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Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the
nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system
for NASA’s Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal
protection system consists of an orthotropic conical shell of the Donnell type, resting on several cir-
cumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure,
but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied
to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure cor-
rection factor is obtained. The Lagrangian of the shell system is formulated in terms of the general-
ized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing
differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deforma-
tions are calculated in the time domain using a Runge-Kutta method in MATLAB.

Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70◦ cone,
a 3.7-meter 70◦ cone, and a 6-meter diameter 70◦ cone. The 6-meter configuration was loaded statically
and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement
between theoretical and experimental strains was poor, the circumferential wrinkling phenomena
observed during the experiments was captured by the theory and axial deformations were qualitatively
similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-
meter configuration were in agreement with the values calculated using linear theory, and the limit
cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was
studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes
when the circumferential elastic supports were neglected, but resulted in more complex behavior when
the supports were included. The nominal flutter dynamic pressure of the 3.7-meter configuration was
significantly lower than that of the 3-meter, and it was found that two sets of natural modes coalesce
to flutter modes near the same dynamic pressure. This resulted in a significant drop in the limit cycle
frequencies at higher dynamic pressures, where the flutter mode with the lower frequency becomes
more critical. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied
for all geometries, and these effects resulted in significantly lower flutter boundaries compared with
Piston Theory alone. The maximum dynamic pressure predicted by aerodynamic simulations of a
proposed 3.7-meter HIAD vehicle was still lower than any of the calculated flutter dynamic pressures,
suggesting that aeroelastic effects for this vehicle are of little concern.
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Nomenclature

a∞ Speed of sound, m/s
amn, bmn, cmn Modal coordinates for the three shell displacements
�a,�b,�c Modal coordinates for the three shell displacements, in vector form
Dy, Dθ Shell Bending stiffness in the y and θ directions, respectively, Pa m3

Dyθ Shell in-plane twisting stiffness, Pa m3

Ey, Eθ Shell Young’s Modulus in the y and θ directions, respectively, Pa
f Frequency, Hz
fcrit Critical frequency, at the flutter or divergence boundary, Hz
Gyθ Shear modulus, Pa
h Shell thickness, m
In Modified Bessel function of the first kind
ks Elastic support stiffness, N/m
Kn Modified Bessel function of the second kind
m Shell mass per area, kg/m2, or the axial mode number
mtot Total number of axial modes
ML Local Mach number
n̂ Circumferential mode number
n n̂/sinα
ntot Total number of circumferential modes
ncrit Critical circumferential mode number, at the flutter or divergence boundary
Na

y Tension forces in the y-direction, N/m
N∗

y −tanβps/2
Na

y,tot Total in-plane force in y-direction (due to pressure and tension), N/m
N∗

θ −tanβps
Na

θ,tot Total applied in-plane force in θ-direction, N/m
p Temporal Laplace transform variable
ps Static pressure differential, Pa
qA,L Local dynamic pressure, Pa
qA,Lcrit Critical local dynamic pressure, at the flutter or divergence boundary, Pa
r Cylindrical shell radial coordinate, m
R Average radius of the cylindrical or conical shell, m
r̃ rδ
s Spatial Laplace transform variable
u, v, w Shell displacements, m
w∗∗ Double Laplace transform of the deflection with respect to space and time
U∞ Free-stream flow velocity, m/s
x Cylindrical shell axial coordinate
y Coordinate along the shell meridian
y1, y2 Locations of the shell minor and major ends, respectively
ȳ Dimensionless shell coordinate, (y − y1)/(y2 − y1)
α Fourier transform variable (s = iα)
β Shell half-cone angle
αm, βm Shell in-plane modal functions
δ

√
(M2(s + p/U∞)2 − s2)

Δp Unsteady aerodynamic pressure
Δp∗α Spatial Laplace transform of the pressure
Δp∗∗ Double Laplace transform of the pressure with respect to space and time
εy, εθ , εyθ Middle surface strains in the y, θ, yθ directions, respectively
χy, χθ , χyθ Middle surface curvatures in the y, θ, yθ directions, respectively
θ Shell circumferential coordinate
φ θsinα, or the circumferentially dependent velocity potential
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Φ Circumferentially independent velocity potential
Φ∗∗ Double Laplace transform of the velocity potential, with respect to space and time
ψm Shell axial modal function
γ Rδ
νy, νθ Poisson’s ratio in the y and θ directions, respectively
τ Temporal integration variable

I. Introduction

The purpose of this report series, consisting of the current work and reference [1], is to characterize the
in-flight aeroelastic behavior of a proposed thermal protection system2 for the NASA Hypersonic Inflat-
able Aerodynamic Decelerator (HIAD).3 The HIAD is an inflatable aeroshell with a diameter significantly
larger than that of current rigid aeroshells. Its size is not limited by the launch vehicle shroud, allowing
heavier payloads to be delivered to higher elevations of planets like Mars. The HIAD is composed of
two separate but interacting structural components: a stacked inflatable toroid substructure and a thermal
protection system (TPS). An illustration of these components is shown in Fig. 1, for the 3-meter diameter
HIAD used in the Inflatable Re-Entry Vehicle Experiment.4 The TPS is flexible enough to be packed into a
small volume for transport and expands with the inflation of the toroid substructure in space. As a result
of this flexibility, the TPS may be susceptible to static or dynamic aeroelastic instabilities such as "diver-
gence" (buckling) or "flutter," which may be induced by fluid-structure interaction during atmospheric
re-entry.

Figure 1: Illustration of the HIAD used in the Inflatable Re-Entry Vehicle Experiment.4

As a first attempt at characterizing the aeroelastic behavior of this system, experimental aerothermal
performance tests2, 5 were conducted on small rectangular TPS coupons in the NASA 8’ High Temperature
Tunnel. Observations of oscillatory motion and failure of these samples during testing suggested that
aeroelastic effects needed additional study, and theoretical model development was required. Goldman,
Dowell, and Scott6, 7 developed several theoretical aeroelastic models for the TPS coupons, and agreement
between theory and experiment for select cases was achieved. A rough prediction of in-flight stability
can be made from these plate-like models; however, more precise predictions require structural models
consistent with the in-flight TPS geometry, i.e. that of one or more conical shells.

In Part I1 of this report series, linearized conical shell theory and Piston Theory aerodynamics were
used to determine the aeroelastic stability boundaries for the TPS on the 3-meter HIAD. Several aeroelastic
models were developed, and in most cases, flutter was found to be the primary instability. The limitations
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of linear theory did not allow the amplitude of flutter oscillations to be determined, and the nonlinear
effect of static pressure was ignored. Pressure-induced buckling was not studied since the buckling pres-
sures predicted by linear theory were orders of magnitude lower than the pressures seen in flight. In the
current analysis, nonlinear conical shell theory is used to study the buckling and aeroelastic limit cycle
oscillations over a range of dynamic pressures above the linear flutter boundary. The initial deformation
caused by the static pressure loading is also included. An extended aerodynamic theory is also developed
to study more accurately the aeroelastic behavior in Mach number regimes where Piston Theory is less
accurate.

II. Background and Previous Work

Details on the thermal protection system modeling can be found in reference [1]. A brief summary of
the structural models and TPS will be provided here, since the current analysis is based on the previous
work. The generation 1 TPS configuration2 consists of one layer of Aluminized Kapton Kevlar (AKK), four
layers of Pyrogel 2250, and two layers of Nextel 440-BF20. The AKK is composed of Kevlar woven fabric,
coated with thin layers of Aluminum and Kapton. The Pyrogel is a soft sponge-like insulator, which
ensures heating of the AKK is low enough to prevent structural failure. The Nextel is a woven fabric
thermal barrier that takes most of the heat load. This system of interacting layers has been simplified for
computational efficiency and can be approximated as a shell-like structure. Three structural models have
been developed, and engineering illustrations are given in Fig. 2.

The single shell model consists of a single truncated conical shell. The separate layers of the thermal
protection system are approximated as a single layer of AKK with added mass to account for the Nextel
and Pyrogel. Tension in the axial direction can also be applied at the shell boundaries. The boundaries
are simply-supported in all three shell displacement directions.

The elastically supported single shell model consists of a truncated conical shell with six middle sur-
face circumferential elastic supports. These supports take into account the presence of the HIAD’s toroid
substructure, in a linear sense. As in the previous case, the three separate layers of the TPS are approxi-
mated as a single layer of AKK with added mass for the Nextel and Pyrogel, tension can be applied, and
the boundary conditions remain the same.

The elastically supported three-layer shell model consists of one AKK shell and one Nextel shell sep-
arated by a Pyrogel linear elastic layer. The Nextel shell is one layer of Nextel material with twice the
nominal mass, as two layers of Nextel are stitched together in the TPS. Since the Pyrogel is a soft, sponge-
like material, it is approximated as a linear elastic layer. This layer is assumed to be bonded to the top and
bottom of the AKK and Nextel surfaces, respectively. The boundary conditions are the same for all layers,
and are identical to the previous two cases.

The linear aeroelastic equations of motion corresponding to each of the structural models above were
derived using the Rayleigh-Ritz method with a Lagrangian in terms of the generalized coordinates for all
shell displacements. The aerodynamic pressure is given by cylindrical shell Piston Theory,8 and included
in the equations as generalized forces. Aeroelastic solutions were obtained by writing the equations as
an eigenvalue problem, and observing the behavior of the eigenvalues and eigenvectors with increasing
flow dynamic pressure. Since a linear structural theory is employed, only the stability boundaries could be
determined using this method. The critical modes and dynamic pressures obtained from the eigenanalysis
will be necessary to simplify greatly the nonlinear calculations and reduce computation time.

III. Nonlinear Methods

The goal of the current work is to study the nonlinear pressure-buckling and aeroelastic response
of the TPS structural models developed in Part I1 of this report series. Since the nonlinear problem is
substantially more complex, only the single shell (A) and elastically-supported single shell (B) models will
be considered here. Additionally, for the purposes of determining the worst-case scenario for flutter and
LCO, further analysis of model C is unnecessary since linear theory predicts the flutter boundaries for this
case to be nearly an order of magnitude larger than models A and B.

The nonlinear equations of motion are derived from the full Donnell strain-displacement relations and
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Model A: Single shell. Model B: Elastically supported single shell.

Model C: Elastically supported three-layer shell
(not considered in the nonlinear analysis).

Figure 2: Conical shell structural models of the TPS.

the Rayleigh-Ritz is employed. A time-integration procedure has been developed to solve the resulting
set of coupled differential-algebraic equations. Typical results for the full nonlinear aeroelastic system
include limit cycle oscillations (LCOs), in which the flutter amplitude grows initially but is limited by
the nonlinearities in the structure. Frequency spectra and time-dependent deflection shapes can also be
calculated using this method. The proposed nonlinear analysis is advantageous because the magnitude of
flutter oscillations can be determined, which may be necessary for fatigue analyses of the TPS materials.
The static shape and strain distribution of the shells at pressures higher than the linear buckling pressure
can also be determined and compared with experimental static load tests.

III.A. Nonlinear Aeroelastic Equations of Motion

The first step in applying the Rayleigh-Ritz method is to derive the total strain and elastic potential
energy, kinetic energy, and non-conservative virtual work for the nonlinear shell system. To form the
strain energies, the strain-displacement, stress-strain, and moment-curvature relations are needed.

The nonlinear Donnell strain-displacement relations given by Seide9 are used here:

εy = ∂u
∂y + 1

2

(
∂w
∂y

)2

εθ = u−w cot β
y + 1

y
∂v
∂φ + 1

2y2

(
∂w
∂φ

)2

εyθ = ∂v
∂y − v

y + 1
y

∂u
∂φ + 1

y
∂w
∂y

∂w
∂φ

(1)

The curvatures are linear functions of deflection (and its derivatives):

χy = ∂2w
∂y2

χθ = 1
y

∂w
∂y + 1

y2
∂2w
∂φ2

χyθ = 1
y

∂2w
∂y∂φ − 1

y2
∂w
∂φ

(2)
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The force and moment relations are:

Ny =
Eyh

1−νyνθ

(
εy + νθεθ

)
Nθ = Eθ h

1−νθ νy

(
εθ + νyεy

)
Nyθ = Gyθhεyθ

(3)

My = −Dy
(
χy + νθχθ

)
Mθ = −Dθ

(
χθ + νyχy

)
Myθ = −Dyθχyθ

(4)

The three shell displacements are expanded using modal series with summations over both the axial
and circumferential modes. A double summation is necessary since the structural nonlinearities introduce
coupling among the circumferential modes, which were previously uncoupled in the linear analysis. Note
that these expansions only allow for standing waves along the shell circumference. The axial modes may
be any functions that satisfy the geometric boundary conditions. Sine functions are used for simply-
supported boundaries, where all three displacements vanish at the shell edges. The modal expansions
are:

u(y, θ, t) = ∑
m

∑
n

amn(t) cos nφψm(y)

v(y, θ, t) = ∑
m

∑
n

bmn(t) sin nφψm(y)

w(y, θ, t) = ∑
m

∑
n

cmn(t) cos nφψm(y)

(5)

The strain energy is constructed by integrating over the entire shell surface the forces times strains and
moments times curvatures:

US =
1
2

∫ y2

y1

∫ 2π

0

(
Nyεy + Nθεθ + Nyθεyθ − Myχy − Mθχθ − 2Myθχyθ

)
ydφdy (6)

The membrane energy associated with static axial or pressure loading is given by McNeal:10

UIS =
1
2

∫ y2

y1

∫ 2π

0

(
Na

y,totΘ
2
θ + Na

θ,totΘ
2
y +

{
Na

y,tot + Na
θ,tot

}
Θ2

n

)
ydφdy (7)

where the strain rotation vectors are:

Θθ = − ∂w
∂y

Θy = v
y tan β − 1

y
∂w
∂φ

Θn = v
2y + 1

y
∂v
∂y − 1

2y
∂u
∂φ

(8)

The total applied in-plane forces are related to the static pressure and tension by the relation:

Na
y,tot = − y tan βps

2 − Na
y

Na
θ,tot = −y tan βps

(9)

A derivation of the relationship between in-plane forces and the externally-applied static pressure can be
found in the appendix.

The toroid foundation on the HIAD is approximated by several linear circumferential elastic supports.
The elastic potential energy for these supports is:

UES =
ks

2

∫ 2π sin β

0
∑

i
w2 y|

y=yi

dφ (10)

where yi refers to the elastic support location along the shell middle surface.
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The total kinetic energy, neglecting rotatory inertia, is:

T =
m
2

∫ y2

y1

∫ 2π

0

[(
∂u
∂t

)2
+

(
∂v
∂t

)2
+

(
∂w
∂t

)2
]

ydφdy (11)

The virtual work and generalized forces are:

δW = −
∫ 2π sin α

0

∫ y2

y1

(Δp + ps)δwydφdy (12)

Qmnsk =
∫ 2π sin α

0

∫ y2

y1

((Δp)sk + ps)cosnφψmydφdy (13)

where (Δp)sk is the modal form of the aerodynamic pressure.
These generalized forces include the unsteady aerodynamic pressure as well as static pressure due to

the mean flow, which is known from static CFD computations11 of the HIAD vehicle. In most cases, Piston
Theory will be used for the aerodynamic pressure. In the next section, an extended aerodynamic theory
will be developed that will modify significantly the form of the aerodynamic generalized forces.

After substituting Eq. 5 into Eqs. 6 - 12, constructing the Lagrangian, and applying the Lagrange
equation for each modal coordinate, a large system of ordinary differential equations is obtained for all
three shell displacements. This system of equations is difficult to solve because the in-plane frequencies
for shells are often orders of magnitude higher than out-of-plane deflection frequencies, requiring a very
small time step in the computational scheme. However, since the in-plane inertia is small relative to the
out-of-plane inertia, it may be neglected. This requires that the following linear system involving the
in-plane coordinates be solved at every time step :

⎡
⎣ A+AT +

(
N∗

y + N∗
θ

) (
N +NT) B +

(
N∗

y + N∗
θ

)
OT

BT +
(

N∗
y + N∗

θ

)
O C +CT +

(
N∗

y + N∗
θ

) (
PP +PP T) + N∗

θ

(
QQ+QQT

)
⎤
⎦{ �a

�b

}

= −
{

D�c + �CCJ

E�c + �CCL+ N∗
θ R�c

}

(14)
Along with the ODE for �c:[

I + IT
]
�̈c = −

(
DT�a +E�b +

[
F + F T

]
�c
)
+ �QA +ES�c

+N∗
θ

(
RT�b +

(
S +ST

)
�c
)
+ N∗

y

(
T + T T

)
�c + �CCC

(15)

The full expressions for the vectors and coefficient matrices in the equations above are provided in the
appendix. Note that the right-hand-side of Eq. 14 is a nonlinear function of the deflection coordinate �c,
but the system is linear with respect to the in-plane coordinates �a and �b. This method, in which Eq. 14
is solved at every time-step, was found to be nearly one order of magnitude faster than solving the full
system including in-plane inertia. An analysis with 12 axial and 2 circumferential modes was performed,
and it was found that in-plane inertia had little effect on both the flutter boundaries and LCO amplitudes.

Nonlinear aeroelastic solutions are calculated by first performing the linear analysis described in Part
I.1 Linear theory predicts a single critical circumferential mode as well as coalescence of two axial modes
at the flutter dynamic pressure. A nonlinear time integration simulation is then performed with initial
conditions (displacements) in the coordinates for these critical modes only. It was found that the system
is generally not sensitive to the magnitude of the initial conditions, and giving initial conditions in non-
critical modes also produces the same results, but additional computation time is then required to reach
a steady state. Additionally, at least two circumferential modes are needed to introduce coupling in the
nonlinear terms such that they are nonzero (the only exception to this is if ncrit=0.)
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III.B. Extended Potential Flow Aerodynamic Theory

Since the local flow solution behind the HIAD’s bow shock is known from static CFD simulations,11

Piston Theory can be used as an initial approximation for the aerodynamic pressure. This approach
has been used in several previous works on conical shell flutter, including Dixon and Hudson12 and
Mahmoudkhani et al.13 Krumhaar8 derived a Piston Theory curvature correction term for cylindrical
shells, which can be easily modified for the conical shell by letting R = ysinβ. The "corrected" piston
theory used for most computations in this paper is given by:

Δp =
2qA,L

ML

[
∂w
∂y

+
1

U∞

∂w
∂t

− 1
2ML

w
y sin β

]
(16)

Piston Theory is a convenient tool for aeroelastic computations, since it can be included directly into
the structural equations of motion as generalized forces, independent of temporal or spacial memory.
However, as the Mach number approaches 1 supersonically, this approximation may no longer be suf-
ficient. Generally M2 >> 1 is the necessary condition for validity.14 Since the maximum local Mach
number on the HIAD surface is approximately 1.5 - 2, investigation into a more elaborate aerodynamic
theory is needed. Full potential flow theory is the next level of approximation, but a direct solution using
transform methods is cumbersome and difficult, especially when performing the inversion of transform
integrals. Following the method of Dowell and Bliss for 2-D airfoils,15 Potential Flow theory can be used
to extend conical shell Piston Theory to a lower Mach number range by expanding the transform of the
aerodynamic pressure in powers of inverse Mach number. Under the local flow assumption, we start by
transforming the convected wave equation for potential flow in cylindrical coordinates with respect to
both time and the streamwise coordinate x:

LsLp

[
1
r

∂Φ
∂r

+
∂2Φ
∂r2 − n2

r2 Φ +
∂2Φ
∂x2 − 1

a2
∞

(
∂2Φ
∂t2 + 2U∞

∂2Φ
∂x∂t

+ U2
∞

∂2Φ
∂x2

)]
(17)

where φ(x, r, θ, t) = Φ(x, r, t) cos nφ. The transforms result in the following modified Bessel equation:

r̃2 ∂2Φ∗∗

∂r̃2 + r̃
∂Φ∗∗

∂r̃
−
[
n2 + r̃2

]
Φ∗∗ = 0 (18)

where r̃ = rδ, δ2 = M2
(

s + p
U∞

)2 − s2, and the double Laplace transform of the potential is:

Φ∗∗ =
∫ ∞

0

∫ ∞

0
Φ(x, r, t)e−sx−ptdxdt (19)

The general solution to Eq. 18 is a linear combination of modified Bessel functions:

Φ∗∗ = c1 In(r̃) + c2Kn(r̃) (20)

and after applying the finiteness condition as r approaches infinity,

Φ∗∗ = c2Kn(r̃) (21)

The boundary condition at all points along the shell axis requires that the local velocity on the shell
surface be equal to the downwash:

∂φ

∂r

∣∣∣∣
r=R

= U∞
∂w
∂x

+
∂w
∂t

(22)

and the transform of this boundary condition is:

∂Φ∗∗

∂r̃
δ

∣∣∣∣
r̃=Rδ

= (U∞s + p)w∗∗ (23)

After applying the transform of the boundary condition to the transform of the potential, the unknown
coefficient c2 can be determined. The complete expression for the transform of the potential is:

Φ∗∗ = Kn(r̃)w∗∗

Kn
′(Rδ)δ

(U∞s + p) (24)
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The pressure at every point along the shell axis is given by the Bernoulli equation:

Δp = −ρ

(
∂φ

∂t
+ U∞

∂φ

∂x

)∣∣∣∣
r=R

(25)

After taking the transform of Eq. 25 and using Eq. 24, the transform of the aerodynamic pressure is
obtained:

Δp∗∗ = −ρR(p + U∞s)2w∗∗
(

Kn(γ)

γKn
′(γ)

)
(26)

where γ = Rδ. Following Krumhaar8 and Bateman et al.,16 the asymptotic expansion of the quantity in
parentheses (for large γ) is:

Kn(γ)

γKn
′(γ)

= −γ−1 +
1
2

γ−2 +

(
n2

2
− 3

8

)
γ−3 + ... (27)

This expansion can be further simplified by applying the Dowell and Bliss method,15 whereby algebraic
manipulation is used to re-write each term in Eq. 27, and applying the binomial theorem. This procedure
is outlined in the appendix. The resulting transform of the pressure, including terms up to O(1/M5) is:

Δp∗∗ = ρU2
∞W∗∗

{
1
M

(
s + p

U∞

)
− 1

2RM2 +
s2

2M3(s+ p
U∞ )

− n2
2 − 3

8
R2 M3(s+ p

U∞ )

− s2

2RM4(s+ p
U∞ )

2 −
3
(

n2
2 − 3

8

)
s2

2R2 M5(s+ p
U∞ )

3

} (28)

The first two terms in Eq. 28 correspond to classical Piston Theory and Krumhaar’s curvature correction
factor. To form the aerodynamic generalized forces, the transform of the pressure must be inverted back
to physical space and time. It is convenient; however, to bypass the spatial inversion of the pressure and
instead invert the transform of the generalized forces in the following manner:

1. Invert Eq. 28 with respect to time. Requires a convolution integral of the spatial transform of deflec-
tion and the temporal exponential integrals.

2. Apply the Bromwich integral in Fourier space, using s = iα and x = (y− y1)cosβ (change of variable
for conical shell reference frame):

cos β

2π

∫ ∞

−∞
Δp∗αeiα(y−y1) cos βdα (29)

Note that this integral is not calculated explicitly until step 4.

3. Perform all spatial integrations, including the transform of the deflection and the axial and circum-
ferential integrals from Eq. 13.

4. Integrate with respect to α over the real infinite domain.

If the order of the above procedure is followed, only integration with respect to α and τ (temporal integra-
tion variable) must be computed numerically. The infinite limits for the integral with respect to α may be
truncated based on how the integrand decays, which depends on the axial mode number, Mach number,
speed of sound, and shell geometry. A plot of the integrand of the Kernel function vs. α is given in Fig. 3
for the 3.7 meter shell at Mach 2, with a∞=340 m/s. For the first three modes shown, integration may be
truncated at α = 30, but limits must be extended for higher modes. The integrand of the Kernel function
is always symmetric about α = 0.

The resulting correction factor for the aerodynamic generalized forces is:

QA, corr
sk = 2qA cos β ∑

n
∑
m

Ξ1
nk

∫ t

0
cmn(t)Amnsk(t − τ)dτ (30)
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Figure 3: Integrand of the Aerodynamic kernel function vs. the Fourier variable α, 3.7-meter shell, ML= 2,
a∞= 340 m/s.

The complete expression for the Kernel Amnsk(t) is given in the appendix. Note that since this expression
is a function of the circumferential mode number, it is effectively a three-dimensional extension of Piston
Theory.

Plots of the Kernel as a function of time are given in Fig. 4, showing the influence of the first three axial
modes on the first axial mode. The Kernel decays rapidly to zero at a characteristic time that depends
on the aerodynamic and structural parameters, but is mostly influenced by the Mach number. The case
shown in Fig. 4 has the same parameters as Fig. 3. Here, the characteristic time is approximately 0.00068
seconds. This is the amount of deflection time history required for numerical bookkeeping in order to
compute the convolution integral in Eq. 30.

IV. Results

Results are computed for a specific set of test cases developed in coordination with HIAD investigators
at the NASA Langley Research Center. The first set of results are from validation studies, ensuring that
the nonlinear buckling and aeroelastic simulations are consistent with the linear theory in Part I.1 Next,
deflection shapes and strains for a static load simulation are presented, corresponding to experimental
tests performed on a 6-meter HIAD article. Aeroelastic limit cycle oscillations are then calculated for
various cases, and the effects of axially-applied tension are examined for the 3-meter geometry. Finally,
pre-buckling pressure loads and the extended potential flow aerodynamic model are included in the
aeroelastic simulations and results are calculated for a 3.7-meter shell.

A summary of the numerical test cases studied in this paper (in the order presented) are given in
Table 1. Simply-supported modal functions are used in all computations, as indicated by the “−1” iden-
tifier in the model description (see Part I1). Note that almost all of the cases presented are for model B,
which is the elastically-supported conical shell. Results for model A, the single shell, are only included
for comparison in the parameter study examining the effects of axially-applied tension.

IV.A. Verification, Convergence Studies and Linear/Nonlinear Model Comparison

To verify that the time-integration scheme has been implemented correctly, various comparisons were
made with the linear theory used in Part I.1 Note that this linear analysis was found to be consistent with
previously published results on the free vibrations and flutter of conical shells.
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Figure 4: Aerodynamic kernel function vs. time, 3.7-meter shell, ML = 2, a∞ = 340m/s.

Table 1: Numerical test case matrix.

Aeroelastic model Geometry ps (Pa) Na
y (N/m) M Aerodynamics

B-1 6-meter, 70◦ 3000, 4500, 6000 0 0 None (static load)
A-1, B-1 3-meter, 70◦ 0 0, 250, 500, 750, 1000 2 Piston theory

B-1 3-meter, 70◦ 0, 1000 0 2 Piston theory
B-1 3.7-meter, 70◦ 0, 1000 0 2 Piston theory
B-1 6-meter, 70◦ 0, 1000 0 2 Piston theory
B-1 3-meter, 70◦ 0 0 2 Extended
B-1 3.7-meter, 70◦ 0 0 2 Extended
B-1 6-meter, 70◦ 0 0 2 Extended

First, a buckling analysis was computed in the time domain, using the critical circumferential buckling
mode (ncrit = 43) found in the eigenanalysis (for the 6-meter configuration), and neglecting all nonlinear
terms. The results, shown in Fig. 5, show that the amplitude of the buckling mode increases with time
at the linear buckling pressure, and decays with time at lower pressures. While not a complete model
validation, these results indicate that the new time-integration method is consistent with the previous
linear analysis with respect to buckling.

To determine the number of modes required in the expansions for the shell displacements (Eq. 5), sev-
eral convergence studies were performed. Convergence of the axial modes is shown in Fig. 6 for the nom-
inal cases A-1 (single shell) and B-1 (elastically-supported single shell). A large number of circumferential
modes were used to ensure convergence in the circumferential direction. Axial convergence is attained
when the critical dynamic pressure no longer changes with the total number of axial modes. Case B-1
requires significantly more axial modes because the elastic supports along the shell middle-surface must
be resolved. Note that axial mode convergence patterns for the linear and nonlinear methods are nearly
identical. This is a result of the limited influence of structural nonlinearities near the flutter boundary.

Next, convergence of the circumferential modes was analyzed. Several nonlinear flutter calculations
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Figure 6: Axial modal convergence for the nonlinear aeroelastic models.

were performed with various combinations of axial and circumferential modes at different values of qA,L,
with ML=2. One such calculation for case A-1 included 12 axial and 6 circumferential modes (n=0, 1,
2, 3, 4, 5), with qA = 8, 000Pa, 20% above the linear flutter dynamic pressure. Limit cycle oscillations
(LCOs) were observed, with finite peak amplitudes on the order of the shell thickness. Examination of
the modal coordinates indicated that only the critical flutter mode (ncrit = 3) and the symmetric mode
(n = 0) are significant, with all other modes being several orders of magnitude lower. Table 2 illustrates
this behavior. For conciseness, only data for critical axial modes (7 & 8) are shown. This suggests that
only n = ncrit and n = 0 are needed for a nonlinear aeroelastic analysis of the nominal single shell
configuration. This is highly convenient, since an instantaneous linear analysis can be performed to
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determined the circumferential mode needed for the nonlinear calculation (this would otherwise take
orders of magnitude longer to compute in the time-domain). In case B-1, linear theory predicts that
the axisymmetric mode (n = 0) is most critical. Thus, only this circumferential mode is needed for the
nonlinear aeroelastic simulations for case B-1. Note: The nonlinear terms in the equations of motion vanish
if only the critical circumferential mode is included. The critical mode must be coupled to the n = 0 mode
for nonlinear terms to survive. The only exception to this rule is for n = 0, which has self-coupling and
may be included without coupling to any other modes.

Table 2: Deflection modal coordinates for case A-1 as a function of axial and circumferential mode number
- critical axial modes only.

m n cmn

7 0 3.07E-06

7 1 5.14E-13
7 2 9.58E-12
7 3 9.8E-05

7 4 7.73E-12
7 5 2.43E-13
8 0 2.99E-05

8 1 2.25E-12
8 2 1.08E-11
8 3 1.02E-4

8 4 8.4E-12
8 5 2.12E-13

The limit cycle oscillations computed in the convergence study for case A-1 are given in Fig. 7. While
an initial transient is present, the oscillations after t=1s are generally constant in amplitude and at a single
frequency. An FFT of this time history, given in Fig. 8, shows that the frequency is approximately 1%
higher than that predicted by linear theory (aerodynamic stiffening effects are likely responsible for this
result). Minimal response is also seen at the 2nd harmonic, a consequence of the structural nonlinearities
in the system.

A comparison of the linear and nonlinear mode shapes is given in Fig. 9. Note that nonlinear theory
can predict the magnitude of the mode shape (shown here as normalized by the shell thickness), while the
mode shape resulting from linear theory is purely relative (shown here as normalized by the maximum
deflection). In both cases, the maximum deflection occurs near the trailing edge of the shell. The nonlinear
result indicates that at dynamic pressures near the flutter boundary, the flutter amplitudes are on the order
of the shell thickness.These results suggest that the nonlinear method is consistent with the linear methods
developed in Part I.

IV.A.1. Static Loading/Buckling

Experimental static load tests17 of a 6-meter HIAD were conducted to simulate the pressure due to
the mean flow during flight. This is illustrated in Fig. 10. A thin membrane was placed over the HIAD
surface, sealed at the boundaries, and a vacuum was applied. This resulted in compression of TPS material
between the inflated toroids, which is shown clearly in Fig. 10. A close inspection of the test article also
revealed small wrinkles in the TPS along the axial direction of the article. Typically, wrinkling in shell-like
structures indicates a buckling instability; however, once the pressure was relieved the TPS returned to its
original undeformed shape, though some small wrinkles still remained. It is possible that the outermost
fabric layer in the TPS relaxes as a result of the static deformation of the toroid substructure, causing
wrinkles that are unrelated to buckling. Two types of nonlinear simulations can be used to characterize
these experimental tests. First, a purely symmetrical analysis, that does not allow for any circumferential
deformations, can be used to simulate the un-buckled but statically loaded state. Second, an asymmetrical
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Figure 8: FFT of the limit cycle oscillations for the single shell model at M=2, qA=8000 Pa, ȳ=0.95.

buckling analysis will determine the critical axial and circumferential buckling shape. In both cases, axial
strain will be calculated near the major end of the shell and compared with experimental measurements.

The experimental article was loaded symmetrically with 3000, 4500, and 6000 Pascals of pressure and
the strain was measured at different locations around the circumference using rosette gauges. For each
loading condition, the toroid substructure was inflated with different pressures, resulting in slightly dif-
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Figure 9: Comparison of the linear and nonlinear flutter mode shapes.

Figure 10: Experimental static load test of the 6-meter article.

ferent static deformations. For the purposes of this analysis, the effect of the substructure will be ignored
and the average axial strain for all inflation pressures will be used for the comparison to theory. Addi-
tionally, despite being loaded symmetrically, imperfections in the structure resulted in highly asymmetric
deformations, with strains being positive or negative depending on the location around the circumfer-
ence. While the asymmetrical buckling analysis results in circumferentially-dependent strains, they are
generally within a few percent of each-other. For comparison between theory and experiment, the circum-
ferential dependence on strain will also be averaged out. These data are given in Table 3. The experimental
results are approximately one order of magnitude larger than theory for each loading condition, though
the general dependence on load is similar. When the buckling mode is included, the theoretical strains are
larger but still significantly lower than the experiment. Better agreement between theory and experiment
may be achieved by reducing the Young’s Modulus in the simulations; however, this is inconsistent with
the material property data given by the manufacturer.18 It is more likely that the large static loads resulted
in large deformations that are not in the regime of the current nonlinear shell theory. Note that in-flight
static loads are significantly less than those applied to the test article (1000 Pa max), resulting in smaller
deflections that should be within the regime of the current theory.

The axial and circumferential deflection patterns for the symmetric analysis with the 6000 Pa load are
given in Figs 11 and 12, respectively. The maximum deflections are nearly 100 times the thickness of
the shell, which in this particular case is about 1 centimeter. The deflections seen in Fig. 10 are clearly
much larger than this, and consistent with the larger experimental strains. Qualitative agreement is seen
in the axial behavior of the shell, with the largest deflections near the major end. Close inspection of the
experimental article in Fig. 10 also indicates this behavior. Since the analysis is symmetric, the shell cross
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section remains circular and no standing waves appear along the circumference.

Table 3: Theoretical and experimental microstrain as a function of static pressure load, measured between
the last two toroids.

Axial microstrain

Load (Pa) Experiment (average) Theory (symmetric) Theory (buckling, average)
3000 275 29 32
4500 439 44 55
6000 600 55 80
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Figure 11: Axial deformation shape of the 6-meter article using a purely symmetrical analysis, ps =
6000Pa. The dashed line indicates the undeformed shape.

Figure 12: Circumferential deformation shape of the 6-meter article using a purely symmetrical analysis,
ps = 6000Pa. The dashed line indicates the undeformed shape.

The axial and circumferential deflection patterns for the asymmetrical analysis with the 6000 Pa load
are given in Figs 13 and 14, respectively. The critical circumferential buckling mode (ncrit = 43) predicted
by linear theory is included, and since the pressure here is larger than the critical nonlinear buckling
pressure of 2000 Pa, the shell undergoes a bifurcation into a nonlinear buckling state. The maximum
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axial deflections are larger than the symmetric case, though little deformation is seen before the last three
toroids. This is less representative of the test article behavior in Fig. 10; however, unlike the symmetrical
analysis, the circumferential "wrinkling" is captured here. The large number of standing waves seen
in Fig. 14 is qualitatively consistent with the number of wrinkles in the experimental article. Additional
testing is necessary to quantify more accurately the experimental wrinkling behavior for exact comparison
to theory. It is unclear if classical shell buckling is actually occurring in the experiments, but the numerical
results suggest that circumferential deformations are likely when the shell is loaded statically with high
pressure.
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−200
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Figure 13: Axial deformation shape of the 6-meter article using an asymmetrical buckling analysis, ps =
6000 Pa. The dashed line indicates the undeformed shape.

Figure 14: Circumferential deformation shape of the 6-meter article using an asymmetrical buckling
anal-ysis, ps = 6000 Pa. The dashed line indicates the undeformed shape.

IV.A.2. Nominal Aeroelastic Cases

The nominal aeroelastic test cases are given in Table 4. Linear theory is used initially to determine the
critical parameters at the flutter boundaries, including the dynamic pressure, circumferential mode, and
frequency. The goal of the nominal cases is to establish baselines for flutter onset and characterize the
effects of shell geometry, while also providing the necessary data for the subsequent nonlinear analyses.
Recall that model A-1 is the single shell and model B-1 is the single shell with six elastic supports located
at the approximate toroid positions on the HIAD. To reduce the complexity of these systems and allow for
a more direct comparison between models, no tension or static pressure loading is included here. Conical
shell Piston Theory is used for the aerodynamic pressure.

The results for model A-1 indicate that the flutter dynamic pressures and frequencies are inversely
proportional to the shell radius. More specifically, the flutter dynamic pressures decrease proportional to
the inverse square of the radius, while the frequency decreases proportional to the inverse of the radius.
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If the quantity R/h were held constant in these computations, it is expected that the flutter dynamic
pressure would scale with the inverse cube of the radius; however, the TPS thickness is independent of
the HIAD geometry so the typical scaling laws do not hold. Note that the critical circumferential mode is
independent of the shell radius (if the cone angle is held constant).

The results for model B-1 also show that the flutter dynamic pressures and frequencies are inversely
proportional to the shell radius; however, the dynamic pressures decrease more rapidly with increasing
radius than in model A-1. In this case, the flutter dynamic pressures decrease (approximately) propor-
tional to 1/R2.33. If the quantities R/h and ksL2/Dy were held constant, then the flutter dynamic pressure
would scale with the inverse cube of the radius. The flutter frequencies are nearly identical to model A-1,
which had been observed in the linear analysis in Part I1 for the 3-meter geometry only. While the elastic
supports seem to have little effect on the flutter frequencies, they do change the model coalescence behav-
ior of the shell. For example, in the the 3.7-meter configuration (B-1), there is a second flutter mode with
an infinitesimally higher flutter dynamic pressure that was not present in case A-1 with the same geome-
try. To investigate further this unusual behavior, additional calculations were performed using the linear
methods. The natural frequencies and total system damping were calculated over a range of dynamic
pressures until the flutter condition was attained, for the 3-meter and 3.7-meter geometries only. Two key
properties of these frequencies are illustrated in Fig 15. First, the separation of the natural frequencies
(at qA = 0) is significantly decreased for the 3.7-meter compared to the 3-meter geometry, especially for
the first several modes. Based on these data and additional calculations with larger diameter shells, it
can be concluded that increasing the shell diameter reduces both the magnitude and separation of the
modal frequencies, causing the flutter dynamic pressure to decrease. Second, Fig. 15 indicates that in the
3.7-meter configuration, modes 1+2 and 4+5 become unstable and coalesce at nearly the same dynamic
pressure, while for the 3-meter case, only the first two modes are most critical. These coalescence points
are indicated by "A" and "B" in Fig 15b for the 3.7-meter case only. Coalescence between the first two
modes occurs at a slightly lower dynamic pressure, by fraction of a percent. These results will be im-
portant for the nonlinear analyses in section IV.A.5, where limit cycle frequencies shift between these two
flutter modes depending on the dynamic pressure.

Table 4: Critical parameters for the nominal aeroelastic cases.

Model and Geometry qcrit (Pa) ncrit fcrit (Hz) ML

A-1, 3-meter, 70◦ 6936 3 101 2
A-1, 3.7-meter, 70◦ 4620 3 82 2
A-1, 6-meter, 70◦ 1850 3 49 2
B-1, 3-meter, 70◦ 10866 0 103 2

B-1, 3.7-meter, 70◦ 6202 0 82, 102* 2
B-1, 6-meter, 70◦ 2190 0 49 2

*Coalescence of two sets of natural modes occurs near the same dynamic pressure.

IV.A.3. Effect of Tension on Limit Cycle Oscillations

Limit cycle oscillations were calculated for models A-1 and B-1 with the 3-meter geometry and Piston
Theory aerodynamics. Since the TPS on the HIAD is restrained with straps at the trailing edge, it is
possible that tension is applied along the axial direction. In this section, the effect of tension on the
limit cycle behavior is examined. The amplitudes are normalized by the thickness of the shell, which is
equivalent to the thickness of the TPS structural layer (h = 0.000127m). The peak limit cycle amplitudes
and corresponding limit cycle frequencies as a function of dynamic pressure for model A-1 are given in
Fig. 16. The dashed lines indicate the linear flutter boundaries for each value of tension. In this case,
added tension is always a stabilizing effect. When the dynamic pressure is increased to twice that of
the flutter boundary, the LCO amplitudes generally grow to 10-15 times the TPS shell thickness. The
peak LCO frequencies always increase with dynamic pressure and the peak frequencies near the flutter
boundaries are in agreement with linear theory.
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Figure 15: Frequencies and system damping as a function of dynamic pressure for the 3-meter and 3.7-
meter geometries, M=2.

The peak limit cycle amplitudes and corresponding limit cycle frequencies as a function of dynamic
pressure for model B-1 are given in Fig. 17. The linear analysis in Part I1 indicated a non-monotonic
increase in the flutter dynamic pressure with tension due to transitions between the critical axial and
circumferential modes. Consistent with the linear analysis, the LCO amplitudes decreased when 250
N/m and 750 N/m tension was applied. Unlike the single shell, increasing tension is not always a
stabilizing effect in this case. The frequency response is broad spectrum at high tension values and the
peak frequencies depend on the position along the shell surface. The peaks in the response are relatively
constant for most tensions but the frequency spectra broaden with increasing dynamic pressure.

IV.A.4. Pre-Buckled Flutter Analysis using Piston Theory - Model B-1, 3.7-Meter Configuration

CFD simulations of a 3.7-meter HIAD11 indicated that both the static pressure load and dynamic
pressure on the surface of the vehicle peak at approximately 1000 Pa. This static load is below the nonlinear
buckling load, so the shell is in a stressed but pre-buckled state. To determine the worst case scenario for
flutter, both the initial static deformation and membrane forces due to the static load are included in the
aeroelastic simulation. To allow for the possibility of buckling, modal expansions in the circumferential
direction include both the critical buckling mode (n = 37) and the critical flutter mode (n = 0) calculated
using linear theory. The nonlinear flutter calculation begins by artificially increasing the aerodynamic
damping, neglecting aerodynamic stiffness terms in the equations of motion, and applying the static
load. The transient oscillations decay rapidly, resulting in constant static deformation of the shell. The
aerodynamic damping is then increased to the physical in-flight value, the aerodynamic stiffness terms are
included, and the system is perturbed. When the CFD flight conditions are reproduced in the simulation,
the oscillations decay with time and the shell remains stable. This is illustrated by the deflection time
history in Fig. 18. When the dynamic pressure is increased to 2000 Pa, the oscillations grow with time
and the flutter condition is attained. A further increase in dynamic pressure causes a rapid increase in
amplitude, and the circumferential buckling mode becomes equally as critical as the flutter mode. This is
shown in Figs. 19 and 20. In the region of the time history labeled "A" , the oscillations remain symmetric
and the shell cross section is circular. The modal decomposition in Fig. 19 (right) indicates no contribution
from the buckling mode. In region "B," the buckling mode is non-zero and the shell begins to wrinkle
circumferentially.

IV.A.5. Limit Cycle Amplitudes Including Pre-Buckling Load and Extended Aerodynamics

Nonlinear aeroelastic solutions were calculated for all three geometries with the pre-buckling load
and extended aerodynamic model, though the calculations do not include both effects simultaneously,
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Figure 16: Effect of axial tension on the peak LCO amplitudes and frequencies for model A-1, 3-meter
configuration, ML = 2..

as computational cost is high. The 3.7-meter configuration is of primary concern due to possible flight
applications, so a more detailed analysis will be presented for this case first. The limit cycle amplitudes
as a function of dynamic pressure are given in Fig. 21a. The LCO amplitudes for the nominal cases are
also included for comparison. The peak (local) dynamic pressure at peak heating of a 3.7-meter vehicle
trajectory11 is also shown at approximately 1000 Pa. The flutter onset dynamic pressures for all cases are
above this point. Flutter onset for the extended aerodynamics case occurs at 4100 Pa, while the nomi-
nal case doesn’t begin to flutter until 6200 Pa. When the pre-buckling load is included, amplitudes tend
to increase more rapidly at higher dynamic pressures compared with the other cases. This trend is not
particularly surprising, since the analysis of the pre-buckled case in the previous section indicated that
at higher dynamic pressures, the shell buckles (wrinkles) circumferentially below the buckling pressure.
While the shell is initially pre-buckled, it transitions to a post-buckled state with the additional aerody-
namic pressure, and has a decreased ability to withstand load. This is the likely cause of the larger LCO
amplitudes.

The peak limit cycle frequencies as a function of dynamic pressure for Model B-1, 3.7-meter configu-
ration are given in Fig. 21b. Note that in many cases the frequency response above the flutter dynamic
pressure is broad-spectrum and the peak frequency depends on the location on the shell surface. Near the
leading edge, the frequencies are relatively high and deflections are relatively small, since this is where the
shell stiffness is greatest. Near the trailing edge, the frequencies are close to the linear flutter frequency.
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Figure 17: Effect of axial tension on the peak LCO amplitudes and frequencies for model B-1, 3-meter
configuration, ML = 2..

In all three cases shown, the maximum peak LCO frequency occurs at the flutter boundary, and a further
increase in dynamic pressure causes a decrease in the peak frequencies to 80-86 Hz. This is not normally
the case for shell flutter, since aerodynamic stiffening tends to increase the frequencies as the dynamic
pressure is increased. However, the results from the linear analysis in Table 4 indicated that while the first
flutter onset occurs between the 4th and 5th modes at 102 Hz, a second pair of modes (1 & 2) coalesce at a
slightly higher dynamic pressure, with a flutter frequency of 82 Hz. Therefore, in the nonlinear response,
the flutter mode involving modes 1 and 2 becomes more prominent at higher dynamic pressures. This is
further demonstrated in Figs. 22 and 23. In Fig. 22, the dynamic pressures are near the flutter boundaries
for each case (points labeled (1) in Fig. 21b), with peak response at 102 Hz. For the nominal case and
including extended aerodynamics, additional peaks are observed near 82 Hz, but the response amplitude
is lower. In Fig. 23, the dynamic pressures are well above those at the flutter boundaries (points labeled
(2) in Fig. 21b), and the opposite is true, with peak response near 82 Hz and less response near 100 Hz.

The limit cycle amplitudes as a function of dynamic pressure for the 3-meter and 6-meter config-
urations are given in Fig. 24 and Fig. 25, respectively. The effect of extended aerodynamics on the LCO
amplitudes is less pronounced in the 3-meter configuration than in both the 3.7-meter and 6-meter, though
the percentage decrease in the flutter dynamic pressure compared with nominal Piston Theory is between
35 and 40 percent for all cases. The effect of the pre-buckling load is most pronounced for the 3-meter
configuration, with LCO amplitudes that grow to several times the thickness at dynamic pressures only
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Figure 18: Deflection time history for Model B-1, 3.7-meter configuration with pre-buckling load, M=2,
qA = 1000 Pa, ps = 1000 Pa (flight condition).
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Figure 19: Deflection and modal time histories for for Model B-1, 3.7-meter configuration, ML = 2,
qA = 5000 Pa, ps = 1000 Pa.

slightly above the flutter boundary. The 6-meter configuration is least effected by the pre-buckling load,
and the percentage decrease in the nominal flutter dynamic pressure is significantly different depend-
ing on the geometry. As a result, a new nonlinear calculation will be required to determine the flutter
boundaries for different diameter shells, if the effect of pre-buckling static load is to be characterized.

V. Conclusions

A method for evaluating the nonlinear buckling and aeroelastic response of the thermal protection sys-
tem on NASA’s Hypersonic Inflatable Aerodynamic Decelerator has been developed using conical shell
theory and potential flow aerodynamics. This method complements the linear approach used in Part I1

of this report series by allowing for initial deformation due to static loading and the computation of limit
cycle oscillations at dynamic pressures beyond the aeroelastic stability boundaries. Results have been
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A B

Figure 20: Circumferential flutter deflection shapes for for Model B-1, 3.7-meter configuration at times A
and B, ML = 2, qA = 5000 Pa, ps = 1000 Pa. The dashed line indicates the undeformed shape.
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Figure 21: Peak limit cycle amplitudes and frequencies for Model B-1, 3.7-meter configuration, ML = 2.
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Figure 22: Frequency response for Model B-1, 3.7-meter configuration at points labeled (1), near the flutter
boundaries.
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Figure 23: Frequency response for Model B-1, 3.7-meter configuration at points labeled (2), well beyond
the flutter boundaries.
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Figure 24: Limit cycle amplitudes for Model B-1, 3-meter configuration, ML = 2.

computed for a TPS structural model consisting of a single conical shell resting on several circumferen-
tial elastic supports. Three conical shell geometries were considered in the present analysis: a 3-meter
diameter 70◦ cone, a 3.7-meter 70◦ cone, and a 6-meter diameter 70◦ cone. Static load tests of a 6-meter
HIAD were simulated, and theoretical strains were found to be an order of magnitude lower than ex-
perimental strains. Wrinkling of the TPS material was captured by including the critical circumferential
buckling mode in the modal expansions for shell displacements, and qualitative agreement between the-
ory and experiment was achieved. The effect of axially-applied tension was studied for a 3-meter shell,
and increasing tension was generally helpful in decreasing the flutter amplitudes when the circumferen-
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Figure 25: Limit cycle amplitudes for Model B-1, 6-meter configuration, ML = 2.

tial elastic supports were ignored. Increasing tension was destabilizing in some cases when the elastic
supports were included, which was consistent with previous predictions using linear theory. The effects
of pre-buckling static pressure load and the extended aerodynamic model were considered for all shell
geometries. When the critical circumferential buckling mode was included in the aeroelastic simulations,
flutter onset began at a lower dynamic pressure and circumferential wrinkling occurred. With the ex-
tended aerodynamic model, flutter also occurred at lower dynamic pressures compared to the nominal
cases with Piston Theory. The limit cycle frequencies for the 3.7-meter shell configuration exhibited uncon-
ventional behavior, as the peak frequencies decreased with increasing dynamic pressure. A linear analysis
indicated that this was caused by coalescence of a second set of modes at a lower frequency, producing a
flutter mode that is favored at higher dynamic pressures. The flutter boundaries predicted by all current
simulations were found to be significantly higher than the local dynamic pressure calculated from CFD
simulations of a proposed 3.7-meter HIAD vehicle, suggesting that for this particular geometry, flutter is
not likely to occur in flight.

Appendix

Derivation of the relations between in-plane forces and static pressure loading

From cylinder theory, the axial and hoop stresses due to internal pressure are:

σ
cyl
z = PR

2h σ
cyl
θ = PR

h
(A1)

where R is the radius of the cylinder, h is the thickness, and P is the internal pressure. In the reference
frame of the conical shell surface, these stresses become:

σy = σ
cyl
z

cos β σθ =
σ

cyl
θ

cos β
(A2)

and R = y sin β. When the shell is subject to external pressure, let P = −ps. The in-plane forces are then
obtained:

Ny = σyh = −psy tan β
2 Nθ = σθh = −psy tan β (A3)

Matrix coefficients for the nonlinear conical shell models

Amnsk =
1
2 Ξ1

nk

y2∫
y1

[
Eyh

1−νθνy

(
dαm
dy

dαs
dy + νθ

1
y

dαm
dy αs

)
+ Eθ h

1−νθνy

(
1
y2 αmαs + νy

1
y

dαm
dy αs

)
+

2nkGyθ h
sin2β

(
1
y2 αmαs

)]
ydy

(A4)
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Bmnsk =
1
2 Ξ1

nk

y2∫
y1

[
Eyhνθ

1−νθνy

(
1
y

dαm
dy βs

)
+ Eθ h

1−νθ νy

(
2
y2 αmβs + νy

1
y

dαm
dy βs

)
+

2nGyθ h
sin β

(
1
y2 αmβs − 2

y αm
dβs
dy

)]
ydy

(A5)

Cmnsk =
1
2 Ξ1

nk

y2∫
y1

[
2Gyθh

(
dβm
dy

dβs
dy − 2

y
dβm
dy βs +

1
y2 βmβs

)
+ nk

sin2β

Eθ h
1−νθ νy

(
1
y2 βmβs

)]
ydy (A6)

Dmnsk =
1
2 Ξ1

nk

y2∫
y1

[
Eyhνθ cot α

1−νθ νy

(
−1
y

dαm
dy ψs

)
+ Eθ h cot α

1−νθ νy

(
−2
y2 αmψs − νy

1
y

dαm
dy ψs

)]
ydy

(A7)

Emnsk =
1
2

kΞ1
nk

sin β

y2∫
y1

Eθ h cot α
1−νθνy

(
−2
y2 ψmβs

)
ydy

(A8)

ESmnsk =
Ξ1

nkks

2 ∑
l

ψmψsy|y=yl
(A9)

Fmnsk =
1
2 Ξ1

nk

y2∫
y1

[
Eθ h

1−νθ νy

(
cot2α

y2 ψmψs

)
+ Dy

(
d2ψm
dy2

d2ψs
dy2 + νθ

1
y

dψm
dy

d2ψs
dy2

)
+ Dθ

(
1
y2

dψm
dy

dψs
dy + νy

1
y

dψm
dy

d2ψs
dy2

)]
ydy

+ 1
2 Ξ1

nk

y2∫
y1

[
− n2

sin2β
Dyνθ

(
1
y2 ψm

d2ψs
dy2

)
− n2

sin2β
Dθ

(
2
y3 ψm

dψs
dy + νy

1
y2 ψm

d2ψs
dy2

)
+ n2k2

sin4β
Dθ

(
1
y4 ψmψs

)]
ydy

+ nk
sin2β

Ξ1
nk

y2∫
y1

Dyθ

(
1
y2

dψm
dy

dψs
dy − 2

y3 ψm
dψs
dy + 1

y4 ψmψs

)
ydy

(A10)

Gmnsk = Hmnsk = Imnsk =
1
2

MtotΞ1
nk

∫ y2

y1

ψmψsydy (A11)

Jmnskji =
1
2 Ξ2

nki

y2∫
y1

[
Eyh

1−νθ νy

(
dαm
dy

dψs
dy

dψj
dy + νθ

1
2y αm

dψs
dy

dψj
dy

)
+

Eθ hνy
1−νθ νy

(
1

2y αm
dψs
dy

dψj
dy

)]
ydy

+ 1
2

ikΞ3
nki

sin2β

y2∫
y1

[
Eyhνθ

1−νθ νy

(
1

2y2
dαm
dy ψsψj

)
+ Eθ h

1−νθ νy

(
1
y3 αmψsψj + νy

1
2y2

dαm
dy ψsψj

)]
ydy

+ 1
2

nkiΞ4
nki

sin3β

y2∫
y1

2Gyθh
(

2
y2 αm

dψs
dy ψj

)
ydy

(A12)

Kmnskji =
1
2 Ξ2

nki

y2∫
y1

[−Eyhνθ cot α
1−νθ νy

(
1

2y
dψm
dy

dψs
dy ψj

)
− Eθ hνy cot α

1−νθ νy

(
1

2y
dψm
dy

dψs
dy ψj

)]
ydy

+ 1
2

ikΞ3
nki

sin2β

y2∫
y1

− Eθ h cot α
1−νθ νy

(
1
y3 ψmψsψj

)
ydy

(A13)

Lmnskji =
1
2

iΞ2
nki

sin β

y2∫
y1

[−Eyhνθ

1−νθνy

(
1

2y
dψm
dy

dψs
dy β j

)
− Eθ hνy

1−νθ νy

(
1

2y
dψm
dy

dψs
dy β j

)]
ydy

+ 1
2

nkiΞ5
nki

sin3β

y2∫
y1

− Eθ h
1−νθ νy

(
1
y3 ψmψsβ j

)
ydy

+ 1
2

kΞ3
nki

sin β

y2∫
y1

2Gyθh
(

2
y2

dψm
dy ψsβ j − 2

y
dψm
dy ψs

dβ j
dy

)
ydy

(A14)
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Mmnskjirq = 1
2

iqΞ6
nkiq

sin2β

y2∫
y1

[(
Eyhνθ

1−νθ νy
+

Eθ hνy
1−νθ νy

+ 8Gyθh
) (

1
4y2

dψm
dy

dψs
dy ψjψr

)]
ydy

+ 1
2 Ξ7

nkiq

y2∫
y1

Eyh
1−νθνy

(
1
4

dψm
dy

dψs
dy

dψj
dy

dψr
dy

)
ydy

+ 1
2

nkiqΞ8
nkiq

sin4β

y2∫
y1

Eθ h
1−νθ νy

(
1

4y4 ψmψsψjψr

)
ydy

(A15)

Nmnsk =
1
2

nkΞ1
nk

sin2β

∫ y2

y1

(
αmαs

4y2

)
ydy (A16)

Omnsk =
1
2

kΞ1
nk

sin β

∫ y2

y1

(
1

2y
∂βm

∂y
αs +

1
2y2 βmαs

)
ydy (A17)

Pm(n = 0) = 2π sin β
∫ y2

y1

ψmydy (A18)

PPmnsk =
1
2

Ξ1
nk

∫ y2

y1

(
1
4

∂βm

∂y
∂βs

∂y
+

1
2y

βm
∂βs

∂y
+

1
4y2 βmβs

)
ydy (A19)

QA1
mnsk = Ξ1

nk

∫ y2
y1

ψm
∂ψs
∂y ydy

QA2
mnsk = Ξ1

nk

∫ y2
y1

ψmψsdy

QA3
mnsk = Ξ1

nk

∫ y2
y1

ψmψsydy

(A20)

QQmnsk =
1
2

Ξ1
nk

∫ y2

y1

(
cot2β

y2 βmβs

)
ydy (A21)

Rmnsk =
1
2

kΞ1
nk cot β

sin β

∫ y2

y1

(
1

2y2 βmαs

)
ydy (A22)

Smnsk =
1
2

nkΞ1
nk

sin2β

∫ y2

y1

(
ψmψs

y2

)
ydy (A23)

Tmnsk =
1
2

Ξ1
nk

∫ y2

y1

(
∂ψm

∂y
∂ψs

∂y

)
ydy (A24)

Ξ1
nk = Ξnk =

⎧⎪⎨
⎪⎩

0, n �= k
2π sin β, n = k = 0
π sin β, n = k �= 0

Ξ2
nki =

∫ 2π sin β
0 cos nφ cos kφ cos iφdφ

Ξ3
nki =

∫ 2π sin β
0 cos nφ sin kφ sin iφdφ

Ξ4
nki =

∫ 2π sin β
0 sinnφ cos kφ sin iφdφ

Ξ5
nki =

∫ 2π sin β
0 sin nφ sin kφ cos iφdφ

Ξ6
nkiq =

∫ 2π sin β
0 cos nφ cos kφ sin iφ sin qφdφ

Ξ7
nkiq = 1

2

∫ 2π sin β
0 cos nφ cos kφ cos iφ cos qφdφ

Ξ8
nkiq =

∫ 2π sin β
0 sinnφ sin kφ sin iφsinqφdφ

(A25)

QA
mnsk =

2qA
M

[
QA1

mnsk −
1

2Msinβ
QA2

mnsk

]
�c +

2qA
MU∞

QA3
mnsk̇�c (A26)

˜CCA = ∑
s

∑
k

∑
j

∑
i

cskcji Jmnskji (A27)

27 of 30

American Institute of Aeronautics and Astronautics



˜CCB = ∑
m

∑
n

∑
s

∑
k

cmncskLmnskji (A28)

The vector ˜CCC is composed of both second and third order nonlinear terms:

˜CCC = ˜CCC2 + ˜CCC3 (A29)

where

˜CCC2 = ∑
m

∑
n

∑
j

∑
i

anmcji Jmnskji + ∑
m

∑
n

∑
s

∑
k

anmcsk Jmnskji + ∑
s

∑
k

∑
j

∑
i

cskcjiKmnskji + ∑
m

∑
n

∑
j

∑
i

cmncjiKmnskji

+∑
m

∑
n

∑
s

∑
k

cmncskKmnskji + ∑
s

∑
k

∑
j

∑
i

cskbjiLmnskji + ∑
m

∑
n

∑
j

∑
i

cmnbjiLmnskji

(A30)
˜CCC3 = ∑

s
∑
k

∑
j

∑
i

∑
r

∑
q

cskcjicrq Mmnskjirq + ∑
m

∑
n

∑
j

∑
i

∑
r

∑
q

cmncjicrq Mmnskjirq

+∑
m

∑
n

∑
s

∑
k

∑
j

∑
i

cmncskcji Mmnskjirq + ∑
m

∑
n

∑
s

∑
k

∑
r

∑
q

cmncskcrq Mmnskjirq
(A31)

In the MATLAB program, it is highly inefficient to compute the third order nonlinear term using loop
summations within the time-integration scheme. A vectorized method has been developed using tensor
mathematics, which reduces computation time significantly. The method is implemented as follows:

1. Compute the following tensor outside of the the time-integration scheme and save for later manipu-
lation.

M1 = ∑
s

∑
k

∑
j

∑
i

∑
r

∑
q

Mmnskjirq + ∑
m

∑
n

∑
j

∑
i

∑
r

∑
q

Mmnskjirq

+∑
m

∑
n

∑
s

∑
k

∑
j

∑
i

Mmnskjirq + ∑
m

∑
n

∑
s

∑
k

∑
r

∑
q

Mmnskjirq
(A32)

2. Compute the following tensor inside the time-integration scheme:

Γ =
((

⇀
c ⊗ ⇀

c
)
⊗
(⇀

1 ⊗ ⇀
c
))

◦ M1 (A33)

where
⇀

1 is a vector of ones the same length as the modal coordinate vector �c. The symbol ⊗ is the
Kroneker product and the symbol ◦ is the 4-dimensional Shur product.

3. Compute the third order term in the following manner (inside the time-integration scheme) :

˜CCC = sum
{

Γαβγδ

∣∣ β = 1, ..., mtotntot; γ = 1, ..., mtotntot; δ = 1, ..., mtotntot
}

for α = 1, ...mtotntot

(A34)
The sum operation indicates summation of the specified tensorial dimensions and subsequent reduc-
tion in tensor order, or “tensorial collapsing.” The dimensions to be collapsed here are the fourth,
third, and second dimensions, indicated by δ, γ and β, respectively. No summation is performed
over the index α, such that the final quantity is an mtotntotx1-dimensional vector.

Application of the Dowell and Bliss15 Method to the Extended Potential-Flow Aerodynamic Theory for
Conical Shells

Recall the following definition:

γ = Rδ = R

[
M2

(
s +

p
U∞

)2
− s2

]1/2

(A35)
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The first term in Eq. 27 is:

−γ−1 =
−1
R

[
M2

(
s +

p
U∞

)2
− s2

]−1/2

=
−1
R

⎡
⎢⎣M2

(
s +

p
U∞

)2
⎛
⎜⎝1 − s2

M2
(

s + p
U∞

)2

⎞
⎟⎠
⎤
⎥⎦
−1/2

=
−1

RM
(

s + p
U∞

)
⎛
⎜⎝1 − s2

M2
(

s + p
U∞

)2

⎞
⎟⎠

−1/2

(A36)

It is assumed that the magnitude of the second term in the parentheses is less than 1 since U∞ is large
(for a∞ at sea level) and M2 > 1. As a result, the Binomial theorem can be applied. Singularities do exist
when s = −p/U∞, but these may be ignored by using the Fourier variable α instead of s and inverting
the transform of the pressure with respect to time first, as outlined in section III.B. After applying the
Binomial theorem, the first term in Eq. 27 becomes:

−γ−1 ≈ −1

RM
(

s + p
U∞

)
⎡
⎢⎣1 +

s2

2M2
(

s + p
U∞

)2 +
3s4

8M4
(

s + p
U∞

)4 + ...

⎤
⎥⎦ (A37)

Note that R is taken as constant in the initial cylindrical shell analysis, but may be a function of y when
integrating to form the aerodynamic generalized forces (specifically R = ysinα for the conical shell).

The same procedure can be used to derive the expansions of the second and third terms in Eq. 27:

1
2

γ−2 ≈ −1

2R2M2
(

s + p
U∞

)2

⎡
⎢⎣1 +

s2

M2
(

s + p
U∞

)2 +
s4

M4
(

s + p
U∞

)4 + ...

⎤
⎥⎦ (A38)

(
n2

2
− 3

8

)
γ−3 ≈

(
n2

2 − 3
8

)
R3M3

(
s + p

U∞

)3

⎡
⎢⎣1 +

3s2

2M2
(

s + p
U∞

)2 +
15s4

8M4
(

s + p
U∞

)4 + ...

⎤
⎥⎦ (A39)

The Kernel function Amnsk(t) in Eq. 30, expanded with terms up to O(1/M5) is:

Amnsk(t) =
∫ ∞
−∞ e−U∞iαt×

[ −U∞
8π2 M3 α2

∫ y2
y1

eiα(y−y1) cos βψsydy
∫ y2

y1
e−iα(y−y1) cos βψmdy +

−U∞
4π2 M3sin2β

(
n2

2 − 3
8

) ∫ y2
y1

eiα(y−y1) cos β

y ψsdy
∫ y2

y1
e−iα(y−y1) cos βψmdy+

U∞
2

8π2 M4 sin β
α2t

∫ y2
y1

eiα(y−y1) cos βψsdy
∫ y2

y1
e−iα(y−y1) cos βψmdy+

3U∞
3

16π2 M5sin2β

(
n2

2 − 3
8

)
α2t2

∫ y2
y1

eiα(y−y1) cos β

y ψsdy
∫ y2

y1
e−iα(y−y1) cos βψmdy + ...

]
dα

(A40)
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