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� O3 presented much larger correlation between column and surface data than NO2 data.
� A simple linear regression model fit the O3 column and surface data well.
� PBL height adds useful information to the regressions for both gases.
� CMAQ correlations were similar to data for O3, but often larger for NO2.
� CMAQ displays greater influence of mixing on correlations than the data.
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a b s t r a c t

To investigate the ability of column (or partial column) information to represent surface air quality,
results of linear regression analyses between surface mixing ratio data and column abundances for O3

and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data
collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and
simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and
varied data set, allowing this problem to be approached frommultiple perspectives. O3 columns typically
exhibited a statistically significant and high degree of correlation with surface data (R2 > 0.64) in the P-
3B data set, a moderate degree of correlation (0.16 < R2 < 0.64) in the CMAQ data set, and a low degree of
correlation (R2 < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to
moderate degree of correlation with surface data in each data set. The results of linear regression ana-
lyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results
suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity
to the lower troposphere can be meaningful for surface air quality analysis.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction Observations Relevant to Air Quality) project is to provide infor-
Satellite observations have made important contributions to the
understanding of atmospheric chemistry and pollution over the
past three decades, including quantifying the atmospheric abun-
dances and distributions of many trace gas species, assessing
temporal trends in these species, and top-down estimates of trace
gas emissions (Fishman et al., 2008). Global coverage, coupled with
increasingly high spatial resolution, and fixed temporal resolution
of such observations provide key advantages over other data sets.
Retrievals of tropospheric column abundances have also improved
(Beirle et al., 2003; Boersma et al., 2008; Bucsela et al., 2013;
Chatfield and Esswein, 2012; Fishman et al., 2008; Martin, 2008;
Lamsal et al., 2011). Trace gas observations from satellites thus
have great potential for diagnosis of near-surface conditions. This
can be especially useful for monitoring the Environmental Protec-
tion Agency (EPA) criteria pollutants ozone (O3) and nitrogen di-
oxide (NO2) (http://www.epa.gov/air/criteria.html), pollutants
known to have significant adverse impacts on human health, crop
yields, and the atmospheric radiation budget. The greatest benefit
may come in regions that lack sufficient surface air quality
monitors.

However, several factors currently complicate the applicability
of satellite-observed column abundances for surface air quality
assessment. These include biases in satellite retrievals and reduced
sensitivity of satellite instruments to the lower troposphere
(Martin, 2008; Lee et al., 2011). Just as importantly, uncertainties
remain in the relationship between column abundances observed
by satellites and surface mixing ratios, which are directly relevant
to air quality management. Recent work demonstrates progress in
understanding this relationship. Chatfield and Esswein (2012)
analyzed ozonesonde data over the U. S. and found substantial
correlation between partial-column O3 (0e3 km) and near-surface
O3 (in the lowest 500 m). Lamsal et al. (2008) developed a method
to infer ground-level NO2 mixing ratios from the Ozone Monitoring
Instrument (OMI) tropospheric column abundances with the use of
local scaling factors derived from the GEOS-Chem model. Signifi-
cant correlation between OMI-derived and in situ surface NO2 was
observed (Lamsal et al., 2008, 2010). Other works have demon-
strated significant correlation between satellite-observed NO2
columns and surface NO2 data scaled to obtain column amounts
with the use of assumed NO2 profiles (Ordóñez et al., 2006;
Boersma et al., 2009). Knepp et al. (2013) used model-derived
planetary boundary layer (PBL) heights to convert Pandora NO2

tropospheric columns into average surface mixing ratios, also
demonstrating high correlation between converted columns and
surface data. Understanding the uncertainties in the relationship
between column density and surface mixing ratio becomes more
urgent with the up-coming NASA Tropospheric Emissions: Moni-
toring of Pollution satellite mission (TEMPO, Chance et al., 2012)
which is likely to be one component of the Geostationary Coastal
and Air Pollution Event (GEO-CAPE, Fishman et al., 2012) mission.
TEMPO/GEO-CAPE will be centered over w100� W, allowing ob-
servations over North America from geostationary orbit with
product horizontal resolution of 8 km � 4.5 km at the center of
domain, much higher than current Low-Earth-Orbit (LEO) mea-
surements. GEO-CAPE may combine multiple spectral regions to
improve the vertical resolution of ozone profile retrievals, espe-
cially in the lowermost troposphere (Natraj et al., 2011). However,
because a number of retrieval assumptions will still be necessary,
the challenge of relating the satellite-observed quantities to surface
mixing ratios will remain.

The ultimate goal of the DISCOVER-AQ (Deriving Information
on Surface conditions from Column and Vertically Resolved
mation relevant to improving our ability to relate satellite-observed
column densities to surface conditions for aerosols, O3, NO2, and
CH2O. Additional goals include characterization of differences in
diurnal variability for surface and column observations and the
horizontal scales of variability affecting satellites and model cal-
culations. DISCOVER-AQ combines P-3B aircraft in situ profiling of
trace gas species, aerosol properties, and key meteorological vari-
ables, UC-12 aircraft remote sensing of aerosols and trace gas col-
umns below the aircraft, observations of surface conditions from
the existing network of surface air quality monitors, remote sensing
of trace gas columns and aerosols from a network of ground-based
Pandora UV/vis spectrometers and a network of AERONET sun
photometers collocated with the air quality monitors, and model
simulations for the deployment period. The first deployment of this
project was conducted in the BaltimoreeWashington metropolitan
region of Maryland during July 2011. The P-3B accomplished over
250 profiles on 14 flight days over six surface air quality monitoring
sites and the Chesapeake Bay during the Maryland deployment.
These flight days covered a range of conditions, including especially
clean days on July 14th and 16th and pollution episodes during July
1e5 and July 18e23, as well as flights on weekdays and weekends.

In support of DISCOVER-AQ, results are presented of linear
regression analyses between O3 and NO2 surface mixing ratio and
column measurements, including column abundances integrated
over in situ profile data from the P-3B aircraft, measured by the
Pandora UV/vis spectrometer, and observed by the Aura/OMI in-
strument. Through these analyses, the strength of the columne
surface relationship and the ability to predict simultaneous surface
mixing ratio from column abundance during the July 2011
deployment will be assessed. The columnesurface relationship in
the CMAQ model is also evaluated and compared with the results
obtained from the observations.

2. Data

A complete description of DISCOVER-AQ measurements is
publicly available at http://www-air.larc.nasa.gov/cgi-bin/ArcView/
discover-aq.dc-2011#2. The July 2011 campaign was conducted in
the BaltimoreeWashington metropolitan region and involved 6
surface air quality monitoring sites. These included Aldino, Belts-
ville, Edgewood, Essex, Fair Hill, and Padonia, MD, with locations
mapped in Fig. 1. In situ trace gas volume mixing ratio data were
collected by the P-3B aircraft over 14 flight days over these sites,
with typically 3 spirals conducted over each surface site during
each flight day. The National Center for Atmospheric Research
(NCAR) NOxyO3 instrument, a 4-channel chemiluminescence in-
strument for the measurement of NO, NO2, NOy, and O3 provided
the P-3B O3 and NO2 in situ observations used here. Additional in
situ flight observations were provided by the University of Mary-
land (UMD) Cessna 402B light aircraft (Taubman et al., 2004; He
et al., 2014). Ozone was monitored with a TEI 49c UV photometry
instrument (Thermo Environmental, Franklin, MA) and NO2 by
absorption in a cavity ringdown spectrometer (Los Gatos Research,
Mountain View, CA). A ground-based Pandora UV/vis spectrometer
(Herman et al., 2009) was located at each site, observing O3 and
NO2 column amounts during daylight hours for all days in July. The
Maryland Department of the Environment (MDE) provided the O3
surface mixing ratio data at all sites, provided NO2 measurements
from a molybdenum-converter chemiluminescence monitor at
Essex, and provided NOy data from chemiluminescence monitors at
Aldino and Beltsville. The EPA provided NO2 measurements from
chemiluminescence instruments with photolytic converters at
Edgewood and Padonia, while the NASA mobile Chemical, Optical,

http://www.epa.gov/air/criteria.html
http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011
http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.dc-2011


Fig. 1. Example P-3B flight track for the July 26th flight, displaying the locations of the 6 surface air quality monitoring sites.

C.M. Flynn et al. / Atmospheric Environment 92 (2014) 429e441 431
andMicrophysical Measurements of In-situ Troposphere (COMMIT;
http://smartlabs.gsfc.nasa.gov) trailer provided photolytic con-
verter measurements for Fair Hill.

3. WRF/CMAQ model runs

The Community Multiscale Air Quality (CMAQ) model Version
5.0 was used to simulate air quality for July 2011, as described by
Loughner et al. (submitted for publication). CMAQ was fed output
from the Weather Research and Forecasting meteorological model
offline (WRF; Advanced Research WRF core; Skamarock et al.,
2008). The WRF/CMAQ model system was run at 36 km, 12 km,
4 km, and 1.33 km horizontal resolutionwith 34 vertical layers from
the surface to 100 mb, with 16 layers within the lowest 2 km to
capture boundary layer processes. The WRF model used the
Asymmetric Convective Model 2 (ACM2; Pleim, 2007) scheme for
vertical diffusion and convective mixing, the Pleim-Xiu surface
layer scheme (Pleim, 2006), and the Pleim-Xiu land surface model
(Xiu and Pleim, 2001). The North American Regional Reanalysis
(NARR) was used for the initial and lateral boundary conditions
within WRF. Chemical initial and boundary conditions were pro-
vided by a simulation of the Model for Ozone and Related Chemical
Tracers, version 4 (MOZART-4; Emmons et al., 2010). The CMAQ
model used the Carbon Bond-05 (CB05; Yarwood et al., 2005) gas-
phase chemical mechanism, the fifth generation aerosol model
(aero5), the ACM2 for vertical diffusion and convective mixing, and
used projected 2012 anthropogenic emissions based on the 2005
National Emissions Inventory (NEI) because 2011 emissions were
not yet available. Lightning NOx emissions were also included
(Loughner et al., submitted for publication).

The Air Resources Laboratory of the National Oceanic and At-
mospheric Administration (NOAA) provided forecasts of O3 and
NO2 from an experimental version of CMAQ Version 4.6 during the
deployment. The CB05 chemical mechanism was also used in the
NOAA simulation. However, the NOAA model runs were driven
offline by WRF (Nonhydrostatic Mesoscale Model core) meteo-
rology, and used the fourth generation aerosol module (aero4), the
MelloreYamadaeJanjic (MYJ; Janjic, 1994) scheme for boundary
layer and convective mixing, the Noah land surface model, and the
2005 NEI for anthropogenic emissions; lightning NOx emissions
were not included.

4. Analysis methods

4.1. Column abundance computation

In this work, two P-3B columns were computed for O3 and NO2,
which differed by the method used to extend the aircraft profile
data to the surface. Column_air was computed through integration
of the profile after the mixing ratio measurement at the lowest
aircraft altitude (at approximately 0.3 km AGL) was held constant
from the lowest measurement altitude to the surface. Column_-
ground was computed in the same manner, but instead held the
surface mixing ratio measurement constant up to the level of the
lowest aircraft altitude, when a surface value was available. The top
of the P-3B partial columns was typically at approximately 3 km.

The Aldino P-3B profile shapes were compared to in situ profile
shapes measured by the UMD Cessna aircraft for O3 and NO2 during
the campaign. The Cessna always reached lower altitudes than the
P-3B, so this comparison was used to identify which P-3B column
better approximated the true column at Aldino. The Cessna profiles
for O3 (Fig. 2) typically remained well mixed to the lowest Cessna
altitude (w3 m AGL). Differences in O3 measured by the Cessna and
P-3B may be due to the different interferences experienced by the
respective instruments after a spike in relative humidity (Arkinson
et al., in preparation). The Cessna NO2 profiles most often displayed
a “boot shaped” appearance, with a sharp increase in NO2 mixing
ratio near the lowest P-3B altitude, then becoming better mixed in
the lowest portion of the profile (Fig. 2). This suggests that gener-
ally column_air was closer to the true O3 and NO2 columns; how-
ever, due to the “boot” in the NO2 profile, column_air likely
underestimates the true NO2 partial column. Additionally, these
Cessna profiles were used to construct estimated profiles for the
portion of the atmosphere below the lowest altitude of the Aldino
P-3B spirals, and additional Aldino column amounts (colum-
n_UMD) were computed from these estimated profiles.

http://smartlabs.gsfc.nasa.gov/


Fig. 2. Example UMD Cessna altitude profiles for Aldino. O3 profile plotted in the left profile as solid blue line; NO2 profile plotted in the right profile. NO2 profile displays the “boot
shaped” appearance. Corresponding P-3B profiles also plotted for comparison (orange). Green circles represent surface O3 and NOy mixing ratio data, measured at the nearby Aldino
ground monitoring site, averaged over the time of UMD profile and plotted at the elevation AMSL of the monitoring site.
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The 12 km horizontal resolution CMAQ output was used for the
model analyses. Model column amounts for O3 and NO2 were
computed through integration of the model profile from the model
surface through the depth of the P-3B profiles for each site. OMI
tropospheric columns were retrieved with the Version 2.1 Goddard
tropospheric NO2 retrieval algorithm (Bucsela et al., 2013) and the
ozone profile algorithm by Liu et al. (2010) with modifications as
described in Kim et al. (2013), and were screened for cloud fraction
(effective cloud fraction less than30%), the instrument rowanomaly,
and distance of the pixel center from the surface site (pixel center
less than 100 km distance). Pandora tropospheric columns were
estimated by subtracting the stratospheric component derived by
the OMI algorithms from the Pandora total observed columns.

4.2. Molybdenum-converter instrument bias correction for NO2

MDE used a molybdenum-converter chemiluminescence in-
strument to measure NO2 at the Essex site. High biases in the Essex
NO2 data due to interferences from PAN and other NOy species
(Grosjean andHarrison,1985; Demerjian, 2000; Dunlea et al., 2007;
Steinbacher et al., 2007; Lamsal et al., 2008; Boersma et al., 2009)
were corrected based upon comparison of the Edgewood EPA
photolytic NO2 measurements and the nearby Aberdeen Proving
Grounds Mo-converter NO2 measurements. First, the hourly mean
bias of the Aberdeen measurements was computed as a percentage
of the Edgewood EPA measurements, for each hour of the day over
July 2011. These percentages were then used to determine correc-
tion factors with which to adjust the Mo-converter NO2 measure-
ment, so that these measurements better approximate photolytic
NO2 measurements. The Edgewood and Essex sites are approxi-
mately 20 miles apart, allowing the correction factors to be applied
to the Essex Mo-converter NO2 measurements.

The data for Aldino and Beltsville were measurements of NOy

and not NOx, because the inlet did not remove HNO3. It was not
possible to develop a correction for these instruments at these sites,
because no photolytic instruments were situated nearby.

4.3. Linear least squares regression analyses between column and
surface data

4.3.1. Simple linear least squares regression analysis for the P-3B,
Pandora, and OMI

A simple linear least squares regression analysis was performed
between the P-3B column_air, P-3B column_ground, Pandora, and
OMI O3 and NO2 columns and surface mixing ratio data for each
surface-monitoring site. An additional analysis between the Aldino
column_UMD and the surface data was also conducted for com-
parison to column_air and column_ground at this site. Surface
data were averaged over the time of the aircraft spiral for use with
the P-3B analyses. Hourly averages of the surface data for the hours
between 7 AM and 7 PM EDT were computed for use with the
Pandora columns, while 15 min averages centered on 2:45 PM EDT
were computed for use with the OMI columns. Column abundance
was used to predict the simultaneous surface mixing ratio,
yielding a regression model of the form surface mixing
ratio ¼ b*(column) þ intercept, where b is the regression coeffi-
cient. The NO2 column and surface data followed an approximately
lognormal distribution, and were therefore log-transformed before
performing statistical analyses. The Pandora O3 column data were
also approximately lognormal, and were also log-transformed. The
degree of association between the column and surface data and the
errors of the regression model relative to the observed data were
assessed.

4.3.2. Multivariate linear least squares regression analysis for the P-
3B and Pandora

A multivariate linear least squares regression analysis was per-
formed for P-3B column_air, column_ground, and Pandora O3 and
NO2. Column abundance and inverse PBL height (1/PBLH) were
used as predictor variables. The observational PBL height estimates
were derived from the P-3B potential temperature spiral data. The
PBL top was located where the potential temperature lapse rate
exceeded approximately 3 K/km, with a relatively constant poten-
tial temperature lapse rate from the surface to the PBL top. This
yielded an equation of the form surface mixing
ratio ¼ b1*(column) þ b2*(PBL�1) þ intercept, where b1 is the
regression coefficient associated with the column, and b2 is the
regression coefficient associated with the inverse PBL height. To
prevent limitation of the available Pandora columns, the Pandora
analyses used PBL height estimates derived from the WRF/CMAQ
model system. In the ACM2 PBL scheme, the PBL top is diagnosed as
the height where the bulk Richardson number computed for the
entrainment layer exceeds a critical value, typically set at 0.25.

4.4. Normalization by PBL height for the P-3B and Pandora

The degree of correlation between NO2 column and surface
mixing ratio was re-evaluated after normalization of the P-3B or



Table 1
Summary of degree of correlation found from the simple linear regression analyses
between column amounts and surface mixing ratios. Low correlation: R2 ¼ 0e0.16;
Moderate: R2 ¼ 0.16e0.64; High: R2 ¼ 0.64e1.0.

NO2 O3

P-3B col_air Low High
P-3B col_ground Moderate High
Pandora Moderate Low
OMI Not Significant Not Significant
CMAQ (Loughner et al.) High Moderate
CMAQ (NOAA) High High
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Pandora columns by the PBL height. Column abundances (mole-
cules/cm2) were divided by the concurrent PBL height (cm),
yielding an estimate of mean number concentration in the PBL. The
PBL height estimates derived from the P-3B potential temperature
profile were used with the P-3B analyses, while the Pandora ana-
lyses again used PBL height estimates derived from theWRF/CMAQ
model system. This approach is similar to that of Knepp et al.
(2013), and allowed a comparison between the results presented
here and those obtained by Knepp et al. (2013).

4.5. Comparison of CMAQ model column versus surface
relationships to those from observations

A similar simple linear least squares regression analysis was
applied to the Loughner et al. (submitted for publication) and NOAA
CMAQO3 and NO2 output to assess the correlation between column
and surface within these model simulations. CMAQ model output
was given in hourly increments. The NO2 output was log-
transformed before analysis. Additionally, correlation analyses for
O3 and NO2 were also performed for several different conditions to
further elucidate differences between the observations and the
model. First, P-3B, Pandora, and CMAQ O3 and NO2 column and
surface data were separated by the time of day at which they
occurred, yielding a “Morning” group for data occurring before 12
PM EDT, and an “Afternoon” group for data occurring at or after 12
PM EDT. Second, column and surface data were separated by PBL
height, yielding a “High PBL” group for data occurringwhen the PBL
height was at or above 1000 m, and a “Low PBL” group for data
occurring when the PBL was below 1000 m. Estimates of PBLH
based on the observed potential temperature profile were again
usedwith the P-3B analysis, while estimates derived from theWRF/
CMAQ systemwere used with the Pandora and CMAQ analyses. The
correlation within the CMAQ model for both trace gases was
compared to the correlation within the observations for each of
these four data groups. Lastly, the CMAQ NO2 columns were
normalized by the concurrent PBL height estimate, and the results
for the correlation were re-evaluated.

5. Results and discussion

5.1. Simple linear regression analysis for P-3B, Pandora, and OMI

5.1.1. Evaluation of the correlation between column and surface for
the full data set

The degree of correlation between surface mixing ratio and
column abundance found from the simple linear regression ana-
lyses for the P-3B, Pandora, and OMI data sets is summarized in
Table 1. To assign a degree of correlation to an analysis, the corre-
lations for at least four of the six surface sites must have fallen
within one of the categories of correlation degree. Values of R2 are
given in Table 2 (O3 analyses) and Table 3 (NO2 analyses), and
representative scatter plots of the correlation are displayed in Fig. 3
(O3) and Fig. 4 (NO2). Most P-3B O3 (Fig. A1 in Appendix A of the
Supplementary Material), P-3B NO2 (Fig. A4), Pandora O3 (Fig. A2),
and Pandora NO2 (Fig. A5) regressions were statistically significant
at a confidence level of 95% (Tables 2 and 3). The simple linear
regression analyses performed with the Pandora total column O3
and NO2 data were not significantly different from those for the
tropospheric column data. The poor correlation between OMI col-
umn O3 or NO2 and surface data may be partly due to the large OMI
footprint size; the pixel size at nadir is 13 � 24 km2, and increases
towards the ends of the OMI swath. The OMI O3 retrieval also loses
sensitivity to the lower troposphere (Liu et al., 2010). P-3B NO2
column_ground demonstrated larger correlation than did colum-
n_air, reflecting the influence of the surface data in the column
computation; P-3B O3 column_ground and column_air demon-
strated similar values. This indicates that O3 is vertically and hori-
zontally better mixed than NO2 at each site. The Aldino
column_UMD correlations were not significantly different from
those for column_air, but were significantly smaller than those for
column_ground for both gases; this suggests that the column_air
analyses were more representative of the true correlation between
lower tropospheric column and the surface (Tables 2 and 3).
Extended analysis of the simple linear regressions is also presented
in Appendix A.
5.1.2. Evaluation of the errors of the simple linear regression model
An overview of the average error of the regressions relative to

the observations for O3 and NO2 is presented for the P-3B data sets.
The column_air- and column_ground-measured surface values
were first combined into one data set, as were the regression
estimated surface values for the column_air and column_ground
regression analyses, before computation of the average percentage
error of the regression relative to the observations. The average
error for P-3B O3 was typically less than 10% at each site, with the
exception of Padonia; this was due to the presence of a very low
surface observation that was not a statistical outlier. Additionally,
approximately 50e75% of regression estimations fell within a�10%
error of the observed value (Table 4). These results support the
conclusions presented for P-3B O3 in the previous section. The
average error for the Pandora O3 regressions, however, was much
more variable among sites, and could be much larger than seen for
the P-3B results. The percentage of estimations falling within �10%
error was typically less than 25% (Table 5). The DurbineWatson test
statistic was used to test for the presence of autocorrelation of the
residuals, which would violate the assumption of independent
regression errors. All Pandora O3 regressions demonstrated positive
autocorrelation and large average errors, indicating errors in the
computation of the Pandora tropospheric column O3. This may be
due to subtraction of the OMI stratospheric column, which may not
be representative of the true column at each surface site due to the
large OMI footprint size.

The P-3B NO2 regressions resulted in an average percentage
error relative to the observations similar to the O3 regressions at
most sites, with the exceptions of Edgewood and Essex. Less than
30% of regression estimations fell within a �10% error of the
observed value except at Beltsville; a typically larger but more
variable percentage fell within �50% error of the observed value
(Table 4). However, the Pandora NO2 regressions displayed larger
average errors than the Pandora O3 regressions except at Beltsville,
and larger average errors than the P-3B NO2 regressions. Approxi-
mately 50% or more of regression estimations fell within �50%
error of the observed value at most sites (Table 5). Plots of the
regression residuals revealed other problems with this simple
linear regression analysis for P-3B and Pandora NO2. The Durbine
Watson test statistic again indicated positive autocorrelation of the
residuals in the Pandora NO2 regressions. Histograms of column_air



Table 2
Summary of the R2 statistic and F-ratio (p-value) for the P-3B and Pandora O3 simple linear regressions.

P-3B col_air
R2

P-3B col_ground
R2

P-3B col_air
F-ratio

P-3B col_ground
F-ratio

P-3B column_UMD
R2

P-3B column_UMD
F-ratio

Pandora
R2

Pandora
F-ratio

Aldino 0.76 0.79 112.57 (<0.001) 131.81 (<0.001) 0.73 98.99 (<0.001) 0.06 21.72 (<0.001)
Beltsville 0.83 0.88 192.10 (<0.001) 267.95 (<0.001) e e 0.04 12.8 (<0.001)
Edgewood 0.61 0.65 62.94 (<0.001) 77.17 (<0.001) e e 0.01 3.53 (0.057)
Essex 0.58 0.63 52.25 (<0.001) 61.74 (<0.001) e e 0.03 9.39 (0.002)
Fair Hill 0.64 0.70 72.58 (<0.001) 95.47 (<0.001) e e 0.16 68.98 (<0.001)
Padonia 0.65 0.72 60.25 (<0.001) 85.58 (<0.001) e e 0.02 8.02 (0.004)

Table 3
Summary of the R2 statistic and F-ratio (p-value) statistic for the P-3B and Pandora NO2 simple linear regressions.

P-3B col_air
R2

P-3B col_ground
R2

P-3B col_air
F-ratio

P-3B col_ground
F-ratio

P-3B column_UMD
R2

P-3B column_UMD
F-ratio

Pandora
R2

Pandora
F-ratio

Aldino 0.13 0.78 4.93 (0.03) 119.58 (<0.001) 0.16 6.48 (<0.016) 0.01 4.75 (0.030)
Beltsville 0.13 0.55 6.16 (0.02) 50.44 (<0.001) e e 0.20 80.94 (<0.001)
Edgewood 0.02 0.56 0.62 (0.429) 43.11 (<0.001) e e 0.21 61.03 (<0.001)
Essex 0.05 0.37 0.812 (0.380) 9.59 (0.009) e e 0.29 68.57 (<0.001)
Fair Hill 0.18 0.80 4.69 (0.040) 86.40 (<0.001) e e 0.09 7.43 (0.009)
Padonia 0.07 0.49 2.22 (0.148) 30.70 (<0.001) e e 0.27 94.69 (<0.001)
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residuals and Pandora NO2 residuals demonstrated some deviation
from normality at some sites. Structure is evident in the lag-1 plots
of the Pandora residuals at all sites, inwhich each residual is plotted
against the residual immediately preceding it in time, indicating
graphically the presence of autocorrelation of the residuals (Fig. 5).
These problems with the simple linear regression are more severe
for Pandora, but further suggest that a simple linear regression is
not as appropriate for NO2 as for O3.

5.2. Multivariate linear least squares regression analysis for the P-
3B and Pandora

All P-3B O3 column_air and column_ground regressions were
significant at a confidence level of 95%, and the R2 values demon-
strated modest improvement over those for the simple linear re-
gressions (Table 6). The average percentage errors and standard
deviations were consistently smaller than for the simple linear
regressions, indicating that the range of the residuals had
decreased. Likewise, the percentage of estimations falling within a
�10% error of the observed value was somewhat larger than or
similar to the percentage for the simple linear regression at each
site (Table 7). All Pandora O3 regressions were significant, and
demonstrated larger improvement relative to the simple linear
regressions than did the P-3B regressions. The average percentage
errors and standard deviations were much smaller, and the per-
centage of cases falling within a �10% error of the observed value
much larger (Tables 8 and 9). However, the DurbineWatson results
for Essex column_air and column_ground O3 and all Pandora O3
indicated positive autocorrelation of residuals. Some structure and
fanning behavior, inwhich the range of residuals either increases or
decreases as the abscissa increases, was also present in plots of the
residuals against inverse PBL height for Pandora, indicating limi-
tations of this regression for the Pandora O3 data (Fig. 6).

The regressions for P-3B NO2 column_ground at all sites and
for NO2 column_air at half of the sites were significant at a con-
fidence level of 95%; the R2 values also improved (Table 6). Like
the P-3B O3 results, the average percentage error and associated
standard deviation decreased relative to the simple linear
regression at most sites. Most sites also saw an increased per-
centage of regression estimations falling within a �10% error and
�50% error of the observed value (Table 7). The Pandora NO2
regressions also demonstrated marked improvement in the
average percentage errors and the standard deviations at most
sites. However, the percentage of regression estimations falling
within a �10% error and �50% error of the observed value
demonstrated marginal improvement (Tables 8 and 9). These re-
sults indicate that both the column and inverse PBL height
contain useful information for NO2. Fewer sites displayed histo-
grams of residuals for column_air and Pandora NO2 that departed
from normality, and fewer sites indicated autocorrelation of the
residuals for Pandora. However, plots of the residuals for colum-
n_air and column_ground NO2 against predicted surface NO2 at
Edgewood displayed some fanning structure (Fig. 6). Though
some improvement to the regression model is needed, these re-
sults indicate that the inverse PBL height adds useful information
for the O3 and NO2 regressions, and thus mixing within the PBL
has an important impact on the columnesurface relationship for
these gases. Because future geostationary air quality satellites will
capture the diurnal cycle of their observations, these results
further imply that care should be taken for the impact of PBL
development on column quantities.

5.3. Normalization by PBL height for the P-3B and Pandora

The normalization of Pandora column NO2 abundances by es-
timates of PBL height derived from the WRF/CMAQ model system
resulted in a consistently moderate degree of correlation (Table 10;
Fig. 7). Normalization by PBL height also resulted in statistically
significant increases in the value of R2 relative to the Pandora full
data set correlation analyses at the 95% confidence level at most
sites. The P-3B column NO2 normalization analyses presented more
mixed results. Normalization of P-3B column NO2 by estimates of
PBL height derived from the observed potential temperature profile
resulted in moderate correlation, when significant, for column_-
ground, and column_air (Table 10; Fig. 7). However, normalization
did not produce significantly different results relative to the P-3B
full data set correlations. The lack of improvement for the P-3B
normalization analyses may be due to the “well mixed PBL”
assumption inherent in the gap-filling methods used for the col-
umn computations. Because one value is held constant within the
lowermost PBL, the P-3B columns likely rely on a better mixed NO2
profile than the Pandora columns, such that normalization by PBL
depth does not add asmuch useful information for the P-3B as it did
for Pandora NO2.



Fig. 3. Example scatter plots of O3 column vs. surface O3 mixing ratio for P-3B (top) Pandora (middle), and CMAQ (Loughner et al., submitted for publication, bottom) correlation
analyses. Plots chosen represent the most typical behavior of the columnesurface relationship for that data set. Correlation shown between all available column and surface data for
each data set from the simple linear regression analysis. R2 values displayed in the upper left corner of each plot.
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The correlations between Pandora NO2 surface mixing ratio
(ppb) and column abundance (cm�2) at Edgewood and Padonia
presented in Section 5.1.1 compared well to the results obtained by
Knepp et al. (2013) for their comparison of hourly-averaged
Pandora NO2 surface (ppb) and column data (cm�2). This agree-
ment held after Knepp et al. (2013) excluded surface NO2 mixing
ratios less than 1 ppb, and for their comparison of raw surface and
column NO2 data (see Knepp et al., 2013, Table 2). The correlations
between P-3B surface mixing ratio (ppb) and column_ground
(cm�2) at Edgewood and Padonia also compared modestly well to
Knepp et al. (2013), though the P-3B correlations were larger than
either Pandora analysis. The correlations between the surface
mixing ratios and Pandora or P-3B column_ground NO2 columns
normalized by PBL height presented here also compared well to the
correlations obtained by Knepp et al. (2013) after application of
their PBL-correction factor at Edgewood and Padonia (see Knepp
et al., 2013, Table 3). Example scatter plots are presented in Fig. 7.
Differences in the correlations presented here and in Knepp et al.



Fig. 4. Example scatter plots of NO2 column vs. surface NO2 mixing ratio for P-3B (top) Pandora (middle), and CMAQ (Loughner et al., submitted for publication, bottom) correlation
analyses. Plots chosen represent the most typical behavior of the columnesurface relationship for that data set. Correlation shown between all available column and surface data for
each data set from the simple linear regression analysis. R2 values displayed in the upper left corner of each plot.
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(2013) may be due to the exclusion of data occurring at a solar
zenith angle greater than 75� by Knepp et al. (2013), and differences
in the PBL height derived from the WRF/CMAQ model system, the
model used by Knepp et al. (2013), and from the P-3B potential
temperature profile. This agreement between the results presented
here and in Knepp et al. (2013) further demonstrates the influence
of mixing within the PBL on the NO2 columnesurface relationship.
The results presented in this section also bolster the conclusion
found by Knepp et al. (2013) that, to a first order, NO2 column
abundances can be relevant to surface air quality.

5.4. Comparison of CMAQ analyses to observational analyses

The degree of correlation between surface mixing ratio and
column abundance found from the simple linear regression ana-
lyses for the Loughner et al. (submitted for publication) CMAQ



Table 4
Summary of percentage errors (standard deviation) simple linear regression for all sites relative to observed surface values. Column_air and column_ground are analyzed
together for each site.

O3

Mean error
% of cases w/in
�10% error

NO2

Mean error
% of cases w/in
�10% error

% of cases w/in
�50% error

Aldino 3.1 (�24.6) % 61.3% 9.7 (�37.2) % 28.6% 88.5%
Beltsville 6.0 (�37.4) % 74.1% 3.2 (�18.7) % 47.7% 98.8%
Edgewood 7.1 (�44.9) % 51.2% �58.2 (�607.3) % 0.00% 26.3%
Essex 6.1 (�38.2) % 59.7% 36.5 (�83.4) % 11.1% 52.8%
Fair Hill 2.5 (�18.8) % 63.9% 4.2 (�416.0) % 10.4% 39.6%
Padonia 40.2 (�236.8) % 61.4% 4.0 (�93.9) % 21.1% 63.6%

Table 5
Summary of percentage errors of Pandora simple linear regression for all sites relative to observed surface values.

O3

Mean error
% of cases w/in
�10% error

NO2

Mean error
% of cases w/in
�10% error

% of cases w/in
�50% error

Aldino 16.9 (�66.6) % 24.8% 27.3 (�88.5) % 24.7% 81.0%
Beltsville 61.9 (�270.8) % 21.0% 20.4 (�59.6) % 22.1% 74.6%
Edgewood 29.9 (�112.9) % 23.6% �125.5 (�2381.7%) 4.3% 28.1%
Essex 30.6 (�116.6) % 23.9% 58.1 (�374.1) % 11.2% 62.9%
Fair Hill 12.1 (�43.7) % 23.9% �382.6 (�2554.9) % 6.8% 44.6%
Padonia 47.6 (�318.4) % 23.1% 119.5 (�941.2) % 15.4% 62.3%
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model output is summarized in Table 1. Values of R2 are given in
Table 11, and representative scatter plots of the correlation are
displayed in Figs. 3 and 4. All regressions were statistically signifi-
cant at a confidence level of 95%. Unlike the P-3B correlations, the
CMAQ O3 correlations (Fig. A3) were not generally larger than the
CMAQ NO2 correlations (Fig. A6). Significant differences in
Fig. 5. Example scatter plots for NO2 simple linear regression residuals. (top) Histograms of
plotted against the lagged-1 residuals at Aldino and Beltsville.
correlation between the CMAQ and P-3B analyses occurred be-
tween CMAQ and column_air NO2 at most sites; CMAQ generally
presented larger correlation than column_air. As discussed previ-
ously, the Aldino column_UMD analysis suggested that the P-3B
column_ground correlations were likely too high. The CMAQ O3 or
NO2 correlations were also statistically significantly greater than
NO2 residuals for Essex P-3B column_air and Pandora. (bottom) Pandora NO2 residuals



Table 6
Summary of the R2 statistic and F-ratio (p-value) for the P-3B O3 and NO2 multivariate regressions.

P-3B O3

col_air
R2

P-3B O3

col_ground
R2

P-3B O3 col_air
F-ratio

P-3B O3

col_ground
F-ratio

P-3B NO2

col_air
R2

P-3B NO2

col_ground
R2

P-3B NO2 col_air
F-ratio

P-3B NO2

col_ground
F-ratio

Aldino 0.82 0.83 75.62 (<0.001) 81.87 (<0.001) 0.30 0.78 6.69 (0.003) 55.32 (<0.001)
Beltsville 0.90 0.93 169.79 (<0.001) 227.91 (<0.001) 0.44 0.66 14.88 (<0.001) 37.58 (<0.001)
Edgewood 0.67 0.70 38.36 (<0.001) 44.48 (<0.001) 0.05 0.63 0.85 (0.437) 26.47 (<0.001)
Essex 0.72 0.74 42.99 (<0.001) 47.24 (<0.001) 0.21 0.53 1.91 (0.182) 8.17 (0.009)
Fair Hill 0.66 0.69 37.64 (<0.001) 43.09 (<0.001) 0.19 0.80 2.52 (0.104) 41.53 (<0.001)
Padonia 0.74 0.78 46.66 (<0.001) 57.47 (<0.001) 0.43 0.63 11.23 (<0.001) 25.58 (<0.001)

Table 7
Summary of percentage errors of P-3B multivariate regression for all sites relative to observed surface values. Col_air and col_ground are analyzed together for each site.

O3

Mean error
% of cases w/in
�10% error

NO2

Mean error
% of cases w/in
�10% error

% of cases w/in
�50% error

Aldino 2.0 (�18.2) % 54.8% 8.3 (�33.3) % 22.1% 89.7%
Beltsville 3.5 (�23.6) % 77.2% 2.2 (�15.6) % 52.4% 98.8%
Edgewood 5.8 (�34.9) % 62.2% �89.2 (�439.3) % 5.6% 20.8%
Essex 3.9 (�24.4) % 60.3% 30.6 (�81.8) % 11.8% 61.8%
Fair Hill 2.3 (�18.6) % 67.9% 11.6 (�436.4) % 8.3% 43.8%
Padonia 26.5 (�154.1) % 58.6% 0.8 (�71.7) % 21.2% 72.8%

Table 8
Summary of the R2 statistic and F-ratio (p-value) for the Pandora O3 and NO2

multivariate regressions.

O3

R2
O3

F-ratio
NO2

R2
NO2

F-ratio

Aldino 0.42 130.0 (<0.001) 0.34 84.2 (<0.001)
Beltsville 0.54 201.7 (<0.001) 0.68 354.2 (<0.001)
Edgewood 0.36 89.2 (<0.001) 0.52 123.7 (<0.001)
Essex 0.25 47.7 (<0.001) 0.57 112.7 (<0.001)
Fair Hill 0.47 155.7 (<0.001) 0.27 13.5 (<0.001)
Padonia 0.51 183.3 (<0.001) 0.59 Q85.3 (<0.001)
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those for Pandora O3 or NO2 at most sites. This indicates that O3 and
NO2 may be too well mixed vertically and horizontally within the
model.

Values of R2 for the correlation separation analyses are given in
Appendix B. Comparing the Loughner et al. (submitted for
publication) CMAQ simulation to the P-3B for the correlation ana-
lyses separated by time of day, the CMAQ NO2 correlations were
significantly larger than those for P-3B NO2 column_air for the Af-
ternoon group at four of the sixMDE sites. However, CMAQproduced
significantly larger correlations relative to Pandora for the O3 and
NO2 Afternoon analyses at all sites (Tables B1, B2, B6). The larger
CMAQ NO2 correlations relative to P-3B column_air but not col-
umn_ground for the Afternoon analysis suggests that these large
CMAQ correlations during afternoonmay be related to the growth of
the boundary layer during the day and that toomuch horizontal and
vertical mixing within the boundary layer is occurring in the model.
For the separation by PBL height analyses, CMAQ produced correla-
tions significantly larger than those for P-3B NO2 column_ground for
theHigh PBL group at three of sixMDE sites, and larger than those for
Table 9
Summary of percentage errors of Pandora multivariate regression for all sites relative to

O3

Mean error
% of cases w/in
�10% error

Aldino 0.68 (�8.6) % 82.6%
Beltsville 3.2 (�27.6) % 72.7%
Edgewood 1.4 (�13.9) % 78.9%
Essex 1.8 (�16.6) % 72.9%
Fair Hill 0.56 (�7.6) % 85.3%
Padonia 1.4 (�17.7) % 79.8%
P-3B NO2 column_air for both PBL data groups at all sites. CMAQ
produced significantly larger correlations relative to the Pandora O3
analyses for the Low and High PBL groups at all sites, and relative to
Pandora NO2 for both data groups at four of six sites (Tables B3, B4,
B6). Because most significant differences occurred with either the
Afternoon group or High PBL group, this suggests that mixing in-
fluences the columnesurface relationship within CMAQ and that
horizontal and vertical mixing may be too strong within the model.
Furthermore, the correlation between CMAQ PBL height-normalized
column NO2 and surface NO2 was significantly larger than the full
data set correlations at only two sites; normalization by PBL height
does not add asmuch information to the CMAQ correlations because
NO2 is too well mixed within the model (Table 12).

A high degree of correlation was found between both O3 and
NO2 surface and column output within the NOAA CMAQ forecast
(Table 1); the correlations within this forecast were significantly
larger than the P-3B O3 and NO2 and Loughner et al. (submitted for
publication) simulation correlations at several sites, and was
significantly larger than all Pandora O3 and NO2 correlations
(Table 12). The results for the correlation separation analyses for
the NOAA CMAQ forecast are consistent with the results for the
Loughner et al. (submitted for publication) simulation, though the
impacts within the NOAA forecast were greater. For example, in
addition to presenting significantly larger correlations relative to
the P-3B NO2 column_air analyses for both Low and High PBL
groups, NOAA CMAQ NO2 also produced larger correlations relative
to the NO2 column_ground analyses for the High PBL at four of six
MDE sites (Tables B7 and B8). Additionally, no correlations between
PBL-normalized NO2 column and surface mixing ratios were
significantly different than the full data set correlations for the
observed surface values.

NO2

Mean error
% of cases w/in
�10% error

% of cases w/in
�50% error

19.9 (�71.4) % 26.2% 84.6%
9.8 (�39.3) % 31.0% 85.9%

�131.7 (�1027.3) % 6.9% 42.4%
38.2 (�267.3) % 17.6% 67.1%

�240.7 (�1699.0) % 5.4% 43.2%
62.6 (�465.0) % 17.7% 68.8%



Fig. 6. Example scatter plots for O3 and NO2 multivariate residuals. (top) Pandora O3 residuals plotted against lagged-1 residuals at Aldino and against the logarithm of the inverse
PBL height at Beltsville. (bottom) Histogram of residuals for Fair Hill NO2 column_air regression and plot of residuals vs. predicted surface NO2 for Edgewood column_air regression
for the multivariate regression analysis.

Table 10
Summary of the R2 statistic for the P-3B and Pandora NO2 PBL-normalization
analysis. NS denotes non-significant correlation.

P-3B NO2 col_air
R2

P-3B NO2 col_ground
R2

Pandora NO2

R2

Aldino 0.32 0.62 0.31
Beltsville 0.33 0.51 0.67
Edgewood NS 0.49 0.50
Essex NS 0.46 0.57
Fair Hill NS 0.27 0.28
Padonia 0.37 0.61 0.58

Fig. 7. Example scatter plots of NO2 column vs. surface NO2 mixing ratio at Edgewood fo
displayed at the top of each plot.
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NOAA simulation (Table 12). These results again indicate that ver-
tical and horizontal mixing within the model may be too strong,
and that inaccuracies within model mixing schemes can have an
important impact on the columnesurface relationship for O3 and
NO2 within CMAQ.
6. Conclusions

A wide range of degrees of correlation resulted from the simple
linear regression analyses between the O3 and NO2 column and
r the P-3B (left) and Pandora (right). Normalization by PBL height analysis. R2 values



Table 11
Summary of the R2 statistic and F-ratio (p-value) for the CMAQ O3 and NO2 simple linear regression analysis.

CMAQ (Loughner
et al.) O3 R2

CMAQ (Loughner
et al.) NO2 R2

CMAQ
(Loughner et al.)
O3 F-ratio

CMAQ
(Loughner et al.)
NO2 F-ratio

CMAQ
(NOAA) O3

R2

CMAQ
(NOAA) NO2

R2

CMAQ
(NOAA) O3

F-ratio

CMAQ
(NOAA) NO2

F-ratio

Aldino 0.56 0.76 46.09 (<0.001) 46.09 (<0.001) 0.86 0.67 225.81 (<0.001) 74.01 (<0.001)
Beltsville 0.75 0.39 126.24 (<0.001) 26.58 (<0.001) 0.84 0.74 221.54 (<0.001) 117.05 (<0.001)
Edgewood 0.53 0.49 49.32 (<0.001) 42.81 (<0.001) 0.82 0.65 190.83 (<0.001) 79.50 (<0.001)
Essex 0.63 0.63 62.90 (<0.001) 63.43 (<0.001) 0.71 0.88 91.06 (<0.001) 270.38 (<0.001)
Fair Hill 0.54 0.93 48.68 (<0.001) 544.03 (<0.001) 0.83 0.88 205.91 (<0.001) 305.17 (<0.001)
Padonia 0.81 0.68 160.75 (<0.001) 78.30 (<0.001) 0.78 0.68 134.42 (<0.001) 78.13 (<0.001)

Table 12
Summary of the R2 statistic for the CMAQ NO2 PBL-normalization analysis. NS de-
notes non-significant correlation.

CMAQ (Loughner
et al.) NO2

R2

CMAQ
(NOAA) NO2

R2

Aldino 0.88 0.79
Beltsville 0.85 0.67
Edgewood 0.63 0.50
Essex 0.77 0.88
Fair Hill 0.95 0.91
Padonia 0.90 0.82
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surface data. The OMI tropospheric O3 and NO2 data resulted in
non-significant correlations, the P-3B column_air NO2 and Pandora
O3 demonstrated a low degree of correlation, P-3B column_ground
NO2, CMAQ O3 and NO2, and Pandora NO2 demonstrated a mod-
erate degree of correlation, and P-3B column_air and column_-
ground O3 demonstrated a high degree of correlation with surface
air quality observations. These results indicate that O3 is generally
well mixed in the vertical and horizontal, while NO2 is not. Further,
a simple linear regression model was found to fit the P-3B O3 col-
umn and surface datawell, while it struggled to capture the column
versus surface relationships for the P-3B NO2, Pandora O3, and
Pandora NO2 data. Themultivariate regression analyses and the PBL
normalization correlation analyses indicate that PBL height (an
indicator of mixing) add meaningful information to the columne
surface relationship.

The O3 correlations within the Loughner et al. (submitted for
publication) simulation and NOAA CMAQ forecast were similar
to the P-3B O3 correlations, but were more similar to column_-
ground than column_air for NO2. Both sets of CMAQ output
demonstrated greater correlation between the O3 and NO2 col-
umn and surface during the afternoon and for conditions asso-
ciated with a maturely developed PBL than did the observations.
These results indicate that vertical and horizontal mixing within
the model is stronger than in the observational data sets. In future
work, we will investigate how the vertical mixing in CMAQ can be
improved.

The large OMI footprint likely contributes to the non-significant
correlations obtained between OMI tropospheric O3 or NO2 column
and surface observations; the insufficient sensitivity of the OMI
instrument to the lower troposphere also contributes for the OMI
O3 analyses. The DISCOVER-AQ measurements suggest that O3 ob-
servations from future satellite instruments can be meaningful for
surface air quality analysis if they have sufficient sensitivity to the
lowest 2e3 km of the troposphere.
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