | Val<br>370 | Pro        | Ile        | Val        | Ala        | Thr<br>375 | Glu        | Asp        | Gly        | Gly        | Pro<br>380 | Val        | Asp        | Ile        | Ile        |
| Lys<br>385 | Asn        | Суз        | Gln        | Asn        | Gly<br>390 | Tyr        | Leu        | Ile        | Asn        | Pro<br>395 | Leu        | Asp        | Glu        | Val        | Asp<br>400 |
| Ile        | Ala        | Asp        | Lys        | Leu<br>405 | Leu        | Lys        | Val        | Leu        | Asn<br>410 | Asp        | Гла        | Gln        | Gln        | Trp<br>415 | Gln        |
| Phe        | Leu        | Ser        | Glu<br>420 | Ser        | Gly        | Leu        | Glu        | Gly<br>425 | Val        | Lys        | Arg        | His        | Tyr<br>430 | Ser        | Trp        |
| Pro        | Ser        | His<br>435 | Val        | Glu        | Ser        | Tyr        | Leu<br>440 | Glu        | Ala        | Ile        | Asn        | Ala<br>445 | Leu        | Thr        | Gln        |
| Gln        | Thr<br>450 | Ser        | Val        | Leu        | ГАз        | Arg<br>455 | Ser        | Asp        | Leu        | Lys        | Arg<br>460 | Arg        | Arg        | Thr        | Leu        |
| Tyr<br>465 | Tyr        | Asn        | Gly        | Ala        | Leu<br>470 | Val        | Thr        | Ser        | Leu        | Asp<br>475 | Gln        | Asn        | Leu        | Leu        | Gly<br>480 |
| Ala        | Leu        | Gln        | Gly        | Gly<br>485 | Leu        | Pro        | Gly        | Asp        | Arg<br>490 | Gln        | Thr        | Leu        | Asp        | Glu<br>495 | Leu        |
| Leu        | Glu        | Val        | Leu<br>500 | Tyr        | Gln        | His        | Arg        | Lys<br>505 | Asn        | Val        | Gly        | Phe        | Cys<br>510 | Ile        | Ala        |
| Thr        | Gly        | Arg<br>515 | Arg        | Leu        | Aab        | Ser        | Val<br>520 | Leu        | ГЛа        | Ile        | Leu        | Arg<br>525 | Glu        | Tyr        | Arg        |
| Ile        | Pro<br>530 | Gln        | Pro        | Asp        | Met        | Leu<br>535 | Ile        | Thr        | Ser        | Met        | Gly<br>540 | Thr        | Glu        | Ile        | Tyr        |
| Ser<br>545 | Ser        | Pro        | Asp        | Leu        | Ile<br>550 | Pro        | Asp        | Gln        | Ser        | Trp<br>555 | Arg        | Asn        | His        | Ile        | Asp<br>560 |
| Tyr        | Leu        | Trp        | Asn        | Arg<br>565 | Asn        | Ala        | Ile        | Val        | Arg<br>570 | Ile        | Leu        | Gly        | Glu        | Leu<br>575 | Pro        |
| Gly        | Leu        | Ala        | Leu<br>580 | Gln        | Pro        | Lys        | Glu        | Glu<br>585 | Leu        | Ser        | Ala        | Tyr        | Lys<br>590 | Ile        | Ser        |
| Tyr        | Phe        | Tyr<br>595 | Asp        | Ala        | Ala        | Ile        | Ala<br>600 | Pro        | Asn        | Leu        | Glu        | Glu<br>605 | Ile        | Arg        | Gln        |
| Leu        | Leu<br>610 | His        | Lys        | Gly        | Glu        | Gln<br>615 | Thr        | Val        | Asn        | Thr        | Ile<br>620 | Ile        | Ser        | Phe        | Gly        |
|            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |

| Gln<br>625                           | Phe                     | Leu                                         | Asp                                | Ile                | Leu<br>630 | Pro                     | Ile        | Arg        | Ala        | Ser<br>635 | Lys        | Gly        | Tyr        | Ala        | Val<br>640 |
|--------------------------------------|-------------------------|---------------------------------------------|------------------------------------|--------------------|------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg                                  | Trp                     | Leu                                         | Ser                                | Gln<br>645         | Gln        | Trp                     | Asn        | Ile        | Pro<br>650 | Leu        | Glu        | His        | Val        | Phe<br>655 | Thr        |
| Ala                                  | Gly                     | Gly                                         | Ser<br>660                         | Gly                | Ala        | Asp                     | Glu        | Asp<br>665 | Met        | Met        | Arg        | Gly        | Asn<br>670 | Thr        | Leu        |
| Ser                                  | Val                     | Val<br>675                                  | Val                                | Ala                | Asn        | Arg                     | His<br>680 | His        | Glu        | Glu        | Leu        | Ser<br>685 | Asn        | Leu        | Gly        |
| Glu                                  | Ile<br>690              | Glu                                         | Pro                                | Ile                | Tyr        | Phe<br>695              | Ser        | Glu        | Гла        | Arg        | Tyr<br>700 | Ala        | Ala        | Gly        | Ile        |
| Leu<br>705                           | Asp                     | Gly                                         | Leu                                | Ala                | His<br>710 | Tyr                     | Arg        | Phe        | Phe        | Glu<br>715 | Leu        | Leu        | Asp        | Pro        | Val<br>720 |
| <21:<br><21:<br><21:<br><22:<br><22: | 0> F1<br>1> N2<br>3> O' | ENGTI<br>YPE :<br>RGANI<br>EATUI<br>AME / 1 | H: 2<br>PRT<br>ISM:<br>RE:<br>KEY: | 44<br>Syne<br>mise | c_fea      | cyst:<br>ature<br>: Syn | e -        | -          | cis :      | sucro      | ose-j      | phoaj      | phate      | e pho      | osphatase  |
| <40                                  | 0> SI                   |                                             | NCE:                               | 11                 |            |                         |            |            |            |            |            |            |            |            |            |
| Met<br>1                             | Arg                     | Gln                                         | Leu                                | Leu<br>5           | Leu        | Ile                     | Ser        | Asp        | Leu<br>10  | Asp        | Asn        | Thr        | Trp        | Val<br>15  | Gly        |
| Asp                                  | Gln                     | Gln                                         | Ala<br>20                          | Leu                | Glu        | His                     | Leu        | Gln<br>25  | Glu        | Tyr        | Leu        | Gly        | Aap<br>30  | Arg        | Arg        |
| Gly                                  | Asn                     | Phe<br>35                                   | Tyr                                | Leu                | Ala        | Tyr                     | Ala<br>40  | Thr        | Gly        | Arg        | Ser        | Tyr<br>45  | His        | Ser        | Ala        |
| Arg                                  | Glu<br>50               | Leu                                         | Gln                                | Lys                | Gln        | Val<br>55               | Gly        | Leu        | Met        | Glu        | Pro<br>60  | Asp        | Tyr        | Trp        | Leu        |
| Thr<br>65                            | Ala                     | Val                                         | Gly                                | Ser                | Glu<br>70  | Ile                     | Tyr        | His        | Pro        | Glu<br>75  | Gly        | Leu        | Asp        | Gln        | His<br>80  |
| Trp                                  | Ala                     | Asp                                         | Tyr                                | Leu<br>85          | Ser        | Glu                     | His        | Trp        | Gln<br>90  | Arg        | Asp        | Ile        | Leu        | Gln<br>95  | Ala        |
| Ile                                  | Ala                     | Asp                                         | Gly<br>100                         | Phe                | Glu        | Ala                     | Leu        | Lys<br>105 | Pro        | Gln        | Ser        | Pro        | Leu<br>110 | Glu        | Gln        |
| Asn                                  | Pro                     | Trp<br>115                                  | Lys                                | Ile                | Ser        | Tyr                     | His<br>120 | Leu        | Asp        | Pro        | Gln        | Ala<br>125 | Cys        | Pro        | Thr        |
| Val                                  | Ile<br>130              | Asp                                         | Gln                                | Leu                | Thr        | Glu<br>135              | Met        | Leu        | Lys        | Glu        | Thr<br>140 | Gly        | Ile        | Pro        | Val        |
| Gln<br>145                           | Val                     | Ile                                         | Phe                                | Ser                | Ser<br>150 | Gly                     | Lys        | Asp        | Val        | Asp<br>155 | Leu        | Leu        | Pro        | Gln        | Arg<br>160 |
| Ser                                  | Asn                     | Lys                                         | Gly                                | Asn<br>165         | Ala        | Thr                     | Gln        | Tyr        | Leu<br>170 | Gln        | Gln        | His        | Leu        | Ala<br>175 | Met        |
| Glu                                  | Pro                     | Ser                                         | Gln<br>180                         | Thr                | Leu        | Val                     | Сүз        | Gly<br>185 | Asp        | Ser        | Gly        | Asn        | Asp<br>190 | Ile        | Gly        |
| Leu                                  | Phe                     | Glu<br>195                                  | Thr                                | Ser                | Ala        | Arg                     | Gly<br>200 | Val        | Ile        | Val        | Arg        | Asn<br>205 | Ala        | Gln        | Pro        |
| Glu                                  | Leu<br>210              | Leu                                         | His                                | Trp                | Tyr        | Asp<br>215              | Gln        | Trp        | Gly        | Asp        | Ser<br>220 | Arg        | His        | Tyr        | Arg        |
| Ala<br>225                           | Gln                     | Ser                                         | Ser                                | His                | Ala<br>230 | Gly                     | Ala        | Ile        | Leu        | Glu<br>235 | Ala        | Ile        | Ala        | His        | Phe<br>240 |
|                                      |                         |                                             | Ser                                |                    |            |                         |            |            |            |            |            |            |            |            |            |

|            | L> LH<br>2> TY |            |            | 21         |            |            |            |            |            |            |            |            |            |            |            |
|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | 3 > 01         |            |            | Zea        | mays       | 3          |            |            |            |            |            |            |            |            |            |
|            | )> FH<br>L> NA |            |            | mig        | - fos      | ture       |            |            |            |            |            |            |            |            |            |
|            | 3 > 0          |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <400       | )> SH          | EQUEI      | ICE :      | 12         |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1   | Ala            | Arg        | Gly        | Asp<br>5   | Gly        | Glu        | Leu        | Glu        | Leu<br>10  | Ser        | Val        | Gly        | Val        | Arg<br>15  | Gly        |
| Thr        | Gly            | Gly        | Ala<br>20  | Ala        | Ala        | Ala        | Ala        | Ala<br>25  | Ala        | Asp        | His        | Val        | Ala<br>30  | Pro        | Ile        |
| Ser        | Leu            | Gly<br>35  | Arg        | Leu        | Ile        | Leu        | Ala<br>40  | Gly        | Met        | Val        | Ala        | Gly<br>45  | Gly        | Val        | Gln        |
| Tyr        | Gly<br>50      | Trp        | Ala        | Leu        | Gln        | Leu<br>55  | Ser        | Leu        | Leu        | Thr        | Pro<br>60  | Tyr        | Val        | Gln        | Thr        |
| Leu<br>65  | Gly            | Leu        | Ser        | His        | Ala<br>70  | Leu        | Thr        | Ser        | Phe        | Met<br>75  | Trp        | Leu        | Суз        | Gly        | Pro<br>80  |
| Ile        | Ala            | Gly        | Leu        | Val<br>85  | Val        | Gln        | Pro        | Leu        | Val<br>90  | Gly        | Leu        | Tyr        | Ser        | Asp<br>95  | Arg        |
| Сүз        | Thr            | Ala        | Arg<br>100 | Trp        | Gly        | Arg        | Arg        | Arg<br>105 | Pro        | Phe        | Ile        | Leu        | Ile<br>110 | Gly        | Суа        |
| Met        | Leu            | Ile<br>115 | Суз        | Leu        | Ala        | Val        | Ile<br>120 | Val        | Val        | Gly        | Phe        | Ser<br>125 | Ser        | Asp        | Ile        |
| Gly        | Ala<br>130     | Ala        | Leu        | Gly        | Asp        | Thr<br>135 | Lys        | Glu        | His        | Суз        | Ser<br>140 | Leu        | Tyr        | His        | Gly        |
| Pro<br>145 | Arg            | Trp        | His        | Ala        | Ala<br>150 | Ile        | Val        | Tyr        | Val        | Leu<br>155 | Gly        | Phe        | Trp        | Leu        | Leu<br>160 |
| Asp        | Phe            | Ser        | Asn        | Asn<br>165 | Thr        | Val        | Gln        | Gly        | Pro<br>170 | Ala        | Arg        | Ala        | Met        | Met<br>175 | Ala        |
| Asp        | Leu            | Суз        | Gly<br>180 | His        | His        | Gly        | Pro        | Ser<br>185 | Ala        | Ala        | Asn        | Ser        | Ile<br>190 | Phe        | Суз        |
| Ser        | Trp            | Met<br>195 | Ala        | Leu        | Gly        | Asn        | Ile<br>200 | Leu        | Gly        | Tyr        | Ser        | Ser<br>205 | Gly        | Ser        | Thr        |
| Asn        | Asn<br>210     | Trp        | His        | Lys        | Trp        | Phe<br>215 | Pro        | Phe        | Leu        | Leu        | Thr<br>220 | Asn        | Ala        | Суз        | Суз        |
| Glu<br>225 | Ala            | Суз        | Ala        | Asn        | Leu<br>230 | Lys        | Gly        | Ala        | Phe        | Leu<br>235 | Val        | Ala        | Val        | Val        | Phe<br>240 |
| Leu        | Val            | Met        | Суз        | Leu<br>245 | Thr        | Val        | Thr        | Leu        | Phe<br>250 | Phe        | Ala        | Asn        | Glu        | Val<br>255 | Pro        |
| Tyr        | Arg            | Gly        | Asn<br>260 | Gln        | Asn        | Leu        | Pro        | Thr<br>265 | Lys        | Ala        | Asn        | Gly        | Glu<br>270 | Val        | Glu        |
| Thr        | Glu            | Pro<br>275 | Ser        | Gly        | Pro        | Leu        | Ala<br>280 | Val        | Leu        | Lys        | Gly        | Phe<br>285 | Lys        | Asn        | Leu        |
| Pro        | Thr<br>290     | Gly        | Met        | Pro        | Ser        | Val<br>295 | Leu        | Leu        | Val        | Thr        | Gly<br>300 | Leu        | Thr        | Trp        | Leu        |
| Ser<br>305 | Trp            | Phe        | Pro        | Phe        | Ile<br>310 | Leu        | Tyr        | Asp        | Thr        | Asp<br>315 | Trp        | Met        | Gly        | Arg        | Glu<br>320 |
| Ile        | Tyr            | His        | Gly        | Asp<br>325 | Pro        | Гла        | Gly        | Ser        | Asn<br>330 | Ala        | Gln        | Ile        | Ser        | Ala<br>335 | Phe        |
| Asp        | Glu            | Gly        | Val<br>340 | Arg        | Val        | Gly        | Ser        | Phe<br>345 | Gly        | Leu        | Leu        | Leu        | Asn<br>350 | Ser        | Ile        |
| Val        | Leu            | Gly<br>355 | Phe        | Ser        | Ser        | Phe        | Leu<br>360 | Ile        | Glu        | Pro        | Met        | Сув<br>365 | Arg        | Lys        | Val        |
| Gly        | Pro            | Arg        | Val        | Val        | Trp        | Val        | Thr        | Ser        | Asn        | Phe        | Met        | Val        | Cys        | Val        | Ala        |

|                                              |                |                                                  |                                             |                       |            |            |                     |            |            |            | _          | con        | CIII       | uea        |            |
|----------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|-----------------------|------------|------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                                              | 370            |                                                  |                                             |                       |            | 375        |                     |            |            |            | 380        |            |            |            |            |
| Met<br>385                                   | Ala            | Ala                                              | Thr                                         | Ala                   | Leu<br>390 | Ile        | Ser                 | Phe        | Trp        | Ser<br>395 | Leu        | Lys        | Asp        | Tyr        | His<br>400 |
| Gly                                          | Tyr            | Val                                              | Gln                                         | Asp<br>405            | Ala        | Ile        | Thr                 | Ala        | Ser<br>410 | Thr        | Ser        | Ile        | Lys        | Ala<br>415 | Val        |
| Сүз                                          | Leu            | Val                                              | Leu<br>420                                  | Phe                   | Ala        | Phe        | Leu                 | Gly<br>425 | Val        | Pro        | Leu        | Ala        | Ile<br>430 | Leu        | Tyr        |
| Ser                                          | Val            | Pro<br>435                                       | Phe                                         | Ala                   | Val        | Thr        | Ala<br>440          | Gln        | Leu        | Ala        | Ala        | Thr<br>445 | Lys        | Gly        | Gly        |
| Gly                                          | Gln<br>450     | Gly                                              | Leu                                         | Сүз                   | Thr        | Gly<br>455 | Val                 | Leu        | Asn        | Ile        | Ser<br>460 | Ile        | Val        | Ile        | Pro        |
| Gln<br>465                                   | Val            | Ile                                              | Ile                                         | Ala                   | Leu<br>470 | Gly        | Ala                 | Gly        | Pro        | Trp<br>475 | Asp        | Ala        | Leu        | Phe        | Gly<br>480 |
| Lys                                          | Gly            | Asn                                              | Ile                                         | Pro<br>485            | Ala        | Phe        | Gly                 | Val        | Ala<br>490 | Ser        | Gly        | Phe        | Ala        | Leu<br>495 | Ile        |
| Gly                                          | Gly            | Val                                              | Val<br>500                                  | Gly                   | Val        | Phe        | Leu                 | Leu<br>505 | Pro        | Lys        | Ile        | Ser        | Lys<br>510 | Arg        | Gln        |
| Phe                                          | Arg            | Ala<br>515                                       | Val                                         | Ser                   | Ala        | Gly        | Gly<br>520          | His        |            |            |            |            |            |            |            |
| <213<br><213<br><213<br><220<br><223<br><223 | D> FH<br>L> NA | ENGTH<br>(PE:<br>RGAN]<br>EATUF<br>AME/H<br>THER | H: 5:<br>PRT<br>ISM:<br>RE:<br>CEY:<br>INF( | Saco<br>miso<br>DRMAT | c_fea      | iture      | ybric<br>e<br>crose |            |            |            |            |            |            |            |            |
| Met<br>1                                     | Ala            | Arg                                              | Gly                                         | Asp<br>5              | Gly        | Glu        | Leu                 | Glu        | Leu<br>10  | Ser        | Val        | Gly        | Val        | Arg<br>15  | Gly        |
| Ala                                          | Gly            | Ala                                              | Ala<br>20                                   | Ala                   | Ala        | Asp        | His                 | Val<br>25  | Ala        | Pro        | Ile        | Ser        | Leu<br>30  | Gly        | Arg        |
| Leu                                          | Ile            | Leu<br>35                                        | Ala                                         | Gly                   | Met        | Val        | Ala<br>40           | Gly        | Gly        | Val        | Gln        | Tyr<br>45  | Gly        | Trp        | Ala        |
| Leu                                          | Gln<br>50      | Leu                                              | Ser                                         | Leu                   | Leu        | Thr<br>55  | Pro                 | Tyr        | Val        | Gln        | Thr<br>60  | Leu        | Gly        | Leu        | Ser        |
| His<br>65                                    | Ala            | Leu                                              | Thr                                         | Ser                   | Phe<br>70  | Met        | Trp                 | Leu        | Суз        | Gly<br>75  | Pro        | Ile        | Ala        | Gly        | Leu<br>80  |
| Val                                          | Val            | Gln                                              | Pro                                         | Leu<br>85             | Val        | Gly        | Leu                 | Tyr        | Ser<br>90  | Asp        | Arg        | Суз        | Thr        | Ala<br>95  | Arg        |
| Trp                                          | Gly            | Arg                                              | Arg<br>100                                  | Arg                   | Pro        | Phe        | Ile                 | Leu<br>105 | Thr        | Gly        | СЛа        | Ile        | Leu<br>110 | Ile        | Ser        |
| Leu                                          | Ala            | Val<br>115                                       | Ile                                         | Val                   | Val        | Gly        | Phe<br>120          | Ser        | Ser        | Asp        | Ile        | Gly<br>125 | Ala        | Ala        | Leu        |
| Gly                                          | Asp<br>130     | Thr                                              | ГЛа                                         | Glu                   | His        | Сув<br>135 | Ser                 | Leu        | Tyr        | His        | Gly<br>140 | Pro        | Arg        | Trp        | His        |
| Ala<br>145                                   | Ala            | Ile                                              | Val                                         | Tyr                   | Val<br>150 | Leu        | Gly                 | Phe        | Trp        | Leu<br>155 | Leu        | Aap        | Phe        | Ser        | Asn<br>160 |
| Asn                                          | Thr            | Val                                              | Gln                                         | Gly<br>165            | Pro        | Ala        | Arg                 | Ala        | Met<br>170 | Met        | Ala        | Asp        | Leu        | Cys<br>175 | Gly        |
| His                                          | His            | Gly                                              | Pro<br>180                                  | Ser                   | Ala        | Ala        | Asn                 | Ser<br>185 | Ile        | Phe        | Сүз        | Ser        | Trp<br>190 | Met        | Ala        |
| Leu                                          | Gly            | Asn<br>195                                       | Ile                                         | Leu                   | Gly        | Tyr        | Ser<br>200          | Ser        | Gly        | Ser        | Thr        | Asn<br>205 | Asn        | Trp        | His        |

| Lys Trp Phe Pro Phe Leu Lys Thr Asn Ala Cys Cys Glu Ala Cys Ala<br>210 215 220                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asn Leu Lys Gly Ala Phe Leu Val Ala Val Val Phe Leu Val Ile Cys<br>225 230 235 240                                                                                                                                                                                                                          |
| Leu Ala Val Thr Leu Ile Phe Ala Lys Glu Val Pro Tyr Arg Gly Asn<br>245 250 255                                                                                                                                                                                                                              |
| Glu Asn Leu Pro Thr Lys Ala Asn Gly Glu Val Glu Ala Glu Pro Thr<br>260 265 270                                                                                                                                                                                                                              |
| Gly Pro Leu Ala Val Leu Lys Gly Phe Lys Asn Leu Pro Pro Gly Met<br>275 280 285                                                                                                                                                                                                                              |
| Pro Ser Val Leu Leu Val Thr Gly Leu Thr Trp Leu Ser Trp Phe Pro<br>290 295 300                                                                                                                                                                                                                              |
| Phe Ile Leu Tyr Asp Thr Asp Trp Met Gly Arg Glu Ile Tyr His Gly<br>305 310 315 320                                                                                                                                                                                                                          |
| Asp Pro Lys Gly Ser Asn Ala Gln Ile Ser Ala Phe Asn Glu Gly Val<br>325 330 335                                                                                                                                                                                                                              |
| Arg Val Gly Ala Phe Gly Leu Leu Asn Ser Ile Ile Leu Gly Phe<br>340 345 350                                                                                                                                                                                                                                  |
| Ser Ser Phe Leu Ile Glu Pro Met Cys Arg Lys Leu Gly Pro Arg Val<br>355 360 365                                                                                                                                                                                                                              |
| Val Trp Val Thr Ser Asn Phe Met Val Cys Val Ala Met Ala Ala Thr<br>370 375 380                                                                                                                                                                                                                              |
| Ala Leu Ile Ser Tyr Trp Ser Leu Lys Asp Tyr His Gly Tyr Val Gln<br>385 390 395 400                                                                                                                                                                                                                          |
| Asp Ala Ile Thr Ala Ser Thr Asn Ile Lys Ala Val Cys Leu Val Leu<br>405 410 415                                                                                                                                                                                                                              |
| Phe Ala Phe Leu Gly Val Pro Leu Ala Ile Leu Tyr Ser Val Pro Phe<br>420 425 430                                                                                                                                                                                                                              |
| Ala Val Thr Ala Gln Leu Ala Ala Thr Lys Gly Gly Gly Gln Gly Leu<br>435 440 445                                                                                                                                                                                                                              |
| Cys Thr Gly Val Leu Asn Ile Ser Ile Val Ile Pro Gln Val Ile Ile<br>450 455 460                                                                                                                                                                                                                              |
| Ala Leu Gly Ala Gly Pro Trp Asp Ala Leu Phe Gly Lys Gly Asn Ile465470475480                                                                                                                                                                                                                                 |
| Pro Ala Phe Gly Val Ala Ser Gly Phe Ala Leu Ile Gly Gly Val Val<br>485 490 495                                                                                                                                                                                                                              |
| Gly Val Phe Leu Leu Pro Lys Ile Ser Lys Arg Gln Phe Arg Ala Val<br>500 505 510                                                                                                                                                                                                                              |
| Ser Ala Gly Gly His<br>515                                                                                                                                                                                                                                                                                  |
| <pre>&lt;210&gt; SEQ ID NO 14<br/>&lt;211&gt; LENGTH: 699<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Anabaena cylindrica<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: Anabaena cylindrica acyl-ACP reducatase (AR)<br/>coding sequence</pre> |
| <400> SEQUENCE: 14                                                                                                                                                                                                                                                                                          |
| atgcagcagc ttgttgagca aattgaaaaa attgatttcc aaagtgaaga atacaaagac 60                                                                                                                                                                                                                                        |
| gcatatagcc gtattaatgc aattgtgatt gaaggggaac aagaagccca tgataattac 120                                                                                                                                                                                                                                       |
| attcaactgg cggaactgct gccagaaagt aaagacaacc tgattcgctt atcgaagatg 180                                                                                                                                                                                                                                       |
| gaaageegte acaagaaagg atttgaaget tgtggaegea atttgeaggt cacaeeagae 240                                                                                                                                                                                                                                       |

# US 8,993,303 B2

55

#### -continued

| -continued                                                                                                                                                                                                                                                                                                 |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| atgaagtttg caaaagagtt tttctcagga ctgcacaaaa attttcaaac tgcggccgca                                                                                                                                                                                                                                          | 300    |  |
| gaaggtaaag ttgttacttg cttgctgatt caagctttaa ttatcgaatg ttttgcgatc                                                                                                                                                                                                                                          | 360    |  |
| gcagcataca acatctacat tcccgtcgct gatgatttcg cccgcaaaat tacagaaggt                                                                                                                                                                                                                                          | 420    |  |
| gtggtcaaag aagaatacag tcatctcaat tttggcgaag tttggcttca agaaaacttt                                                                                                                                                                                                                                          | 480    |  |
| gcagaatcca aagctgaatt agaaacagct aaccgccaaa atcttcccct agtctggaag                                                                                                                                                                                                                                          | 540    |  |
| atgctcaacc aagtagcaga tgatgcccac gtcttggcaa tggaaaaaga agccttagta                                                                                                                                                                                                                                          | 600    |  |
| gaagatttca tgattcaata cggtgaggca ctaagtaata ttggcttcac aactcgtgat                                                                                                                                                                                                                                          | 660    |  |
| attatgegte teteegetta eggaeteata eetgtetaa                                                                                                                                                                                                                                                                 | 699    |  |
| <pre>&lt;210&gt; SEQ ID NO 15<br/>&lt;211&gt; LENGTH: 1020<br/>&lt;212&gt; TYPE: DNA<br/>&lt;2113&gt; ORGANISM: Anabaena cylindrica<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: Anabaena cylindrica aldehyde decarbonylas<br/>coding sequence</pre> | e (AD) |  |
| <400> SEQUENCE: 15                                                                                                                                                                                                                                                                                         |        |  |
| atgtttggtc taattggaca tctgactagc ttagaacacg ctcaatccgt agctcaagaa                                                                                                                                                                                                                                          | 60     |  |
| ttgggatacc cagaatatgc cgatcaaggg ctagactttt ggtgtagcgc cccgccgcaa                                                                                                                                                                                                                                          | 120    |  |
| attgtcgatc acattaccgt taccagcatc accggacaaa aaattgaagg tcggtatgta                                                                                                                                                                                                                                          | 180    |  |
| gaatettget ttttgeegga aatgetggea aategeegea ttaaagetge aaetegeaaa                                                                                                                                                                                                                                          | 240    |  |
| attctcaacg ccatggctca tgctcaaaag catggcattg atatcacggc tttaggtggg                                                                                                                                                                                                                                          | 300    |  |
| ttttcttcaa ttatttttga gaacttcaat ttagagcagt ttagccaagt ccgaaacgtt                                                                                                                                                                                                                                          | 360    |  |
| aaattagaat ttgaacgctt cacaacagga aatacccata cagcctacat catctgtcgg                                                                                                                                                                                                                                          | 420    |  |
| caggtagagg aagcatctaa gcaattagga atagaattgt caaaagcaac tgtggctgtg                                                                                                                                                                                                                                          | 480    |  |
| tgtggcgcta caggggatat tggcagtgca gttacccgct ggttagataa aaaaacagat                                                                                                                                                                                                                                          | 540    |  |
| gtccaagaat tactcctcat agcccgtaac caagaacgtc ttcaagaact acaagcagaa                                                                                                                                                                                                                                          | 600    |  |
| ttgggacggg gtaaaatcat gggtttacag gaagcattac cccaagccga tattgtagtt                                                                                                                                                                                                                                          | 660    |  |
| tgggttgcta gtatgcctaa aggtgtagaa attgacccca ccgtactgaa acaaccttgt                                                                                                                                                                                                                                          | 720    |  |
| ttgctgattg atggtggcta tcctaaaaac ttagggacaa aaattcagca tcctggcgtg                                                                                                                                                                                                                                          | 780    |  |
| tatgtattaa atggtggaat tgtcgagcat tccctagata ttgactggaa aattatgaaa                                                                                                                                                                                                                                          | 840    |  |
| attgtcaata tggatgtccc agcacgccag ttgtttgctt gttttgcgga atcaatgctg                                                                                                                                                                                                                                          | 900    |  |
| ctggaatttg agaagttata cacaaacttt tcttggggtc gtaatcagat taccgtagat                                                                                                                                                                                                                                          | 960    |  |
| aaaatggagc aaattggtcg ggtgtcaatt aaacacggtt ttagaccatt attagtttag                                                                                                                                                                                                                                          | 1020   |  |
| <pre>&lt;210&gt; SEQ ID NO 16<br/>&lt;211&gt; LENGTH: 1844<br/>&lt;212&gt; TYPE: DNA<br/>&lt;213&gt; ORGANISM: Pinus sabiniana<br/>&lt;220&gt; FEATURE:<br/>&lt;221&gt; NAME/KEY: misc_feature<br/>&lt;223&gt; OTHER INFORMATION: MboS</pre>                                                               |        |  |
| <400> SEQUENCE: 16                                                                                                                                                                                                                                                                                         |        |  |
| atggetetge tetetgtege acegetgget eccagatggt gegtgeacaa ategttggte                                                                                                                                                                                                                                          | 60     |  |
| acttctacca aggttaaggt tgtccgcaga acgatctcaa cttccatccg catgtgtcgg                                                                                                                                                                                                                                          | 120    |  |
|                                                                                                                                                                                                                                                                                                            |        |  |

ataaccactg aatccggtga aggcgtacag agacgcatag caaatcatca ttccaacctc

180

| tgggacgata | atttcataca  | gtccctctca | acgccttatg | gggcaatttc | gtaccatgaa | 240  |  |
|------------|-------------|------------|------------|------------|------------|------|--|
| agtgctcaga | aacttattgg  | agaagtaaaa | gagatgatca | attcaatctc | gcttaaagat | 300  |  |
| ggagaattaa | tcaccccctc  | caatgatctc | cttatgcggc | tctctatagt | cgatagcatt | 360  |  |
| gaacgtttgg | gaatcgatag  | gcatttcaaa | agtgaaataa | aatcagctct | ggattatgtt | 420  |  |
| tacagttatt | ggaacgaaaa  | aggcattggg | tggggaagag | atagtgttgt | tgccgatctc | 480  |  |
| aactcaactg | ccttgggggct | tcgaactcta | cgactacacg | gatacccggt | gtcttcagat | 540  |  |
| gtgttacaac | acttcaaaga  | acaaaaaggg | cagtttgcat | gttcggccat | tcaaacagag | 600  |  |
| ggagagataa | gaagtgttct  | caacttattt | cgggcttccc | aaattgcctt | tccgggagag | 660  |  |
| aaagttatgg | aagaggcaga  | agtcttctct | acaatatatt | taaaagaagc | catactaaag | 720  |  |
| cttccggtct | gcggtctttc  | acgagagata | tcgtacgttc | tggaatatgg | ttggcatata | 780  |  |
| aatttgccaa | gattggaagc  | aaggaactac | atcgacgtat | ttggagagga | ccccatttat | 840  |  |
| ttgacgccaa | atatgaagac  | ccaaaaactt | ctagaacttg | caaagttgga | gttcaatatg | 900  |  |
| tttcactctt | tacaacagca  | agagctaaag | cttctctcca | gatggtggaa | agattcgggt | 960  |  |
| ttctctcaaa | tgaccttccc  | tcggcatcgt | cacgtggaat | attacacttt | ggcatcttgc | 1020 |  |
| attgatagtg | aacctcaaca  | ttcttcgttc | agacttggat | ttgccaaaat | ctttcatctt | 1080 |  |
| gccacggttc | ttgacgatat  | ttacgacacc | tttggcacga | tggatgagct | agaactcttc | 1140 |  |
| acggcggcag | ttaagaggtg  | gcatccgtct | gcgacggagt | ggcttccaga | atatatgaaa | 1200 |  |
| ggagtatata | tggtgcttta  | cgaaaccgtt | aacgaaatgg | caggagaagc | agaaaagtct | 1260 |  |
| caaggccgag | acacgctcaa  | ctatggccga | aatgctttgg | aggcttatat | tgatgcttct | 1320 |  |
| atggaagaag | cgaagtggat  | tttcagtggt | tttttgccaa | catttgagga | gtacctggat | 1380 |  |
| aacgggaaag | ttagtttcgg  | ttatggcatt | ggcacattgc | aacccattct | gacgttgggc | 1440 |  |
| attccctttc | ctcatcacat  | cctacaagaa | atagactttc | cttccaggct | caatgatgtg | 1500 |  |
| gcatcttcca | ttctccgact  | aaaaggcgac | attcacactt | accaggctga | gaggagccgt | 1560 |  |
| ggagaaaaat | cttcgtgtat  | atcatgttat | atggaagaga | atcccgagtc | aacagaggaa | 1620 |  |
| gatgcaatca | atcatatcaa  | ctccatggtc | gacaaattac | tcaaggaact | aaattgggag | 1680 |  |
| tatctgagac | ctgatagcaa  | tgttccaatc | acttccaaga | aacatgcatt | tgacattctg | 1740 |  |
| agagetttet | accatctcta  | caaataccga | gatggcttca | gcgttgcgaa | ctatgaaata | 1800 |  |
| aagaatttgg | tcatgacaac  | cgtcattgag | cctgtgcctt | tata       |            | 1844 |  |

50

55

What is claimed is:

1. A composition comprising an Anabaena spp. genetically engineered with at least one recombinant polynucleotide expression construct, wherein the at least one recombinant polynucleotide expression construct comprises a nucleotide sequence encoding at least one enzyme, wherein the at least one enzyme increases production of a carbon based product of interest by the genetically engineered Anabaena spp. following expression of the polynucleotide expression construct, wherein said Anabaena spp. is ethanol producing Anabaena sp. PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833 or is linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832.

2. The composition of claim 1 wherein the Anabaena spp. 65 is Anabaena PCC7120 (pZR672) strain deposited under ATCC accession number PTA-12833.

3. The composition of claim 1, wherein the Anabaena spp. is linalool producing Anabaena sp. PCC7120 (pZR808) strain deposited under ATCC accession number PTA-12832.

4. The composition of claim 1 wherein the Anabaena spp. has an up-regulated 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway.

5. The composition of claim 4 wherein the up-regulated MEP pathway is up-regulated by expressing at least one gene responsible for control of the MEP pathway in the Anabaena spp.

6. The composition of claim 1 wherein the at least one recombinant polynucleotide expression construct further comprises a nucleotide sequence encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo).

7. The composition of claim 6 wherein the at least one recombinant polynucleotide expression construct comprising a nucleotide sequence encoding RuBisCo, further comprises a nucleotide sequence encoding RuBisCo activase.

 ${\bf 8}.$  The composition of claim  ${\bf 1}$  wherein the carbon based

9. The composition of claim 1 wherein the carbon based product of interest is ethanol.
9. The composition of claim 1 wherein the *Anabaena* spp. is combined with a photoautotrophic liquid media, and optionally, wherein said media contains no combined nitro- 5 gen.

10. The composition of claim 1 wherein the carbon based product of interest is linalool ( $C_{10}H_{18}O$ ).

\* \* \* \* \*