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Dielectric Barrier Discharge (DBD) Plasma Actuators 
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Anti-Thrust Hypothesis 
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and 

Matthew C. Laun 2
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We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators 
devices used for aerodynamic active flow control. After a review of our experience with 
conventional thrust measurement and significant non-repeatability of the results, we devised 
a suspended actuator test setup, and now present a methodology of thrust measurements 
with decreased uncertainty. The methodology consists of frequency scans at constant 
voltages. The procedure consists of increasing the frequency in a step-wise fashion from 
several Hz to the maximum frequency of several kHz, followed by frequency decrease back 
down to the start frequency of several Hz. This sequence is performed first at the highest 
voltage of interest, then repeated at lower voltages. The data in the descending frequency 
direction is more consistent and selected for reporting. Sample results show strong 
dependence of thrust on humidity which also affects the consistency and fluctuations of the 
measurements. We also observed negative values of thrust or “anti-thrust”, at low 
frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-
squared voltage and is frequency independent. Departures from the parabolic anti-thrust 
curve are correlated with appearance of visible plasma discharges. We propose the anti-
thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-
thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust 
depends on actuator geometry and materials and on the test installation. It enables the 
separation of the plasma thrust from the measured total thrust. This approach enables more 
meaningful comparisons between actuators at different installations and laboratories. The 
dependence on test installation was validated by surrounding the actuator with a large 
diameter, grounded, metal sleeve. 

Nomenclature 
f = frequency 
k = anti-thrust coefficient 
V = mean voltage 
Actuator geometry parameters see Appendix A 
 

Acronyms 
AC  Alternating Current 
DC  Direct Current 
RH  Relative Humidity 
 

Subscripts 
p-p, pp  peak to peak 
                                                           
1 Research Aerospace Engineer, Glenn Research Center, 21000 Brookpark Road, Associate Fellow AIAA. 
2 Electrical Engineer, Glenn Research Center, 21000 Brookpark Road, Nonmember. 
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I. Introduction 
DIELECTRIC Barrier Discharge (DBD) actuator is a device that consists of a pair of electrodes separated by a 
dielectric. One electrode is exposed to the flow and the other is covered. Alternating Current (AC) voltage in 

the kilovolt (kV) range is applied to the electrodes and creates weakly ionized surface discharge plasma on the 
exposed electrode edge towards the buried electrode direction (Fig.1). There are usually two modes of operation. 
Conventional DBD operation involves application of an Alternating 
Current (AC) voltage waveform in the kilohertz frequency range, with or 
without modulation or pulsing. In this mode, referred to as “AC DBD”, 
heat generation is insignificant and the actuator generates momentum in 
the form of a wall-jet parallel to the surface. The wall-jet momentum 
coupling with the external flow is the foundation for active flow control. 
The other mode of DBD operation involves applying voltage consisting 
of ultra-short, repetitive pulses. The pulses are usually several 
nanoseconds wide and the repetition rate ranges from a few hundred 
hertz to a few hundred kilohertz. In this mode of operation, generally 
referred to as “NS-DBD,” the generated momentum is negligible but there is a fast, localized heating of the gas that 
creates pressure waves or even shock waves. The repetition generates pressure oscillations that are used for active 
flow control. For the momentum-based DBD actuator, see review articles by Moreau1 and Corke et al 2,3,4. For the 
ultra-short pulsed fast heating-based DBD actuator, see the paper by Roupassov et al 5. 

This project is limited to the conventional AC-DBD, momentum-generating DBD actuator with AC operation 
(kilohertz-range applied voltage frequency). The interest is to characterize the aerodynamic and electrical 
performance of the actuator. Generally, it is performed without external flow. This paper is focused on the actuator 
thrust, addresses related issues and proposes measurement and data interpretation approaches.  

II. The Thrust of the DBD Actuator 
The thrust of the DBD plasma actuator is a good metric for its aerodynamic performance. The reason is that in 

active flow control application the main interest is in the momentum injected into the flow by the actuator. 
Pneumatic actuators use a momentum coefficient as performance and characterization parameter (e.g. Glezer and 
Amitay 6). 

The momentum can be calculated from flow velocity profiles measurements, or from direct thrust measurement. 
From a control volume consideration shown in Fig. 2, the thrust is approximately equal to the net momentum 
generated by the actuator7,8. The difference is the shear force on the surface. 
This is for the streamwise, or parallel to the surface, direction. There is also a 
component of the force in the surface-normal direction not considered here.  

An attractive reason to use thrust is simplicity. The thrust can be measured 
by a balance or a load cell. Because load cells with the required resolution, 
range and tare weight capacity are hard to find or non-existent, an analytical 
balance is useful for this suppose. It is desirable to use one with milligram 
(mg) resolution. When the actuator is placed on the balance with the jet facing 
up as shown in Fig. 3, the balance reading is the sum of the forces generated by the 
plasma and the shear forces on the surface. If the shear forces are sufficiently small to 
be neglected, then the thrust will be close to the momentum7. 

A. Shear forces and their relation to thrust 
The magnitude of the shear forces is in question. Experiments by Durscher and Roy 

9  showed that the thrust measured was dependent on the distance from the edge of the 
exposed electrode to the edge of the actuator. The conclusion would be that the shear 
forces are not negligible. Experiments by Opaits et al10 showed that the generated wall-
jet is Glauert’s self-similar wall-jet11. Opaits has not calculated the wall shear forces. 
We have used his data and calculated them (to be reported separately), and found that 
the calculated shear force is negligible. However these calculated shear forces apply 
only to the self-similar wall-jet domain. The region near the electrode edge can be 
considered as the near-field source of the wall-jet, where the similarity is not valid. 
Calculation of the shear stresses on the surface in the near-field is a complex task that 
involves solving plasma chemistry equations. There is no reason to assume that the 

A 

 
Figure 2. Control volume for 
thrust evaluation 

 
 

Figure 3. Setup of an 
actuator on an 
analytic balance  

 
 

Figure 1. Schematic of a DBD 
Plasma Actuator 
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shear is negligible. However, the extent of that region is small (less than 10% of the total length measured by Opaits 
et al 10), therefore the shear stress will act on a very small portion of the actuator surface area. It seems reasonable to 
assume that the resulting shear forces will be small. Assessment of this conclusion is in progress and will be 
reported separately.  

Regardless of the accuracy of the thrust as representing the momentum, it can be considered a good aerodynamic 
performance metric of DBD actuator on its own merit.  

B. Problems with direct wall-jet velocity measurement  
Thrust measurements do not provide information on the wall-jet velocity profile. The other class of methods 

involve direct measurements of the wall- jet profiles, from which the momentum can be calculated. Pitot and hot-
wire probes require flow traverses. Inserting probes near plasma and electric fields causes various problems. 
Metallic probes introduce an equipotential body into the flow 
and induced charges that change the electrical field and hence 
the velocity field in its vicinity. Arcing to the dielectric and 
the electrodes can occur, also affecting the flow (Fig. 4). We 
have found that metallic probes behave as grounded probes 
even when they were not grounded and were isolated from 
the test setup by Tygon® tubing and dielectric fixtures. 
Therefore dielectric materials, e.g. glass, are used. They are 
believed to be suitable and widely used, but they also can 
accumulate charges on their surface that will alter the 
electrical field in the vicinity and change the local velocity. 
The difference compared to metals is that is that these charges 
are static and not moving, and the surface is not equipotential 
as in metals. 

Non-intrusive methods include Particle Image 
Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). 
They require seeding and questions arise as to the effect of 
the seeding. The seeding material can become electrically 
charged and the electrostatic forces prevent it from following 
streamlines. Several researchers have compared PIV and 
LDV methods with Pitot probe and hot wire measurements 
and found close results, indicating that seeding charging is 
not an issue. However Boucinha et al12 have measured the 
wall-jet profile with a glass Pitot tube under different seeding 
materials (Fig. 5), and there are marked differences. It 
indicates that the seeding material participates in the plasma 
chemistry process or changes the surface chemistry or surface 
charging by adhering to it, with the end result affecting the 
performance of the actuator.  

 
In light of these difficulties it appears that thrust measurement is an attractive and simple method to characterize 

the performance of DBD actuators. 

C. Application of thrust data 
Our ultimate goal is to perform a comprehensive characterization of the aerodynamic and electrical performance 

of DBD plasma actuators. The tests would be performed without external flow in room conditions and in vacuum 
and pressure chambers. The objective is to perform parametric studies to create a data base of thrust vs. electric 
power consumption of DBD actuators for the canonical configuration of an actuator constructed of 2D offset 
electrodes. The parameters would be the voltage, frequency, waveform, and duty cycle of the applied voltage as well 
as the actuator geometry, dielectric properties, and ambient conditions such as humidity, pressure and temperature. 
An example of a performance map is shown in Fig. 6 for sinusoidal wave form. These types of multi-dimensional 
maps can be used for selection of actuators, establishing requirements for power supplies, and optimization of the 
actuation system. The power consumption measurements were addressed in Ashpis et al 13, and when thrust 
measurements were attempted, we encountered difficulties in obtaining consistent results. 

(a) (b) (c) 
Figure 4. Metal Pitot probe arching to an 
Alumina dielectric. (b) is same image as (a) 
but in the dark. (c) is enlargement showing 
arcing. 

Figure 5. Effect of seeding on the wall-jet 
generated by the actuator. Reprinted with 
permission from Boucinha et al12, AIAA 
2008-4210, Copyrighted to the authors. 
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III. Consistency of thrust measurements. 
We initially performed thrust measurements with various actuators held with acrylic fixtures in an acrylic 

enclosure. The balances used were AND (A&D Company, Limited, Japan) Models GF-300 and GF-1000. The 
readings were recorded using the balance’s serial port and a 
LabView™ program. The power was provided with thin copper 
wires (24 to 32 AWG), whose static deflection did not affect the 
balance reading. It was tested by placing weights in presence of an 
unpowered actuator, and comparing the balance reading to the 
applied weight. This balance displays good immunity to 
Electromagnetic Interference (EMI), but was placed inside a 
copper Faraday cage as extra measure. A copper ground plane was 
used for appropriate grounding. 

In the course of the tests, performed with acrylic and alumina 
actuators, we observed several problems. We found large degrees 
of non-repeatability, fluctuations, and drift in time. There was 
strong dependence on actuator conditioning profile (“burn-in”). 
This was also observed by others (e.g. Hoskinson et al 7 ). There 
was dependence on the manner of applying the voltage. For 
example, if the voltage was increased at fixed frequency, the 
readings were different if the voltage was increased from one measuring point to the next, or if it was brought to 
zero between the measurement points. When the high-voltage lead-wire was charged, it was performing oscillatory 
motions, indicating dynamic forces caused by charges, ionic wind, corona discharge, and elasticity of the wire; 
significant amplitudes were observed at some setups. 

 
Figure 7. Focusing Schlieren image of 
an alumina actuator.  
Density gradients are caused by surface 
heating. The image generated with 
MetroLaser Inc. Strioscope dual grid 
projection focusing Schlieren system. 
 
 

 
 

Figure 6. DBD actuator sample performance map. The curves are to 
assist reading the data, not necessarily valid beyond the measured data. 
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There were indications that the measured thrust was affected by several phenomena. There was apparent 
interaction of the actuator with the enclosure, nearby objects, and the ground plane. Charges appeared on the outside 
surface of the acrylic enclosure. The actuator dielectric itself exhibited charges that appeared to be due to remnant 
polarization, ferroelectric activation, and possible paraelectric behavior.  

Thrust fluctuations could originate from flow recirculation inside the enclosure and from strong unsteady wall-
jet wake fluctuations observed at its departure from the plate edge. The latter was visualized in the Schlieren 
photograph in Fig. 7. 

Finally, there was strong dependence on humidity. The effect is well known in the atmospheric pressure plasma 
research community, see for example, Koo et al14, attributing the effect on changes in the plasma chemistry caused 
by generation of OH radicals via interaction of electrons and the water molecules affecting the plasma chemistry. 
However when reviewing publications reporting experiments on DBD actuators performance, we found that 
humidity conditions are rarely reported.  

Problems with thrust measurements were also observed by others. They were mostly associated with the initial 
conditioning or “burn-in” and various strategies were employed. The reader is referred to a more recent reference, 
Durscher. & Roy 9. Unlike our experience, they have not observed significant thrust drift in their tests, but report 
several open problems and areas that need further investigation associated with actuators’ thrust measurements. 

External circuit parameters are also a factor in actuator performance15. In the work reported here we have not 
made any changes affecting the external circuit impedance. The same power supply, supply cabling, and feedwires 
are used. The only impedance change between different tests is the impedance of the actuator test article and 
impedance change caused by frequency dependence. 

Based on our experience with our thrust measurements attempts and considering the problems described above, 
we developed a new test setup and a new methodology for thrust measurement. Our methodology also led us to the 
proposed anti-thrust hypothesis used to separate the relevant plasma thrust from the total measured thrust. These 
approaches will be described below. 

IV. Test setup  
We have developed a test setup to counter some of the problems associated with our testing in an enclosure. The 

new test setup is shown in Fig. 8. The AND analytic balance we used (A&D® Company, Limited, Japan, Model 
AND GX-1000) has linear accuracy of ±3 mg and repeatability of 1 mg. It is equipped with an underhook that 
enables it to measure hanging loads. The balance was installed on a small aluminum platform attached to the 
laboratory ceiling. The balance was thermally insulated with an enclosure made from polystyrene foam sheets to 
minimize thermal drift. The air temperature in the enclosure was monitored with a thermocouple. The actuator test 
article was suspended with thin nylon monofilaments (fishing 
line) attached to a metal frame that was hung on the 
balance’s hook. The test article was installed as far as 
practical from nearby objects. The floor underneath the test 
article consisted of grounded metal plates. The surrounding 
objects included metal cabinets, workbenches, metal and 
acrylic structures, and cement walls and floors with 
embedded steel reinforcing. The balance was installed about 
3.5 m above the actuator, and testing revealed there was no 
detectable EMI interference by the balance due to the 
actuator. The nearest distance to adjacent objects was 1.2 m. 
Typically the distances were in the range of 1.5 to 2.0 m. The 
actuator was suspended about 1.2 m above the floor. After 
gaining some experience, we were able to minimize 
movements of the suspended test article that would affect the 
balance reading.  

We used a Trek Inc. high voltage amplifier Model 
PD06035. Its maximum slew rate is 725 V/µs (at no load, 
10% to 90% typical) and the DC gain is 3000 V/V. The 
effective slew rate was reduced to 245 V/µs after the 
electrical actuator load was applied. The range of its working 
frequencies starts at DC. The combination of its frequency and voltage output range is limited by the slew rate (and 
the load impedance). The sinusoidal input waveform was supplied with a synthesized signal generator, Stanford 

Figure 8. Suspended actuator test setup 
schematic (not to scale) 
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Research Systems (SRS) Model DS345m. The Trek is equipped with a variable-intensity indicator to warn of output 
waveform distortion. We also simultaneously used an oscilloscope to detect output voltage distortion. 

We used the factory-supplied output cable, Trek part number 43466B, with a total length of approximately 2 m. 
A section of the cable, approximately 1.5 m long, was routed through 1 inch I.D. acrylic and PTFE tubes for extra 
insulation above the metal floor. This arrangement was kept constant at the various tests so as not to vary the 
capacitance between the cable and the surroundings. 

The high voltage was fed to the powered actuator electrode through a conductive-liquid, force-decoupling 
interface arrangement as follows. The high voltage 28 AWG copper feedwire lead was suspended vertically with a 
metal counterweight into a styrene cup containing tap water that submerged the counterweight completely below the 
surface. The high voltage was fed from the output cable of the power supply into the water via a stainless steel 
needle that pierced the bottom of cup. Sufficiently ionized tap water was selected due to its conductivity and allows 
charging of the actuator electrode with minimal impedance. Dynamic forces caused by the lead wire, observed 
before with different setups, were minimized below detectable levels. The ground 28 AWG copper feedwire lead 
was connected to the covered electrode via a thinner 40 AWG copper wire suspended in an approximate catenary 
shape to minimize forces. 

The high voltage was measured with the Trek’s built-in voltage monitor (3000:1 ratio). It is based on a high 
performance voltage divider. It adequately represents the AC voltage on the electrodes within the moderate 
frequency ranges used. The built-in current monitor was not used for data as our tests showed unsatisfactory high-
frequency dynamic response. We have not recorded the current as it was not within the objectives of this project. 

We used a Nikon digital camera Model D300S to take still images of the discharges. Camera setting of the 
images shown herein were F2.8, ISO 200, and exposures of 30 seconds or as noted. Darkened room was required. 

The balance readings were recorded using a LabView™ application. The balance provides continuously-
averaged load measurements 10 times per second. Testing performed on the balance revealed that this averaging 
occurs for time-varying loads at frequencies above 2 Hz. Alternatively, time-accurate readings can be acquired for 
loads that vary below 0.5 Hz. The accuracy of the AND balance is accomplished via a servo loop activating an 
electromagnetic coil that maintains the deflection of the internal beam at zero. The electrical current to the coil is 
nearly linear with the load. This construction has a particular advantage relevant to our tests, as the static forces of 
the lead wires are null, because there is no steady state deflection that will cause stress forces in the lead wires. 

The actuators we used in the study reported here were made of 6.3 mm (0.25 in) High-Density Polyethylene 
(HDPE) dielectric. The dielectric properties (see Appendix A) are close to those of PTFE, Dielectric Constant ε=2.3, 
making it a low capacitance class of actuators that were shown by others to allow application of high voltage to 
achieve high levels of thrust. We found that this material does not exhibit sudden pin-hole type burn-through that we 
encountered while using PTFE, PEEK, and other polymers. The HDPE exhibited excellent durability over long 
periods of time. The dimensions and other construction details of the actuators used are listed in Appendix A. 

 

V. Thrust measurement methodology 
Usually, there is a need to perform a large number of thrust measurements within a test matrix indexed by 

frequency and voltage. We need to minimize the testing time while considering the issues described above and also 
to take steps to obtain consistent results. To acquire the two-dimensional thrust data matrix, data must be acquired at 
constant voltage or at constant frequency.  Since we have more experience with the magnitude of thrust errors that 
are dependent upon voltage than those due to frequency, we favor acquiring data by maintaining constant voltage.  
Thrust data must be averaged over time at each pair of voltage and frequency. 

We are also trying to avoid performing numerous repetitions that would lead to comprehensive statistical 
analyses. Repetitive tests may take long periods of time, several hours or several days, and changes may occur in the 
actuator, due to changes in ambient conditions (humidity, temperature), chemical reactions with the surface, erosion 
of the electrodes and the dielectric, dielectric heating, changes in the adhesives used, moisture absorption, and 
potential net charge non-equilibrium. If tests are performed in a closed chamber, changes of the surrounding gas 
composition can occur by accumulation of plasma-generated Ozone and other species. There are also questions as to 
what is the appropriate period of data recording time used to calculate the average thrust for each point in the 
voltage-frequency matrix. 

We use a “burn-in” process before data acquisition to condition the actuator to minimize potential long-term 
voltage-dependent thrust error. Our process is to expose the dielectric and surfaces to the maximum absolute voltage 
as well as to the maximum voltage slew rate with a sufficient dwell time to instigate the initial change.  This change 
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occurs relatively quickly (typically 3-10 minutes).  Once changed, the actuator zero-thrust reference remains stable 
for a longer period of time (2-3 hours) that facilitates the long-term acquisition of the data matrix. 

 
Based on our experience and trials with different actuators, we developed a methodology of acquiring actuator 

thrust data using discrete frequency sweeps at constant voltages and recording average readings of the balance, as 
follows. 

First, the ranges of voltage and frequency of interest are determined. They are limited by the performance 
specifications of the power supply, mainly governed by its slew rate, the load impedance, and the breakdown 
voltage of the actuator dielectric.  Next, the voltage is set to the highest voltage in the range, (48 kVp-p in this 
example). The frequency is set to a low number (4 Hz) and then increased to the maximum frequency in the range 
(2048 Hz) in discrete frequency steps, each lasting 60 seconds. The discrete frequencies are distributed in a 
logarithmic fashion with octave spacing. That is, each step is double the frequency of the prior step. 

After the maximum frequency is reached, the process continues by decreasing the frequency down from the 
maximum frequency (2048 Hz) with the same discrete, 60 second steps, halving the frequency at each step down to 
the lowest frequency (4 Hz). That completes one fixed-voltage data series, a row in the matrix.  The process is 
repeated at the next lower fixed-voltage (42 kVp-p). It is followed by repetitions at the other fixed-voltages in the 
decreasing direction until the matrix is filled. We refer to this process as “Frequency Sweeps”. 

An example of Frequency Sweep raw data is shown in Fig. 9 showing thrust versus time for each fixed voltage. 
The actuator used is actuator HDPE #3 (Appendix A). The Relative Humidity (RH) was 50% and the correlated dew 
point was 57 °F (averaged between four tests). The thrust data was collected after the actuator was inactive and 
unenergized for 4 consecutive days. The initial “burn-in” procedure was intentionally skipped in order to exhibit the 
need for one. 

Examining Fig. 9, the first data row of the matrix, acquired at a constant 48 kVp-p, clearly shows large 
asymmetry and hysteresis.  Fig. 13 reinforces this observation.  This distortion and non-repeatability is largely 
attributable to the lack of a prior “burn-in”.  Further examination of Fig. 9 reveals that there is still mild asymmetry 
between the ascending and the descending halves of the other frequency sweeps even after the first sweep at 48 
kVp-p provided a partial “burn-in”. The thrust levels acquired at the same frequency and voltage differ instead of 
matching. The levels appear to depend on the frequency change direction. Further, the small time-scale thrust 
fluctuations are different. The 48 kVp-p curve is distinguished by stronger initial spikes and fluctuations as 
compared to those at subsequently lower constant-voltages. The behavior of the thrust fluctuations in the descending 
frequency sweeps is generally smoother and more consistent than in the ascending sweeps. Therefore, the 
descending data is recommended for further processing (shown in subsequent section). 

We have accompanied our measurements with still images taken with a digital camera (10 second exposures) as 
shown in Fig. 10. Taken at the same frequency and voltage, they show differences in the discharge structure that 
depend on the direction of the frequency step change. Also, there are dark areas within the plasma region on both 
directions of the frequency sweep that we cannot explain. On the ascending frequency side, bright localized 
filaments are observed, however, they are absent from the descending side. It is possible that they disappeared after 
the partial “burn–in” process (during prior frequency steps at 48 kVp-p) that conditioned the actuator surface and 
electrodes. 

A different case is shown in Fig. 11. The test actuator is the same HDPE #3 as the former, but with additional 
insulation comprised of several layers of Kapton® tape3 and corona dope4

  

 used as filler on the side and back 
(upstream) edges of the exposed electrode. The added insulation was intended to suppress visible “parasitic” corona 
discharge at electrode corners with very small radius. It was desired to minimize potential thrust activity from 
localized electrode sites so as to focus on the thrust from the linear actuator edge discharge alone.  The ambient 
humidity was much drier compared to the previous case: RH 18%, Dew Point 33 °F.  There are marked differences 
in the results. The steps are more uniform, fluctuation levels lower, and there is more symmetry between the 
ascending and descending parts. Images shown in Fig. 12 show a uniform discharge without observable difference 
between the ascending and the descending frequency parts. We notice that the dark areas within the plasma region 
observed in Fig. 10 disappeared. We attribute the differences mainly to the lower humidity level, this trend was 
confirmed by additional tests not reported here. The additional insulation contributes to reduce fluctuations and 
increase smoothness of the frequency-dependency curves. 

                                                           
3 3M® No. 5413, 0.08 mm (3 mil) thick 
4 MG Chemicals® Inc. Cat. No. 4226-1L  
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L = 254 mm

 

 

Figure 10. Images of 48 kVp-p frequency sweep discharges 
corresponding to Fig. 9.  

Figure 9. Frequency sweeps at constant voltages. RH 50%, Dew Point 57 °F. 
Sequence started at 48 kV after 4 days rest. 1 g equals 38.6 mN/m. 

HDPE #3 
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Figure 12. Images of 48 kVpp frequency sweep discharges corresponding to Fig. 11 

Figure 11. Frequency sweeps at constant voltages. RH 18%, Dew Point 33 °F. 
Sequence started at 48 kVpp. 1 g equals 38.6 mN/m. 
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The thrust data is extracted from the frequency sweeps by averaging the data within each 60 second step. We 
used a window smoothing function that generates a single averaged value of the thrust at each frequency step. The 
results are shown in Fig. 13 for the high humidity case. The low humidity case is shown in Fig. 14. 

There are differences in the thrust level. The thrust is higher at the low humidity case. It is about 50% higher at 
48 kVp-p and 2048 Hz in the drier ambient humidity. 

In the drier case, the thrust corresponding to the ascending and descending frequencies curves virtually coincide.  
In the more humid case there are differences between the two. In particular, the curve at 48kVp-p is different during 
the ascending frequency curve than during the descending curve. The reason is that this particular ascending curve 
happened to be the first actuator energization after 4 days of rest. It served as unforced “burn-in” process. It 
experienced time-varying thrust changes above the typical baseline during this initial “burn-in” until it reached the 
highest frequency. 

Even though we have not shown the standard deviation here, it is obvious that it is much larger in the humid case 
by examining the frequency sweeps steps (Figures 9 and 11). 

VI. Anti-thrust 
When examining the results of the frequency sweeps shown above in Figures 9 and 11 we notice that the thrust 

is negative in a low frequency range between 4 and 32 Hz (even up to 64 Hz in other cases tested not shown here). 
To investigate further, we took detailed measurements of thrust vs. voltage at constant low frequencies, shown in 
Fig. 15. The test actuator used was HDPE #2. The negative thrust values are noticeable. We examine the family of 
constant frequency curves and notice that they appear to coincide with the lowest frequency curve (64 Hz) at low 
voltages, then depart from that baseline with increasing voltage. The “departure” voltage for each curve appears to 
shift to the left to a lower voltage with each frequency increase. These observations motivated us to investigate if 
there is an ultimate lower frequency limit curve. We have repeated the test at constant frequency of 4 Hz for test 
actuator HDPE #3, shown in Fig. 16. We were able to easily fit a parabolic curve to most of the points while 
acknowledging there are other points that depart from the natural parabola. Enhanced digital still images of 30 
seconds exposure taken during the voltage sweep show that there is corona or plasma discharges at the voltage 
points that depart from the parabolic baseline, while no discharges are observed at the lower voltage points that fit 
well the same parabolic curve. In additional tests on other test articles we found that parabolic curve could always be 

 RH 50%,  
Dew Point  57 °F 

Figure 14. Total thrust as function of 
frequency at constant voltages. Low humidity 
case corresponding to Fig. 11. The ascending and 
descending parts overlap. 1 g equals 38.6 mN/m. 

Figure 13. Total thrust as function of 
frequency at constant voltages. Humid case 
corresponding to Fig. 9. 1 g equals 38.6 mN/m. 

RH 18%,  
Dew Point  33 °F 

D
ow

nl
oa

de
d 

by
 D

av
id

 A
sh

pi
s 

on
 F

eb
ru

ar
y 

3,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
04

86
 



 
American Institute of Aeronautics and Astronautics 

 
 

11 

 
fit to the low voltage range of averaged thrust values for low fixed frequencies when visible discharges were not 
present. The parabola was also found to be frequency independent. 

 
These observations lead to formulate a hypothesis as follows, 

 ThrustAntiThrustPlasmaThrustTotal +=   (1) 
 

The total thrust is the thrust as measured by the balance. The plasma thrust is the thrust associated with the 
discharge on the exposed electrode that generates the momentum. The second term on the right hand side was 
named “anti-thrust” because it is always negative and is represented by the parabolic curve fit,  

 2kVThrustAnti =   (2) 

 
 

Figure 16. Thrust as function of voltage at constant frequency of  4 Hz. Actuator HDPE #3. 
Images are enhanced 30 s exposures. For this actuator 100 mg equal 3.86  mN/m. 
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Figure 15. Thrust as function of voltage at constant frequencies. Actuator HDPE #2. For this 
actuator 100 mg equal 9.84 mN/m. 
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We have found by performing additional tests under different conditions that the parabolic anti-thrust is 

confirmed to be frequency independent between 4 and 64 Hz.  
We make the following assumptions:  

a) The anti-thrust is frequency independent at any frequency. 
b) The anti-thrust is voltage dependent and can be extrapolated to higher voltages. 
c) The anti-thrust is always present, including during visible plasma. 

With these assumptions, the coefficient k in Eq. 2 is a frequency- and voltage-independent constant. We 
therefore can use the anti-thrust parabola to separate the plasma thrust from the total thrust. The plasma thrust is the 
quantity of interest for characterizing the aerodynamic performance of the actuator. The anti-thrust curve, or the 
coefficient k needs to be generated for each actuator and for each test installation by performing a voltage sweep at a 
low frequency (usually between 4 and 32 Hz in practice). It is very important to monitor voltage waveform as 
distortion will directly affect anti-thrust. 

We propose that the anti-thrust always exists, but is masked by the thrust from visible plasma discharges as the 
voltage and frequency increase. We also propose that it is an installation-dependent effect that depends on the 
actuator surroundings and its own geometrical and dielectric properties. The 2V dependence is similar to the voltage 
dependence of electrostatic forces.  However, at this stage of the research, we have no experimental or 
computational verification to support a statement that the anti-thrust is caused by electrostatic forces. Further, the 
shear forces were assumed to be negligible in this discussion and are lumped in with the plasma thrust. Future 
research may be able to separate the shear force from the plasma force.  We also have attempted to study the 
dependence of the anti-thrust on humidity, but we did not yet have sufficient data for conclusive results. 

As an example, we performed the anti-thrust correction on the thrust data of the two cases shown earlier in 
Figures 13 and 14 and isolated the plasma thrust. The results are shown in Figures 17 and 18. Because a negative 
quantity was subtracted, the values of the plasma thrust increased relative to the measured thrust.  This correction is 
substantial for smaller actuators and lower thrusts.  We have found cases where the error can even exceed 100% if 
the correction is ignored. 

Figure 17. Isolated plasma thrust as 
function of frequency at constant voltages. 
Humid case.   
Data of Fig. 13 after anti-thrust correction. 
1 g equals 38.6 mN/m. 

RH 50%,  
Dew Point  57 °F 

Figure 18. Isolated plasma thrust as 
function of frequency at constant voltages. 
Low humidity case. Data of Fig. 14 after 
anti-thrust correction. The ascending and 
descending parts overlap. 
1 g equals 38.6 mN/m. 

RH 18%,  
Dew Point  33 °F 
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VII. Effect of the test installation 
To demonstrate the dependence on the test installation we performed a test with a smaller actuator, HDPE #2 

(Appendix A). The results are shown in Fig. 19. We first performed the anti-thrust measurement at 32 Hz on the 
freely suspended actuator. The results are shown in blue in Figure 19(a). The anti-thrust parabola was fitted and the 
deviation of the thrust from the parabola is noticeable starting at 30 kVp-p.  

We then placed a large-diameter, seamless, conductive cylinder around the actuator (304 stainless steel, 16 in. 
diameter, 59 in. long, 0.0375 in. thick [20 gauge], McMaster-Carr® part number 2538K652). The cylinder was 
suspended so the actuator was located inside it as shown in Fig. 19(c). The cylinder was grounded and the anti-thrust 
measurements repeated (plotted in green). There is marked difference between the unconfined actuator and the 
actuator installed within the grounded cylinder. The anti-thrust parabolic curves are different, the anti-thrust is larger 
with the grounded cylinder, and the thrust does not significantly deviate from the parabola. The measurements were 
repeated with the cylinder ungrounded, allowing its voltage potential to float. The results are plotted in red and are 
closer to the unconfined actuator case.  

These experiments serve as a significant validation of our anti-thrust hypothesis that implies that the anti-thrust 
is installation dependent. It seems that the surrounding material affected the electrical field around the actuator 
resulting in a different anti-thrust force.   

 
Thrust measurements for the three cases are plotted in Fig. 20(a) as function of frequency for a constant voltage 

of 48 kVp-p. The negative thrust is observed at low frequencies. Above 1000 Hz, the three cases appear to be 
overlapping or having small differences, and we may be lead to conclude that the actuator performance is identical 
within these three cases regardless of the surrounding cylinder. However, when the anti-thrust correction is 
performed to isolate the plasma thrust (results shown in Fig. 20[b]), it shows that the grounded cylinder case has 
larger plasma thrust compared to the open actuator case and that its performance is affected by the surrounding 
grounded sleeve. 

Figure 19. Anti thrust of an actuator with surrounding metal cylinder. 
(a) Thrust as function of voltage at fixed frequency of 32 Hz, dew point 60 ºF,  (b) Image 
of HDPE 6.3 mm thick actuator,  (c) image of the suspended metal cylinder experimental 
setup. The actuator is suspended inside the cylinder at mid level as pointed by the arrow. 
0.100 g equals 9.84 mN/m. 
 

(c)  

(b) 

(a) 

HDPE #2 
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VIII. Conclusion 
The results shown were for sinusoidal waveforms in continuous-wave mode without pulsing or modulation. 

Some modifications and adaptations will be needed to evaluate other waveforms. This paper was not intended to 
provide comprehensive performance results of DBD actuators using thrust measurements, it was rather intended to 
expose a few considerations that need to be taken in studies of the aerodynamic performance of these devices. Our 
study includes: adopting a methodology to obtain consistent thrust results, defining an appropriate test setup, 
isolating the plasma force with our proposed anti-thrust hypothesis, and considering the effect of humidity. It is 
recommended to take extra care when comparing thrust performance of actuators between different setups and 
laboratories.  

In addition to the effect of the issues discussed in this project, it needs to be noted that there is variability in 
construction of the test articles. Most of the studies reported in literature are performed with hand-made actuators. 
There can be problems with the insulation of sharp edges, the degree of variation in the fabrication, and the trapping 
of air bubbles within adhesives and between layers of dielectrics. The variability can accumulate to large error bars 
and make conclusions on relative performance of actuators prone to significant uncertainties. 

In future work, we will investigate the source of the anti-thrust and attempt to confirm our hypothesis. It is most 
likely to be related to electrostatic forces between the actuator and the test installation. The electrostatic force field is 
a complex three-dimensional interaction that in principle can be calculated using numerical solution methods. 
Anticipated difficulties may be accurate calculation of electrostatic fields caused by sharp edges and corners and 
defining the electric potential and electric current of the surrounding objects.  

The dependence on the installation indicates that the actuator performance in aerodynamic flow control 
application in a flight vehicle or a propulsion system will depend on its neighboring geometry, materials and electric 
potential. The surroundings will alter its performance. For example, if installed inside a jet engine, the actuator will 
be in very close proximity to grounded metallic surfaces; a situation different than when installed on an aircraft 
wing.  

The inconsistent performance and the strong dependence on humidity has implications on the DBD actuator 
integration in a flow control system. If the actuator is installed as a component in an open control loop, there is less 
of a guarantee that the momentum it will provide will be as designed. A solution to this limitation may be inclusion 
of an active controller that will ensure it provides the desired momentum. Sufficient reserve power will be needed 
from the power supply. This problem does not exist when the actuator is incorporated in a closed control loop. The 
control loop will adjust the momentum it provides, but there still will be a requirement for sufficient reserve margin 
of the power supply. 
  

(b)  Isolated plasma thrust 

Figure 20. Thrust as function of frequency at constant voltage of 48 kVpp. (a) Total thrust, 
and, after anti-thrust correction, (b) Plasma thrust. 1 g equals 38.6 mN/m. 

(a)  Total thrust 
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Appendix A 
 
 
Actuators geometries and materials are as shown in Fig. 21. Table 1 lists dimensions and conversion factor to 

convert from thrust in grams (g) to normalized thrust (thrust per unit length of the exposed electrode) in millinewton 
per meter (mN/m). 

The dielectric material, electrode material, and electrode insulation material used are also listed below. 
 

 
 

Table 1 
Actuators Dimensions and information5

 
 3 

Designation t We Wb  L W a b Thrust T to T/L 
Conversion Factor 

 mm mm mm Mm mm mm mm g to mN/m 

HDPE #2 6.3 9.8 48.2 100 152 78 64.2 98.3616 

HDPE #3 6.3 9.8 49 254 151 75.5 65.1 38.6089 

 
 
a) Dielectric material used:  

High Density Polyethylene (HDPE) . Nominal thickness ¼ in. McMaster-Carr® Inc. part number 8619K461.  
HDPE Electrical properties6

Dielectric Constant: 2.3 at 1 kHz 
:. 

Dielectric Strength:: 22 MV/m  
Dissipation Factor: 0.0005 at 1 kHz 

 
b) Electrodes material:  

Copper tape with conductive adhesive. 3M® No. 1181 
Copper thickness: 0.04 mm (1.4 mil) 
Adhesive thickness: 0.03 mm (1.2 mil) 

 
c) Electrode insulation materials: 

Covered electrode: 3M® Scotch-SealTM No. 229 pads 
Exposed electrode::  

Kapton® 3M® No. 5413, 0.08 mm (3 mil) thick 
Super Corona Dope: MG Chemicals® Inc. Cat. No. 4226-1L   

                                                           
5 Due do fabrication inaccuracies the sum a+b+We does not equal W 
6 http://www.azom.com as of December 12, 2013 

Figure 21. DBD plasma actuator test article - geometry and dimensions. 
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