

Outline I. INTRODUCTION II. PURPOSE AND ALIGNMENT PLAN **III. REQUIREMENTS IV. METHODS AND TOOLS** V. TESTS, MEASUREMENT AND SETUP **VI. ANALYSIS VII.RESULTS VIII.DATABASES** IX. CONCLUSION

Integrated Science Instrument Module (ISIM) Element

ISIM is one of three elements that together make up JWST

• Approximately 1.4 metric tons, ~20% of JWST by mass

ISIM consists of:

- Five sensor systems
 - MIRI, NIRCam, NIRSpec, NIRISS, FGS
- Nine instrument support systems:
 - Optical metering structure system
 - Electrical Harness System
 - Harness Radiator System
 - ISIM Electronics Compartment (IEC)
 - Cryogenic Thermal Control System
 - Command and Data Handling System (ICDH)
 - ISIM Remote Services Unit (IRSU)
 - Flight Software System
 - Operations Scripts System

Use of data disclosed on this page is subject to restriction(s) on the title page of this document

ISIM images from SSDIF, prior to CV2

Fine Guidance Sensor (FGS) Near Infrared Imager and Slitless Spectrograph (NIRISS) Near Infrared Camera (NIRCam) Near-Infrared Spectrograph (NIRSpec) Nick Infrared Instrument (MIRI)

Harness Radiator (HR) ISIM Electronics Compartment (IEC) ISIM Test Platform (ITP); ground support equipme

ISIM CV2 Presentation to PIT: R. Ohl/GSFC

Use of data disclosed on this page is subject to restriction(s) on the title page of this document

ASMIF and ISIM

- Instrument were built on a GSE (Ambient Science Insturment Mechanical Interface Fixture, ASMIF) that mimics the ISIM-SI interface
- Identical Science Instrument Interface Plates (SIIP) were fabricated for the ASMIFs and ISIM structure

Science Instruments

Ground Support Equipment (GSE)

Master and ISIM alignment target fixture (MATF/IATF) Targets tracked and used to align optical simulator to ISIM

Purpose of Work

- Verify the ambient 6 degree of freedom (DOF) alignment of the SIs to the ISIM structure
- This is done using various metrology targets located on the ISIM structure and each SI
 - Interchangable spherically Mounted Retroreflector (SMR) and Tooling Ball (TB) nests
 - Optical alignment cubes
 - Locations calibrated relative to precision mechanical interfaces
- In addition, each instrument contains a pupil alignment reference (PAR) that is measured near the nominal predicted ambient OTE exit pupil location
- Build a comprehensive database of tracking targets through all environmental testing

Requirements

- Uncertainties are determined via a bottoms up estimation and are compared to expectations allocated from the top-level ISIM requirements
- Overall test requirement is that the measured SI nests and cube locations are at their predicted locations within the 2-sigma uncertainties of:
 - The SI optical bench (OB) and Ground support equipment (GSE) measured locations when integrated to ISIM
 - The SI OB measured locations while integrated to the ASMIF structure
 - Finite element modeling (FEM) of the above two orientations with respect to gravity
 - Misalignment associated with small differences in ASMIF and <u>Structure precision mount interfaces</u>

Methods and Tools

- A variety of measurement tools are used depending on the application and requirements
- Tools used include: Leica laser trackers (LT), Nikon laser radar (LR), Leica Wild T3000 theodolites and a Koll Morgen alignment telescope (AT)
- LR is typically used for measurements of the SI optical benches (OB) and ISIM structure TB targets
- LT was used for PAR measurements primarily for its ability to track an SMR for alignment purposes
- Theodolites were used for all optical cube face measurements
- Photogrammetry Cameras used during both ambient and cryogenic testing

Ambient metrology tools: Laser trackers and theodolites

Laser tracker¹ is used to measure targets and surfaces

- Operated with Spatial Analyzer² software, which includes Unified Spatial Metrology Network (USMN; bundling) routine -greatly improved upportainty.
- greatly improved uncertainty
- Its target is a spherically mounted retro-reflector (SMR) that attaches to magnetic nest that are interchangeable with the TB targets that are used by the LR
- Uncertainty ~0.005--0.025 mm (1-sigma)
- LT may be used with T-Cam / T-Scan / T-Probe accessories to measure envelopes, surfaces, tooling holes
 May also be used to track hardware during "blind" precision integration activities (Transtrac)

Theodolite

Theodolites are used to measure angles via auto-collimation and targets via triangulation

- Operated manually, data is analyzed with GSFC-developed software
- Autocollimation: Target is a specular flat mirror (cube)
- triangulation: Target is scribe cross hair or specular tooling ball
- Uncertainty ~2 arc-sec (1-sigma) for a single measurements, >5 arc-sec (1-sigma) for a collection of measurements

 Leica Geosystems AG, Heerbrugg, Switzerland, metrology.leica-geosystems.com
 New River Kinematics, Inc., Williamsburg, Virginia,

SMR

Laser tracker

pc1 add LR photo description pcoulter, 7/8/2014

Ambient metrology tool: "Laser radar"

Laser radar¹ (LIDAR) is used to measure targets and surfaces

- Operated with Spatial Analyzer software
- Its target is diffuse surface (mechanical surface; matt finish), reflective tooling ball, specular mirror, or high-quality tooling hole
- Uncertainty ~0.010 mm in range (1-sigma), ~0.015 mm per meter in azimuth and elevation (1-sigma)
- Laser Radar scans much faster than Laser Tracker with T-Probe
- USMN-compatible
- At ambient, used for:
 - Used for prescription and alignment measurement for large optics (radius, aperture, etc.)
 - Envelope scans
 - Tooling ball targets on large assemblies
- 1. Nikon Metrology Inc, http://www.nikonmetrology.com/en_US

TB/nest

Invar+BR127 Kapton blanket Tube Mylar blanket JWST materials test article

Photogrammetry Overview

- 3 dimensional metrology system
- Uses triangulation to locate custom targets in 3 coordinates
- Requires multiple camera locations
- Solves for the camera locations and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software, proprietary software owned by Geodetic Systems Inc.
- Software contains calibration algorithms to calibrate internal camera errors
- Geometrically diverse scalebars
 provide scale

Single point triangulation

Multiple point triangulation

Measurement Setups

- Measurements conducted in the NASA GSFC Space Systems Development and Integration Facility (SSDIF) and Space Environment Simulator (SES) chamber
- Tests
 - GSE only ambient/cryogenic characterization
 - Full multi-station LR measurements of SI OB and ISIM structure targets
 - Full suite of theodolite measurements of all SI OB cubes and ISIM structure cubes
 - Five sets of measurements taken at each station
 - Resulting final values used for PAR measurements

MATF and IATF (xATF) ambient testing

Vertical and Horizontal calibration of all Targets

MATF and IATF (xATF) Cryogenic Testing

Warm to cold changes of xATF SGR, Mirror, Pinohole and Invar Scalebars tracked in LN chamber fitted with a LHe shroud.

Top View of Test Setup

PAR Measurement Setup

PAR Breadboard Top View

Breadboard

Gravity Release

ISIM in turnover fixture

Slowly rotated using Ransome Table

ISIM and SI tooling balls and cubes Measured V1 up then V1 down and compared FEM modeling.

Analysis

- TB/SMR Data analyzed using Spatial Analyzer¹
- PG Data analyzed with VStars
- Multiple stations were combined using USMN^{2, 3}
 - Bundling technique similar to photogrammetry applications
 - Can be used for multiple types of instruments
- ISIM nest target values best-fit transformed to an as-built unpopulated ISIM structure database
- Theodolite data analyzed using Microsoft Excel
- Theodolite data brought into VCS via direct and through measurements using the transfer cube assembly (TCA)
- Students-t (2-sigma)⁴ uncertainty calculated from five sets
- FEM differences from gravity are accounted for in the results
- Differences in the coordinate system due to the SIIP from ASMIF to ISIM are accounted for in the results
 - 1. New River Kinematics, Inc., Williamsburg, Va.
 - S. Sandwith & R. Predmore, "Real-time 5-micron Uncertainty with Laser Tracking Interferometer Systems using Weighted Trilateration," New River Kinematics, Inc. Williamsburg, Va.
 - 3. Spatial Analyzer User Manual, page 322, v. 2013.12.09.

J. Hayden et al., "Measurements and Analysis used for the Determination of the James Webb Space Telescope Integrated Science Instrument Module Vehicle Coordinate System," Coordinate Metrology Society Conference, July 2010.

Ambient Pinhole measurements with Cathetometer Cryogenic with LR vision scan(output pictured above)

Diagram and data from LR scan of an SGR

PAR Analysis

- Analysis starts with the final USMN average results from the TB/SMR survey of the structure
- Measurements are made of all visible ISIM structure targets during the PAR measurements and are best-fit transformed to the final USMN results of the ISIM survey
- The measured pupil target location is used as the basis for image analysis
- ImageJ software is used for the image analysis.
- Five images taken with illumination altered between images for each PAR

PAR Analysis

- PAR images from all instruments
- PAR targets are not perfectly aligned to the SI pupil. The offsets are known
- All SIs are not designed to image well at ambient

Results

- ISIM structure data presented is from the pre-cryovac 2 testing (May 2014)
 - Pre-CV1 prime—FGS, MIRI
 - Pre-CV1—FGS, MIRI
 - Post-CV1—FGS, MIRI (PAR only)
 - Pre-CV2 prime—All SIs
 - Pre-CV2—All SIs
 - Post-CV2 (Fall 2014)—All SIs
- FEM difference due to the different SI orientation and loading conditions are accounted for in the results.

Example of development of pass/fail values for nest location measurements

Example of development of pass/fail values for cube face orientation measurements

PAR Image Location Pass/Fail Criteria

Test to test up containty (2-)	V1 (mm)	V2 (mm)	V3 (mm)	
Test to test uncertainty (20)	0.071	0.239	0.239	

- Based on relative test to test changes
- Defined in the entrance pupil space
- ISIM level requirement for pupil shear is 3.1%
- To put this into perspective the pass fail values for V2/V3 converted to pupil shear percent is 0.16%. This is a factor of 20 better than the absolute alignment requirement for pupil shear

ISIM Coordinate System

ISIM and SI TB/SMR Results

	I	Frame:VOTE-ISIM-PreCV2-A			Delta Post CV1 FEM corrected			Delta ASMIF FEM corrected			
	I		LR/LT measum	nents	V1 (mm)	V2 (mm)	V3 (mm)	V1 (mm) V	/2 (mm)	V3 (mm)	
	I			IST-B20	0.000	-0.013	0.005				
			ŝ	IST-B21	0.003	0.006	-0.013				
			arge	IST-B22	-0.010	-0.014	-0.002				
			Ĕ	IST-B23	-0.009	-0.018	0.001				
			Sis Sis	IST-B31	-0.025	0.007	0.006				
			_	IST-B33	0.032	0.004	-0.010				
				IST-B35	-0.009	-0.012	-0.003				
	FGS		ets	FGS-OB-F1	0.044	-0.052	-0.029	0.011	0.101	0.022	
V1	1 V2	V3	arg	FGS-OB-F2	-0.007	-0.029	-0.028	0.026	0.064	0.032	
	12 0 07	7 0 069	S.	FGS-OB-F3	-0.033	-0.018	-0.029	0.009	0.051	0.038	
0.1	15 0.077	0.008	Ч	FGS-OB-F5	-0.031	-0.023	-0.020	0.014	0.005	-0.007	
				MODA +V1_1				-0.064	-0.027	0.030	
			ţ	MODA +V1_3				-0.053	-0.054	0.030	
	NIDC	m targe MAX	ag	MODA +V3_4				-0.072	-0.017	0.065	
	NIKC.		MODA -V1_3				-0.119	0.034	0.057		
	VI V.	2 V3	ar O	Module A +V3 hole				-0.043	0.023	0.048	
	0.151 0.0	78 0.070	Ĩ	Module A -V1 hole				-0.103	0.000	0.054	•
			2	Module B +V3 hole				-0.040	0.002	0.043	•
				Module B -V1 hole				-0.071	0.008	0.058	
			sts	OBBP-LTT-01				-0.058	-0.021	-0.030	
			arge	OBBP-LTT-02				-0.027	-0.002	-0.047	•
NIRSPEC TB	measureme	ents	2	OBBP-LTT-03				-0.010	-0.015	-0.054	•
V1 (mm) V2	2(mm)	V3(mm)		OBBP-LTT-04				-0.044	-0.020	-0.056	•
0.079 0.08	3	0.076		OBBP-LTT-05				-0.023	0.005	-0.059	•
			2	OBBP-LTT-06				-0.032	-0.110	-0.035	
			gets	MIRI-OB-FA				0.016	0.045	-0.077	
			tarç	MIRI-OB-FB				0.035	-0.002	-0.040	From Pre-CV1
			R	MIRI-OB-FC				0.033	0.000	-0.033	r
			Σ	MIRI-OB-FD				0.062	0.026	-0.042	
��IE											

ISIM/SI Cube Results

Theodolite FEM Deltas	Roll about V1			P	itch about	V2	Yaw about V3			
Cube Vector	deg	min	sec	deg	min	sec	deg	min	sec	
ISIM B21 -V2	0	0	-2				0	0	2	
ISIM B33 -V3	0	0	1	0	0	-5				
ITP OC4 +V2	0	0	1				0	0	-5	
ITP OC4 +V3	0	0	2	0	0	-10				
FGS-0C-F1 +V2	0	0	10				0	0	-27	
FGS-0C-F1 -V3	0	0	-4	0	0	18				
FGS-0C-F2 +V2	0	0	-2				0	0	-32	
FGS-0C-F2 -V3	0	0	-2	0	0	13				
NIRCam-OC-B +V3	0	0	0	0	0	-5				
NIRCam-OC-B -V1				0	0	-3	0	0	40	
NS-OC-01 +V3	0	0	33	0	0	-9				
NS-OC-01 +V1				0	0	-9	0	0	-1	
NS-OC-02 -V3	0	0	-39	0	0	4				
NS-OC-02 -V1				0	0	3	0	0	19	
MIRI-OC-F1 -V2	0	0	-9				0	0	22	
MIRI-OC-F1 -V3	0	0	-21	0	0	13				
MIRI-OC-F2 -V2	0	0	24				0	0	44	
MIRI-OC-F2 -V3	0	0	0	0	0	13				

Total ASMIF to ISIM Science Instrument Theodolite 2 sigma Uncertainty

33 sec

Summary

- We have successfully verified the SI-level target calibration is in good agreement with measured SI OB locations on ISIM element to better than the required pass/fail values
- This process will be repeated during ISIM level I&T to trend any potential alignment changes due to thermal cycling (CV2, CV3), vibration and acoustic exposure
- This process will also be repeated after SI work during I&T.

Acknowledgements

The author gratefully acknowledges the collective contributions of the optical, mechanical, and systems engineering, management, and science teams working on the James Webb Space Telescope, Integrated Science Instrument Module element, and specifically:

J. Gum, T. Hadjimichael, J. Hylan, T. Madison, L. Miner, R.G. Ohl, J. Young NASA Goddard Space Flight Center, Greenbelt, Maryland

M. Maszkiewicz Canadian Space Agency

A. Beaton Comdev International

S. Hummel, M. Melf, A. Roedel EADS Astrium Gmbh

M. Te Plate European Space Agency

P. Schweiger Lockheed Martin Corporation

K.F. Mclean, J. McMann, K. Redman, G.W. Wenzel Qinetiq North America

J.E. Hayden Sigma Space Corp., Lanham, Maryland

P.W. Williams SGT International

D. Lee, M. Wells UK Astronomy Technology Centre

This work is supported by the James Webb Space Telescope project at NASA Goddard Space Flight Center.

Back up Slides

ASMIF status

- MIRI ASMIF: Delivered to RAL, May 2007
- NIRSpec ASMIF: Delivered to Astrium, Sep 2007
- FGS ASMIF: Delivered to COM DEV, Dec 2007
- NIRCam ASMIF: Delivered to Lockheed Martin, Jan 2009

MIRI VM with ASMIF at RAL

NIRSpec ASMIF postshipment calibration check and OBK installation at Astrium

NC bench installed on ASMIF at LMCO

FGS ETU with ASMIF at COM DEV, Ottawa

ISIM Test Platform (ITP)

- Master gauge for nominal OTE-ISIM interface ("reference A")
- Fiduciary points on KM sockets map to MICD
- Used for ambient integration, metrology and alignment (SSDIF)
- Used for cryogenic testing in both Structure cryo-set and Integrated ISIM testing
- Supported by IMIS and ISSD in SSDIF for ambient work
- Supported by Upper GESHA in SES chamber for cryogenic testing
- ~30K ITP is attached to the ~100K Upper GESHA via thermal isolator stand-offs
- Supports MATF for OSIM-to-reference A alignment
- Extensive optomechanical requirements related to alignment and stability

Coordinate system and ISIM hardware

ITP calibration, ambient

- Ambient calibration of ITP
 - Definition of V-coordinate system using interface references and MICD
 - Calibration of ITP metrology references using LT, theodolites, PG
 - Cube normals are aligned to approximately represent axes of V-coordinate system
- Changes to ambient calibration
 - Various load cases (empty, bare Structure, Integrated ISIM, OSIM's BIA)
 - Repeatability with handling and mounting
- MATF installation
 - Calibrate 6 DoF alignment with respect to Vcoordinates
 - Repeatability of attachment
- ISIM Error Budget Report (JWST-RPT-008175) documents allocations for ITP metrology uncertainty (knowledge) and impact to flight hardware alignment

Extraction from MICD showing 1 KM interface

Simulation of ITP metrology (top view, looking in +V1 direction; SSDIF)

Alignment approach for SI-to-Structure (Ambient Science Instrument Mechanical Interface Fixture; ASMIF)

- Alignment of SI optical train relative to SI-ISIM interface is verified by SI developer using optomechanical tooling (i.e., ASMIF)
- Levy requirements on Structure to avoid iterative compensated cryogenic alignment (i.e., no "windage" within Structure --- no pre-alignment at ambient to achieve correct placement at cryogenic operating temperature)
- Place SI-Structure interface plats on the ground at ambient at their nominal on-orbit alignment positions and orientations --- differences between warm vs. cold structure and loaded vs. 0g structure are small and captured in error budget
- Measure bare Structure cryogenic performance to verify that it meets alignment requirements and increase confidence in Integrated ISIM performance (Structure's "cryo-set" test)

FGS ETU with ASMIF at COM DEV, Ottawa

Ambient integration of SIs with Structure

- SIs are integrated to Structure
- Integrated ambient baseline metrology performed after Structure is populated with SIs: SI optical bench and ISIM Structure targets are measured using laser trackers and theodolites at ambient temperature under 1-g
- Measurements are compared with expectations based on
 - SI+ASMIF metrology results
 - As-built ITP, Structure, and SI validated mechanical models (e.g., gravity sag, ITP distortion)
- Measurements, including uncertainty, must agree with as-built mechanical models and "blueprints"
- This step ensures that SIs are where they should be in Structure at ambient under 1-g

Simulation of metrology for NIRSpec instrument integration

CAD view of Integrated ISIM showing NIRSpec side of assembly