Filled Co_xNi_{4-x}Sb_{12-y}Sn_y skutterudites: processing and thermoelectric properties

Jon Mackey Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A NASA/USRA Contract: 04555-004

Processing

Properties

System Background

- Skutterudites are based on CoAs₃ mineral; first mined in Skotterud, Norway.
- Exhibit a high figure of merit for n-type systems (ZT=1.7).
- Relatively low cost system.
- Introduce disorder on pnictogen ring sites (X).
 - Dominate heat carrying modes are associated with pnictogen vibration.
- Introduce a range of fillers (A) to scatter various phonon wavelengths.
- Tune electronic properties

 (A,B,X) for optimal
 thermoelectric power factor .

Properties

Systems Investigated

- Ternary systems studied with combination of solidification and powder processing techniques.
- •Ni₄Bi₈Ge₄
 - Shown below, skutterudite phase not obtained.
- •Ni₄Sb₈Ge₄
 - •Skutterudite phase not obtained.
- •Ni₄Sb₈Sn₄

Objectives

- Focus on finding a p-type skutterudite with improved ZT.
- Study behavior of the skutterudite Co_xNi_{4-x}Sb_{12-y}Sn_y.
 Grytsiv et. al has reported a Ni₄Sb₈Sn₄ skutterudite system.
- Parameters of study:
 x= {0,0.5,1,1.5,2}
 y={3,4,5}
 Samples created from a melt/mill/hot press procedure.

Processing

Dh

m

Properties

Ternary sy of solidific technique
Ni₄Bi₈Ge₄
Show obtai
Ni₄Sb₈Ge₄
Skutt
Ni₄Sb₈Sn₄

Co _x Ni _{4-x} Sb _{12-y} Sn _y									
Sample	Co	Sn	Lattice						
#			Parameter						
	(x)	(y)	(Å)						
1	0.0	4.0	9.113						
2	0.0	5.0	9.128						
3	0.5	5.0	9.126						
4	1.0	5.0	9.118						
5	1.5	5.0	9.123						
6	2.0	5.0	9.104						
7	2.0	4.0	9.109						
8	2.0	3.0	9.087						

<u>Objectives</u>							
A_z	d ZT.						
Sample	in.						
#			Parameter	rted			
	А	(z)	(Å)	te			
7	N/A	0.0	9.109				
9	Ce	0.1	9.108				
10	Dy	0.1	9.114				
11	Yb	0.05	9.019	dure.			
12	Yb	0.1	9.111	Pellet			
13	Yb	0.2	9.114	ermal			

Processing

Dn

Properties

Ternary sy of solidified technique
 Ni₄Bi₈Ge₄
 Show obtai
 Ni₄Sb₈Ge₄
 Skutter

Co _x Ni _{4-x} Sb _{12-y} Sn _y								
Sample	Co	Sn	Lattice					
#		Parameter						
	(x)	(y)	(Å)					
1	0.0	4.0	9.113					
2	0.0	5.0	9.128					
3	0.5	5.0	9.126					
4	1.0	5.0	9.118					
5	1.5	5.0	9.123					
6	2.0	5.0	9.104					
7	2.0	4.0	9.109					
8	2.0	3.0	9.087					

<u>Objectives</u>								
Az	d 7T.							
Sample	Filler	Level	Lattice					
#			Parameter	>n _y . rted				
	А	(z)	(Å)	te				
7	N/A	0.0	9.109					
9	Ce	0.1	9.108					
10	Dy	0.1	9.114					
11	Yb	0.05	9.019	dure.				
12	Yb	0.1	9.111	Pellet				
13	Yb	0.2	9.114					
LICUIIU	al			ermal				

Introduction Processing Properties

Ternary sy of solidific technique
 Ni₄Bi₈Ge₄
 Show obtai
 Ni₄Sb₈Ge₄
 Skutt
 Ni₄Sb₈Sn₄

	Co _x Ni _{4-x} Sb _{12-y} Sn _y					Co _x Ni _{4-x} Sb _{12-y} Sn _y				Ι.				<u> Obje</u>	<u>ctives</u>	_
	Sample	Co	Sn	Lattice	=)	n		A _z	A _z Co ₂ Ni ₂ Sb ₈ Sn ₄			d ZT.				
	#			Parameter				Sample	Filler	Level	Lattice					
		(x)	(y)	(Å)	_)	t		#			Parameter	»n _y . rted				
	1	0.0	4.0	9.113					А	(z)	(Å)	te				
	2	0.0	5.0	9.128				7	N/A	0.0	9.109					
	3	0.5	5.0	9.126			1	9	Ce	0.1	9.108					
	4	1.0	5.0	9.118		ım.		10	Dy	0.1	9.114					
	5	1.5	5.0	9.123				11	Yb	0.05	9.019	dure.				
	6	2.0	5.0	9.104				12	Yb	0.1	9.111	Pellet				
	7	2.0	4.0	9.109		V		13	Yb	0.2	9.114					
	8	2.0	3.0	9.087		Bi						ermal				
										C						

Processing

Properties

ICP analysis of an ingot

2 Hr @ 1100°C (+20,-10°C /min)
Silica crucible in He atmosphere
<1% wt loss

EDS map of an ingot

Processing

Properties

Milling Details

- Planetary mill
 - •550 rpm
 - Ball to powder weight ratio 3.8
 - •Ar atmosphere

Sample 1 Ni₄Sb₈Sn₄ Milling

Sample 4 Co₁Ni₃Sb₇Sn₅ Milling

Processing

Properties

Hot Pressed SEM

Sample 1 Ni₄Sb₈Sn₄

NiSb (3.1wt%, 109nm cryst.) precip 1μm.
SbSn (1.3wt%, 45 nm cryst.) precip 30 μm.

Sample 2 Ni₄Sb₇Sn₅

- NiSb (6.8wt%) precip 1µm.
- $\mathrm{Ni_3Sn_4}$ (1.2wt%) precip 30 $\mu m.$
- SbSn (1.4wt%) surrounding Ni_3Sn_4 .

Sample 4 Co₁Ni₃Sb₇Sn₅

- NiSb (3.2wt%) precip 1µm.
- Ni₃Sn₄ (6.5wt%) precip 1µm.

Processing

Properties

<u>Hot P</u>	ressed Structure F	Refine	<u>ment</u>
Sample	Skutterudite	Lattice	SKD
#	$A_{\delta} B_{x} B'_{4-x} X_{12-y} X'_{y}$	(Å)	(wt%)
1	${ m Sn_{0.2}Co_{0.0}Ni_{4.0}Sb_{8.5}Sn_{4.4}}$	9.113	96.65
2	${ m Sn_{0.3}Co_{0.0}Ni_{4.0}Sb_{7.9}Sn_{5.1}}$	9.128	87.38
3	${ m Sn_{0.3}Co_{0.6}Ni_{3.4}Sb_{7.2}Sn_{4.7}}$	9.126	94.97
4	${ m Sn_{0.3}Co_{1.2}Ni_{2.8}Sb_{8.3}Sn_{5.4}}$	9.118	89.25
5	${ m Sn_{0.3}Co_{1.5}Ni_{2.5}Sb_{7.0}Sn_{4.7}}$	9.123	91.33
6	${ m Sn_{0.3}Co_{2.4}Ni_{1.6}Sb_{9.4}Sn_{5.8}}$	9.104	80.08
7	${ m Sn_{0.3}Co_{2.1}Ni_{1.9}Sb_{9.1}Sn_{3.7}}$	9.109	93.64
8	${\rm Sn}_{0.2}{\rm Co}_{2.1}{\rm Ni}_{1.9}{\rm Sb}_{9.0}{\rm Sn}_{2.6}$	9.087	98.20

Processing

Properties

Pressed Co₂Ni₂Sb₇Sn₅

Density 7.64 g/cm³ 99%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	82.6
Ni ₃ Sn ₄	8.7
Sn	6.2

Ni₃Sn₄ (230°C)

 $Sn_{0.5}Co_{2.4}Ni_{1.6}Sb_{9.7}Sn_{5.7}$

200°C	Anneal	72	Hrs

Density 7.25 g/cm³ 95%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	80.0
Ni ₃ Sn ₄	11.9
Sn	7.6

Ni₃Sn₄ (230°C)

Sn_{0.5}Co_{2.4}Ni_{1.6}Sb_{9.7}Sn_{5.7}

Filled Co_xNi_{4-x}Sb_{12-y}Sn_y Skutterudites

400°C Anneal 72 Hrs

Density 6.75 g/cm³ 88%

Phase	Wt%
Co ₂ Ni ₂ Sb ₇ Sn ₅	73.6
Ni ₃ Sn ₄	14.7
Sn	10.0

Porosity N

Ni₃Sn₄ (230°C)

7 of 12

Sn_{0.5}Co_{2.4}Ni_{1.6}Sb_{9.7}Sn_{5.7}

Processing

Properties

Sample Stability

Properties

Trai	Transport Properties- Unfilled (40°C)									
Co _x Ni _{4-x} Sb _{12-y} Sn _y										
Sample Co Sn Lattice Seebeck Electrical Thermal										
#			Parameter	Coefficient	Resistivity	Conductivity				
	(x)	(y)	(Å)	$(\mu V/K)$	$(\mu Ohm - cm)$	(W/m-K)				
1	0.0	4.0	9.113	-40.7	233	4.7				
2	0.0	5.0	9.128	-33.4	255	4.1				
3	0.5	5.0	9.126	-8.7	560	2.2				
4	1.0	5.0	9.118	32.9	784	1.6				
5	1.5	5.0	9.123	13.7	449	1.4				
6	2.0	5.0	9.104	7.1	233	3.9				
7	2.0	4.0	9.109	17.7	540	2.5				
8	2.0	3.0	9.087	37.9	2282	1.5				

Co (x) Study

Processing

Properties

Processing

Properties

Properties

Transport Properties- Filled (40°C)

A_zCo₂Ni₂Sb₈Sn₄

Sample	Filler	Level	Lattice	Seebeck	Electrical	Thermal
#			Parameter	Coefficient	Resistivity	Conductivity
	А	(z)	(Å)	$(\mu V/K)$	$(\mu Ohm - cm)$	(W/m-K)
7	N/A	0.0	9.109	25.3	659	2.5
9	Ce	0.1	9.108	35.1	1036	2.1
10	Dy	0.1	9.114	27.4	681	2.9
11	Yb	0.05	9.019	23.3	618	2.6
12	Yb	0.1	9.111	25.6	592	2.9
13	Yb	0.2	9.114	-	-	-

Processing

Properties

Processing

Properties

Processing

Properties

<u>Conclusion</u>

- The Co_xNi_{4-x}Sb_{12-y}Sn_y skutterudite can be synthesized from a melt/mill/hot press schedule.
- Both n- and p-type conduction can be achieved by Co doping.
- System exhibits low thermal conductivity, but also low Seebeck coefficient.
- Thermoelectric performance of the system is hindered by large carrier densities and low carrier mobilities.
- Fillers improve Seebeck coefficient, but do not reduce thermal conductivity.

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross, Kerem Sayir

NASA Glenn Research Center

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial JPL

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004