
THE SOPRANTS:

CONCEPTUAL AND TECHNICAL FRAMEWORK FOR A 3D INTERACTIVE

VIDEO GAME

A Thesis

by

TATSUYA NAKAMURA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Visualization Sciences

THE SOPRANTS: CONCEPTUAL AND TECHNICAL FRAMEWORK FOR A

3D INTERACTIVE VIDEO GAME

A Thesis

by

TATSUYA NAKAMURA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Carol LaFayette
Committee Members, Bradleigh Vinson

Vinod Srinivasan
Head of Department, Mardelle Shepley

August 2006

Major Subject: Visualization Sciences

iii

ABSTRACT

The Soprants: Conceptual and Technical Framework for a 3D Interactive Video

Game. (August 2006)

Tatsuya Nakamura, B.S., Kyoto University;

M.S., Kyoto University

Chair of Advisory Committee: Prof. Carol LaFayette

This thesis covers the design of an interactive 3D video game with certain unique

features and demonstrates the design through a prototype implementation. Insect

characters are modeled after human characters and set in a game story. The ants

in the game behave similar to leaf-cutter ants. A 3D game environment based on a

real ant colony nest is created and used for prototyping the game. Insect behavior

based on behavior of real ants is implemented in an interactive 3D environment. The

cinematic scenes and the trailer of the game are created to present the game story.

iv

To my family

v

ACKNOWLEDGMENTS

I would like to thank my committee chair Prof. Carol LaFayette and Dr.

Bradleigh Vinson for their encouragement and guidence. I would also like to thank

Dr. Vinod Srinivasan who served on my committee for being prompt and supportive.

I cannot fully express my gratitude to my parents and family for blessing me

with their love and support.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Problem Statement . 3

II PREVIOUS WORK . 4

III METHODOLOGY . 9

A. Story Development and the Game Design 9

1. The Ants’ Family and Their Business 9

2. Game Navigation . 11

3. Game User Interface 11

4. Cutscenes . 12

5. Game Trailer . 13

B. Ants’ Behavior Creation 14

1. A* . 15

2. Pheromone Trail . 16

C. Prototyping . 18

1. Game Engine . 18

2. Character Behavior Implementation 20

a. Character Animation with User Inputs 21

b. Character Navigation with A* 21

3. Pheromone Trail Implementation 22

D. 3D Ant’s Nest Model . 23

1. Display the Volumetric Data of the 3D Grids 24

2. Constructing Surface from the Volumetric Data 26

3. Compositing the Surface Models 27

IV RESULTS . 28

A. Ants Visualization with the Game Engine 28

1. 3D Modeling and Animation 28

a. Ant Modeling . 28

b. Ant Walk Cycle 29

2. Pheromone Trail . 31

a. Leaves, Pheromones, and the Game Field 31

vii

CHAPTER Page

b. Collision Avoidance 33

c. Random Walk . 33

3. Configurations and Results 34

B. The Ant’s Walk Through System in the 3D Nest 36

1. Game Character and Environment Settings 36

2. Game Navigation . 36

C. Cutscenes . 38

D. Game Trailer . 40

V CONCLUSION AND FUTURE WORK 44

A. Discussion of Results . 44

B. Implications for Future Research/Creative Work 45

REFERENCES . 47

VITA . 50

viii

LIST OF FIGURES

FIGURE Page

1 (a) “A Bug’s Life” (1998), (b) “Antz” (1998). 5

2 Screen shots from “SimAntTM.” (a) An ant is digging tunnels in

the nest. (b) Ants are collecting food out of the nest. 7

3 Screen shots from “Empire of the AntsTM.” (a) The player is ex-

ploring the 3D game environment around the nest. (b) Its opening

cutscene shows a scene inside the nest. 8

4 ”The Sopranos” is the story of a mafia boss and his family. 11

5 The game flow chart. 12

6 Left: the worker ant of Atta texana. Right: its trail pheromone. . . . 14

7 The three states and transitions of the agent in its Finite-State Machine. 17

8 A behavior-based architecture example. 19

9 Game Logic example. 20

10 Convert 3D volumetric data to text files. 25

11 3D volumetric data of ant colony nest. 25

12 The surface model created from the volumetric data. 27

13 The reference picture of Atta texana: (a) a worker and (b) a soldier. . 29

14 The final 3D ant model: (a) top view, (b) side view, and (c) front view. 30

15 The 3D ant model rigged with the bones. 31

16 Eight directions of the ant’s orientation and its interpolation. 32

ix

FIGURE Page

17 (a) Two ants bring leaves to their nest. The dots on the field

represent their pheromone. (b) One ant reached to their nest. (c)

The other an ant is walking near the pheromone. 35

18 The 3D model of a non player character. 37

19 The non-player characters in “BUG BING!”. 37

20 The office of the “BUG BING!” . 38

21 The terrain used for the walk through system. 39

22 The system shows an overlay message to a player. 39

23 The intermission cutscene for the second stage. 40

24 The intermission cutscene for the third stage. 41

25 The foraging ants are animated with the pheromone trail simulation. 41

26 Four stills from the game trailer. 42

1

CHAPTER I

INTRODUCTION

The aim of this research is to design an interactive 3D video game with certain unique

features and to demonstrate the design through a prototype implementation. Three

key features of game design in this research are:

1. A game story in which insect characters are modeled after human characters.

2. A 3D game environment based on a real ant colony nest.

3. Insect behavior in an interactive 3D environment based on behavior of real ants.

Insect characters are often seen in many kinds of interactive and non-interactive

stories. Their appearances and behaviors are are well known and easily characterized.

Ants are especially known for their characteristic group behavior. Some entomologists

have proposed that an ant colony is best viewed as a “superorganism” because of their

dominance as a group [1]. Ants are to be found everywhere and are categorized as

social insects.

There are some interactive video games that explore the behavior of ants and

other insects. They can be divided into three categories, where a single game title is

selected to represent the games in that category:

1. Simulation game: SimAntTM(1991)

2. Strategy game: Empire of the AntsTM(2001)

3. Platform game: A Bug’s LifeTM(1998)

The journal model is IEEE Transactions on Automatic Control.

2

The first two games include types of ant behavior, which will be discussed in the next

chapter. The goal of both games is to survive as an ant or a group of ants as long

as possible in the rule system, which simulates real world interaction. The third is

based on the movie of the same name. It requires the player to navigate a character

through various puzzles using a player’s wit and skill with the joystick, as with other

general platform games, such as Nintendo’s Super Mario BrosTM(1985).

This research project uses the category of the adventure game to create a visual,

interactive story. The game requires a player to navigate an ant character through

an original story for the game, but does not require fast reflexes. The story is built

upon a player’s actions until the game is completed.

The game will provide an ant s experience in an interactive 3D environment

through a visual narrative about family life within a colony. The leaf-cutter ant’s

unique behavior of growing fungus will be an interesting part of the game story. The

game player will be easily involved in the game experience.

The game is about a conflict between two ant colonies. A player becomes an ant

who is working as a spy. The ants in the game behave similar to leaf-cutter ants:

they are cultivating a fungus inside their nest that is grown to feed the queen and her

brood. The fungus grows on bits of leaves cut and brought into the nest by foraging

workers. The ants form a family and follow a family code, just as a human family

does.

The ant nest as a game environment will be based on collected data of a leaf-

cutter ant colony. The game player explores the game environment as a leaf-cutter

ant. The player’s role as a spy in the ant’s family is an important part of the game.

Through the game experience the player learns about an ant family that is very

similar to a human family.

3

A. Problem Statement

The purpose of this research is to create a conceptual and technical framework for

developing a 3D interactive video game. The game story and navigation will be

developed as the conceptual framework. The technical framework will involve:

1. The 3D modeling of an ant character

2. Creating a 3D interactive animation with the ant behavior

3. Prototyping the game with 3D game development tools

To create ant behavior patterns in a 3D interactive environment, two interactive

graphics techniques will be used: a crowd controlling system and an autonomous

agent system. A crowd controlling system will be used for managing the characters’

movement. An autonomous agent system will be used for creating non-player char-

acters in an interactive 3D game and an AI (artificial intelligence) solution is often

used in its implementation.

4

CHAPTER II

PREVIOUS WORK

There have been many approaches to creating insect or animal behavior for both

computer animated feature films and video games. In the film industry, there is high

demand for animating hundreds of background characters efficiently and effectively.

Some autonomous crowd systems have been developed to create computer generated

feature films with 3D graphics technology.

Pixar used a proprietary crowd system for animating hundreds of ants in the

feature film, “A Bug’s Life” (1998) [2]. PDI/DreamWorks also developed its own

in-house crowd systems that included a rule-based simulator to create crowds of ants

in its first feature-length animation, “Antz” (1998) [3]. Both crowd systems are fully

customized in their animation pipelines and also control the behavior of the ants

animated with crowd simulators. See Fig. 1.

In the production of “A Bug’s Life”, a visual-effects team controlled the move-

ment of the environment and crowds of ants with Pixar’s proprietary crowd system.

Animators created the performance for the characters and provided animation cy-

cles for the crowds. The crowd simulator used procedures to mix and match bits of

keyframe animation and rules to help guide the behavior of ants. With the simulator

they could create a line of dancing ants in which each ant does something slightly

different.

For the production of “Antz”, PDI/DreamWorks created two types of crowd sys-

tems. One system blends a mixture of body types and motions and is used primarily

for crowds of fewer than 50 ants. The second system gives animators less control and

more automation and is used for larger crowds. The second crowd system used for

“Antz” is a rule-based simulator. The behavioral simulation is loosely based on Craig

5

Reynolds‘ flocking system: basically the ants avoid obstacles, avoid each other, and

have a goal they try to get to in the environment. The simulator can work with ants

placed on a plane with height fields; this plane is then mapped onto the geometry

of the environment. These two crowd systems provide flexibility for both small and

large size crowds. See Fig. 1.

The most recent 3D animated feature film created with a crowd system is “Robots”

(2005) [4]. Blue Sky Studio used its own layered crowd system for the film and its

basic idea of the crowd system is to move characters on a ground plane while they

execute animation cycles, with goal seeking and collision avoidance. The system was

implemented as a plug-in to the MayaTMsoftware package. The system was a custom

field that operates on a particle system, similar to gravity or turbulence. The plug

-in was written in C++ using the MayaTMAPI.

(a) (b)

Fig. 1. (a) “A Bug’s Life” (1998), (b) “Antz” (1998).

In the computer games industry, autonomous agents for interactive game envi-

ronments have been widely used. Agents are used to control computer characters

with AI techniques. Character behavior is one of the important aspects of gaming

6

technology used to create a more realistic gaming experience. There are a couple of

games that have implemented insect behavior in interactive game environments.

Maxis’ “SimAntTM”(1995) simulates ant behavior based on real ant biology. In

the game, the player experiences life as an ant. The player digs tunnels and collects

food to hatch eggs in the nest. The player can also recruit other ants to form an

army to fight with opponents. The ants in the game have a simple class system

which includes workers, soldiers, and the queen ant. Will Wright, the creator of

“SimAntTM,” suggests that the educational objective is to teach players about the

emergent behavior of multi-cellular organisms like ant colonies [5]. See Fig. 2.

The game provides two different kinds of views: one is a side view of underground

ant colonies, the other is an overhead view of a yard where the ants establish their

colonies. The player establishes a black ant colony in a small patch of yard. The

computer establishes a competing red ant colony in the same patch. The ultimate

aim of the game is to spread throughout the yard by producing young queens and

battling against the red ants. The player has direct control of a single ant at a time

and may switch control to a different ant at any time. The player’s ant may influence

the behavior of other black ants by leaving pheromone trails to destinations such as

food and enemy ant colonies.

Strategy First’s “Empire of the AntsTM” (2001) [6] is a real-time strategy game

based on the science fiction book Empire of the Ants (1991) authored by Bernard

Werber [7]. The story behind “Empire of the AntsTM” comes straight from Werber’s

novel. The Western Empire of Russet Ants is trying to expand its territory while

protecting its borders from hostile invaders.

Players assume the role of an ant commander who must oversee the management

and expansion of a colony of ants. The game includes a series of missions with

a variety of objectives that range from collecting food to fighting an enemy. The

7

(a) (b)

Fig. 2. Screen shots from “SimAntTM.” (a) An ant is digging tunnels in the nest. (b)

Ants are collecting food out of the nest.

concept and design of the game are very similar to those of other real-time strategy

combat games. Many of the ants’ function in the game like classic real-time combat

units.

The game provides a realistic 3D game environment in both appearance and be-

havior, with many different kinds of insects. Maps include a variety of woodland and

rural environments, all seen from a movable, top-down, 3D perspective. In addition,

the program employs an underground viewpoint that allows players to examine a

series of tunnels and chambers from the inside of ant hills, hives, and nests. See Fig.

3.

Disney Interactive’s “A Bug’s LifeTM” (1998) is based on the Pixar movie of the

same name. A player becomes the ant “Flik” and experiences his adventure in the

bugs’ world [8]. Many other insect characters from the movie also show up in the

game and help or hinder a player depending on their roles.

8

(a) (b)

Fig. 3. Screen shots from “Empire of the AntsTM.” (a) The player is exploring the

3D game environment around the nest. (b) Its opening cutscene shows a scene

inside the nest.

The game environment is fully generated with 3D graphics and a player can walk

through the world from Flik’s point of view. Although the graphics resolution is not

as high as that of the movie, the game presents the fascinating bugs’ world with

interactivity.

9

CHAPTER III

METHODOLOGY

There are three stages in my research procedure: the first stage is developing the story;

all characters and environments are designed for prototyping the game in this stage.

An important part of the story is character development. The characters for this game

are modeled after the human characters in the HBO drama series, “The Sopranos.”

The second stage is developing the interactive game demo, including 3D ant nest

modeling, pheromone based foraging, prototyping, and “cutscenes.” A cutscene is “a

film in a game” and an important part in the storytelling of an interactive game. A

cutscene is either a film/video or a 3D animation [9]. There are two different types

of animated cutscenes: one is a fully pre-rendered CGI movie clip and the other is a

real-time 3D graphics clip rendered by a game engine.

The third is developing the game trailer, which includes screen captures of the

interactive demo and edited cutscenes.

A. Story Development and the Game Design

1. The Ants’ Family and Their Business

A mafia family story is developed as a background theme. In the story, two ant

colonies become two mafia groups and the game player is a spy for one of the fam-

ilies. The goal of the game is to observe ants in the opposing family and to collect

information about their activity.

The game has three different phases and the player is to complete a different

mission in each phase:

The First stage The player explores the underground nest and installs wires to

10

transmit the ants activity to a location outside of the nest. The purpose of

this mission is to learn about the structure of the nest and to meet with some

ants who lead their family business.

The Second stage The player works as a soldier ant and helps forage in order to

observe enemy activity, which is reported to an agent. The purpose of this

mission is to collect information about growing fungus and hatching eggs. The

game field in this stage is located between the nest and the tree where ants

collect leaves to grow fungus. The highlight of the second mission is to meet

with the boss of the nest - the queen ant.

The player detects the red ants’ secret activity similar to the drug dealings in

the human society which is one of the mafia activities in “The Sopranos”. The

red ants grow the mushroom in their fungus and sell it to the other ants as

a drug. The player finds that the red ant mafia has a secret route to bring

their mushroom through this mission. They are a drug-trafficking criminal

organization, which causes many mushroom addicts in the black ant society.

The Third stage After the second mission is complete, one of the under-bosses of

the black ant family is accidentally killed. They suspect that someone outside

the family has killed their under-boss, so they prepare for war against the red

ant family. The purpose of the third mission is to collect information about the

army of the red ants before the war begins. At the end of this mission, the war

between the black ants and the red ants occurs. The result of the war depends

on the activity of the player throughout the three missions.

HBO’s TV drama series “The Sopranos” (1999) is referenced for character devel-

opment. “The Sopranos” is the story of a mafia boss who cares for both his immediate

11

family and his mafia family. See Fig. 4. The game story is modeled along the plot

lines of ”The Sopranos”: the ants have their own code and they have to follow their

code to do business. Each ant has a role to play to be a member of the family.

Fig. 4. ”The Sopranos” is the story of a mafia boss and his family.

2. Game Navigation

Fig. 5 shows the flow chart of the entire game. The game starts at Game Start and the

player ends with Game Clear if he or she goes through the entire story without failing.

Between Game Start and Game Clear, the player experiences the three interactive

parts (the first, the second and the third stage) and the four intermission cutscenes.

3. Game User Interface

The game screen displays the game objects and the environment in an interactive

game sequence. The game screen also provides the game user interface, which allows

the player to interact with the game objects. The game user interface includes the

following functions:

Dialog selection The player has multiple choices of dialog when he or she encoun-

ters a game character. The dialog selection involves clicking the text to choose

12

Fig. 5. The game flow chart.

the player’s dialog. The dialog list displayed during the selection changes, de-

pending on the player’s situation. The player’s choice of dialog creates a different

narrative path.

Information The user interface displays detailed information about a game object

or character when the player examines it. The information is provided via text

which describes the object and/or its high-resolution model.

The game user interface is displayed in an overlay onto the 3D graphics in the

game screen.

4. Cutscenes

The game includes four different cutscenes as shown in Fig. 5:

13

Intro Movie This cutscene describes various episodes about one or more characters

in the game. One of the episodes is selected randomly from 20 different episodes

at the beginning of the game. The player learns about the background story of

the characters each time he or she begins the game.

Gameover CutScene This cutscene plays when the player fails his or her mission.

The cutscene is about his or her death.

Intermission CutSceneA This cutscene transitions between the first mission and

the second mission. In this cutscene, The player is overhearing a conversation

at a meeting of the red ant mafia, using a transmitter which he or she installs

during the first stage.

Intermission CutSceneB This cutscene transitions between the second mission

and the third mission. This cutscene is about the accidental death of the red

ant under-boss.

For prototyping the game, Gameover CutScene and Intermission CutScenes are

created. These are pre-rendered 3D animation clips with game resolution characters

and environment models are created and rendered with MayaTM.

5. Game Trailer

In this stage, the game trailer is created with captured screen shots and cutscenes.

A game trailer is created to present research results in the form of a short (60 -

90 second) sequence, similar to a music video. The trailer shows the results of 3D

modeling of characters and environments developed for the game and gives an idea of

the interactive game play. The soundtrack for the trailer is outsourced and created

by a composer.

14

B. Ants’ Behavior Creation

To create 3D interactive animation with the ant behavior in the game, ants’ foraging

is simulated. A simplified ants’ foraging behavior can be described as follows:

1. Ants go out of their nest and find food.

2. Ants carry food and go back to the nest.

There are several ways to find the way home for real ants in the natural world.

The method of navigating depends on the situation in which an ant may find it-

self. There is always a back-up method should one fail. One of them is by scent or

pheromone trail; however, scent trails do not last very long as the substance even-

tually evaporates. Ants may also make use of the shape of the land or landmarks,

the position of the sun in the sky, or the shape of the tree canopy above the nest

[10]. It is known that the worker ants of Atta texana, whose trail marking substance

contains both volatile and nonvolatile components, readily followed trails made with

synthesized substances as shown in Fig. 6 [11].

Fig. 6. Left: the worker ant of Atta texana. Right: its trail pheromone.

To create ant foraging behavior in the game, two different methods are used for

finding the way to food and the nest. One is a famous path finding algorithm called

15

A* (a-star). The other is by pheromone trail. The ants that lead other ants to either

food, leaves, or the nest are animated easily with the former method. The other ants

are animated with the latter method and they form a crowd of foraging ants. Each

ant character in the crowd is an autonomous agent which interacts with a 3D game

environment. To simplify the simulation of its behavior, an agent takes a 2D square

tile-based game field mapped to a 3D game environment and moves in any of four

directions: front, back, left and right.

1. A*

The A* algorithm is widely used as a general path finding algorithm for agents,

especially for non-player characters in many interactive games. The algorithm finds

the shortest path between two positions on a map, if one exists, and does so relatively

quickly. It doesn’t blindly search for a path, but instead assesses the best direction

to explore, sometimes backtracking to try alternative means [12].

To implement the A* algorithm, the following objects are defined and used:

1. A map is the space that A* uses to find a path between two positions. In

the game, the map is a 2D tile-based game field which represents the game

environments where the ants are foraging.

2. Nodes are structures that represent positions on the map. The position repre-

sented by a node corresponds to the grid in the map. The nodes store informa-

tion critical to the A* algorithm as well as position information. Two or more

nodes can correspond to the same position on the map.

3. The distance is used to determine the ”suitability” of the node explored and

is calculated with the number of tiles in the shortest path between two nodes

when the A* is applied to a 2D tile-based map.

16

4. The cost is associated with each node and it represents whatever it is that the

path is supposed to minimize - typically, distance traveled, time of traversal, or

fuel consumed. In the game, the distance traveled in a 2D map is mainly used.

The time of traversal or fuel consumed could be an alternative cost when 3D

geometry that ants are trailing is taken into account.

A* keeps track of two lists of nodes, called Open and Closed, for unexamined and

examined nodes, respectively [13]. At the start, Closed is empty, and Open has only

the starting node (the agent in its current position). In each iteration, the algorithm

removes the most promising node from Open for examination. If the node is not a

goal, the neighboring locations are sorted:

1. If they’re new, they’re placed in Open;

2. If they’re already in Open, information about those locations is updated, if this

is a cheaper path to them;

3. If they’re already in Closed, they are ignored, since they’ve already been exam-

ined.

If the Open list becomes empty before the goal is found, it means there is no

path to the goal from the starting location.

2. Pheromone Trail

Pheromone-based ant foraging is implemented as an agent behavior with a Finite-

State Machine. A Finite-State Machine is a rule-based system in which a finite

number of “states” are connected in a directed graph by “transitions” between states.

The agent has three states. See Fig. 7. The first state is looking around to find

the pheromone. The second state is smelling three adjacent squares (the one is in

17

the direction in which it is heading and the other two are its left and right side) and

stepping into the square which includes the pheromone it recognizes. The third state

is bringing the food to the nest.

In the first state, an agent walks randomly to find any pheromone around it. In

this state, an agent does not exude a pheromone itself. In the second state, an agent

moves into its new position exuding pheromone to lead another ant along the same

path. In the third state, an agent tries to return to the nest [14].

Fig. 7. The three states and transitions of the agent in its Finite-State Machine.

18

C. Prototyping

Rapid prototyping of the game ensures that techniques are usable. The game devel-

opment tool for prototyping should have the following capabilities:

• The tool must present the game look and feel in a relatively complex 3D envi-

ronment.

• The tool must serve as a game engine which enables characters to interact with

a player in real-time.

• The tool must provide an easy user interface to build the game in the short

term, as well as a programmable logic structure to implement various kinds of

algorithms used in the game.

After looking at some of the available options, including full-fledged game en-

gines, BlenderTMwas selected as the prototyping tool. It is a free, open source software

designed as a 3D modeling, animation and rendering tool which includes a real-time

game engine for interactive 3D content [15]. The game engine supports collision

detection and dynamics simulation which are necessary to create a 3D gaming envi-

ronment. BlenderTMprovides instant game play without preprocessing or compiling

any 3D object data because it has an internal 3D object database which is directly

accessed from the game engine.

1. Game Engine

A game engine is the core software component of a video game. The most common

element that a game engine provides is graphics rendering facilities (2D or 3D) [16].

It might also handle additional tasks such as game AI and collision detection between

game objects, among other things.

19

The architecture and interface of a game engine mostly depends on what it

is customized for. For instance, some of the game engines currently available are

customized for creating 3D first person shooters. The game engines utilize hardware

accelerated graphics rendering. They use game objects created with external 3D

graphics software to build and render the 3D interactive environment.

BlenderTMhas its own game engine. The architecture of the BlenderTMGame En-

gine (BGE) is similar to ”behavior-based architecture” in robotics. In behavior-based

architecture, the robotics agent design is decomposed into behavior modules such as

wall-following and obstacle avoidance. Each behavioral module accesses sensor inputs

it needs and sends its own signals to actuators, reducing the need for a central pro-

cessing unit and thus improving response time [17]. Sensors are components of a robot

that enable it to gather information about their environment. An actuator is a device

that converts software commands into physical motion. Fig. 8 shows an example of a

behavior-based architecture, in which the four behavior modules independently take

in input from the sensors and then send commands to the actuators.

Fig. 8. A behavior-based architecture example.

In the BGE, Game Logic is the run-time module executed by the game engine and

20

is designed based on the behavior-based architecture. In the BlenderTM3D interactive

environment, each game object becomes an agent which works based on user-defined

modules. Fig. 9 shows a simple example of a Game Logic for an agent, which turns

either left or right if something is in its heading direction. The controller, which is

in between the sensor and the actuator, works as a behavior module in the behavior-

based architecture and is implemented by a simple arithmetic/logical expression or

by a Python script, which is written in the object-oriented programming language

called Python, which is interpreted and run on the BGE.

Fig. 9. Game Logic example.

2. Character Behavior Implementation

The ant agent is modeled with MayaTMsoftware and exported to BlenderTMas a 3D

polygon model. It is rigged with blender armature system and animated in the BGE.

The armature system is used for deforming a character model to animate it with

keyframes. The armature is an object comprising several interconnected bones and

works like a skeleton in a living creature. To implement the ant character behavior

with Game Logic, the following two steps are used:

21

1. Character animation with user inputs

2. Character navigation with A*

a. Character Animation with User Inputs

The ant character walk cycle is created with the keyframe animation of bones in the

ant’s armature and driven by user inputs through keys with the ant character’s Game

Logic. The following modules are used in the Game Logic:

Keyboard sensor : scans user inputs through keys and passes key information to

controllers. The game player control the ant’s movement with four arrow keys:

up, down, left, and right corresponding to going forward, turning back, turning

left, and turning right respectively.

Python controller : calculates the force to apply to the character when it goes

forward, interpolates the angle of the character’s direction when it turns, and

selects an appropriate keyframe in its walk cycle animation based on the distance

it has moved from the last frame.

Force actuator : applies force to the character to move it in the direction it is going.

Armature actuator : sets the character’s frame to all the bones in its armature to

repeat its walkcycle animation.

b. Character Navigation with A*

Some ants in the game are autonomous agents which go back and forth on the game

map between their start positions (usually their nest) and their end positions (often

either food or a leaf to carry to the nest). The same walk cycle animation as used

22

for the user-controlled ant is used for the agent ants. However, their direction of

movement was determined with A* algorithms rather than user input keys.

To navigate an agent ant character with A*, three steps are processed by the

Python script in its Game Logic:

1. Obtaining the game map information: the map consists of 2D grids and each

grid contains the information about the cost to pass over the grid. For instance,

the cost of the grid covered with mud is higher than that covered with sand.

The simplest map for the game consists of 2D grids which contain the values

either 0 or 1, which correspond to open space or obstacle, respectively.

2. Finding the corresponding grid to the agent’s position.

3. Run A*: the algorithm stops after it finds the grid that the agent steps into

before it searches the entire map and finds the complete shortest path to its

goal.

4. Move toward the grid where the agent steps into based on the result of the

previous step.

The Game Logic repeats the above steps each time the agent moves so that it

can perform A* correctly even if the map or goal information is changed dynamically.

3. Pheromone Trail Implementation

To create the crowd of ants, the pheromone trail method is implemented on the BGE.

In the Game Logic, the agent’s state transition is managed with a state property which

specifies the agent’s current state and different modules are used in different states

as follows:

1. Random walk: the agent’s direction is determined with a random number.

23

2. Smelling the pheromone and stepping into its grid: the three radar

sensors are used to find pheromone objects in the grid cells to the front, left,

and right of the agent’s current position. A Python controller drives force and

armature actuators to move and animate ants based on the inputs from the

sensors.

3. Bringing food to the nest: the A* algorithm is used to direct the agent to

the goal.

A pheromone object is an invisible object which is produced and put on the game

map when agents are in the second state.

D. 3D Ant’s Nest Model

The 3D nest model is based on the shape of a real ant colony which is adapted to

make it suitable for use in a gaming environment. Creating the model with GPR

(Ground Penetrating Radar) scanning technology provides a believable structure for

nest chambers and tunnels.

Ground Penetrating Radar can see beneath the soil. High frequency radar pulses

are sent from a surface antenna into the ground. The elapsed time between when the

pulse is transmitted and when it is received after being reflected from buried materials

or sediment and soil is measured. The antennas are moved along the surface, following

transects of a grid [18]. The result of GPR scanning is processed with customized

software and converted into 3D volumetric data which consists of many 3D grids.

To create the 3D surface model, visualization of the volumetric data is done in

the following process:

1. Display the volumetric data of the 3D grids.

24

2. Construct surface from the volumetric data.

3. Composite the surface models to create ant’s nest model.

MayaTMis selected as a 3D visualization tool for the process. MayaTMprovides an

extremely powerful and flexible user interface for 3D virtual environment creation, and

many game companies use MayaTMas their primary common platform for authoring

3D data. To translate the 3D nest model, MayaTMworks perfectly as a powerful

modeling tool.

1. Display the Volumetric Data of the 3D Grids

The 3D volumetric data is provided in Hierarchical Data Format or HDF. HDF is

an extensible, binary, public domain file format specification for storing data and

images. The volumetric data used here is in the form of a 3D spreadsheet. The

3D spreadsheet is separated into 100 2D spreadsheets with NCSA HDFView, which

was developed for browsing and editing general HDF data, and is available for free.

Each 2D spreadsheet in the data corresponds to one slice of the volumetric data

and is provided as a text file, which has 80 rows and 80 columns. Each value in its

cell represents a measure of the density in the corresponding grid contained in the

volumetric data See Fig. 10.

The text files are read and converted into a 3D array with MayaTMEmbedded

Language or MEL. MEL is a script language interpreted and run on MayaTM. It

is generally used for creating models and animations procedurally. To display the

volumetric data, the MEL script slices through the grid in the 3D array data, creates

planes of polygons, and renders these with appropriate colors that represent density

values in the data. The result shows the structure for the ant nest as well as different

types of soil that surround the nest. See Fig. 11.

25

Fig. 10. Convert 3D volumetric data to text files.

Fig. 11. 3D volumetric data of ant colony nest.

26

2. Constructing Surface from the Volumetric Data

The surface construction process involves the creation of a surface model which con-

sists of 3D volume data. To select the desired surface to construct, a density value in

the volume data is specified. The surface model consists of polygons so that graphics

hardware can draw the model as a gaming environment in real-time.

The algorithm called ”marching cubes” creates a polygonal surface representation

of an isosurface of a 3D scalar field. An isosurface is a 3D analog of a contour line. It

represents a surface of constant value (e.g., pressure, temperature, velocity, density)

within a volume of space. The algorithm processes a 3D scalar field in scan-line

order and calculates triangle vertices using linear interpolation. The detail in images

produced from the generated surface models is the result of maintaining the inter-slice

connectivity, surface data, and gradient information present in the original 3D data.

The algorithm is implemented with C++ language in a customized program.

The program works in the following steps:

1. Read the text files produced from the original HDF file and convert them into

3D array data.

2. Create the surface of a specified density value with the ”marching cubes” algo-

rithm.

3. Save the surface models as a set of triangles in Alias Object file format.

The program is executed as many times as the number of different density values

in the volume data and results in a set of surface model data which covers whole

values in the volume data.

27

3. Compositing the Surface Models

To create the surface model which represents the structure for nest chambers and

tunnels, appropriate density values are selected based on the 3D volumetric data

displayed in the first process. The surface composition process combines the surface

models with selected density values. MayaTMimports the surface model produced

from the customized program in the previous process and displays it in a separate

layer depending on its associated density value.

Imagery of the surface model created from volumetric data was first used in an

interactive installation entitled atta [19]. See Fig. 12. The surface model is a large set

of triangles and is manually crafted for use in a 3D game environment with MayaTM.

A portion of the entire model is used in demonstrating the game environment included

here.

Fig. 12. The surface model created from the volumetric data.

28

CHAPTER IV

RESULTS

The results of the research described in this thesis include the following:

1. Ants behavior visualization with the Game Engine

2. The ant’s walk through system in the 3D nest

3. Two short animation clips for the cutscenes

4. Game trailer

The first result shows the pheromone trail implementation in a 3D interactive

environment to be used in both interactive and non-interactive part of the game. The

second result is a sample game navigation of the first stage in the game with the ant’s

nest model. The third result is cinematic sequence inserted between the interactive

parts of the game. The fourth result is the preview of the complete game.

A. Ants Visualization with the Game Engine

1. 3D Modeling and Animation

a. Ant Modeling

The 3D ant model shows the appearance of Atta texana. It is modeled with triangular

and square polygons. Fig. 13 shows the reference picture of Atta texana worker and

soldier ants. From the reference, the model is characterized with a big head, some

spikes on its back, and leg joints. Fig. 14 shows the final model in three diffrent

views.

29

(a) (b)

Fig. 13. The reference picture of Atta texana: (a) a worker and (b) a soldier.

b. Ant Walk Cycle

The 3D ant model is rigged with the Blender armature system and animated on the

BGE with Game Logic. Fig. 15 shows the bones of the ant model. The ant walk cycle

is keyframed with a procedural approach using Python scripting, which automates

the keyframes of the six legs characters’ walk cycle [20].

To animate the ant model walk cycle keyframes, two Python scripts are written

and run on Game Logic. The scripts are extensions of the two scripts “Foot Lock”

and “Orientation” used in “The Official Blender Gamekit” [21]:

Foot lock Python script The ant character moves with a force actuator which

produces a linear motion of the character on the BGE. The keyframe of the

walk cycle is selected in each frame according to the distance the ant moves

from the former frame. The Foot lock Python script calculates the distance the

ant moves between frames and selects the keyframe from the walk cycle in each

frame.

Orientation Python script The ant character walks in one of eight different direc-

30

(a)

(b) (c)

Fig. 14. The final 3D ant model: (a) top view, (b) side view, and (c) front view.

31

Fig. 15. The 3D ant model rigged with the bones.

tions: North, Northeast, East, Southeast, South, Southwest, West, and North-

west. See Fig. 16. The character changes its orientation according to the

direction it is heading. Each time it changes direction, it turns within a range

of 45 to 180 degrees. The Python script changes its orientation at a certain

degree and smoothes interpolation between frames. Fig. 16 shows the interpo-

lations for two in-between frames from Northeast (NE) to East (E). The ant

orients to one-third of the angle between NE and E in the first frame, then to

the two-thirds of the angle in the second frame, and finally to E in the third

frame.

2. Pheromone Trail

a. Leaves, Pheromones, and the Game Field

Other than ants, the following game objects exists in the game field for pheromone

trail implementation, and Game Logic manages each object while the Game Engine

is running:

32

Fig. 16. Eight directions of the ant’s orientation and its interpolation.

Leaves The ant goes back to the nest to deliver a leaf after locating it. If the ant

touches a leaf at certain times, the leaf is gone. Game Logic counts each time

the ant touches a leaf a certain number of times and removes the leaf when the

count exceeds a predefined number.

Pheromone The ant exudes a pheromone trail while bringing leaf to the nest. The

pheromone disappears after a certain duration.

The Game Field The game field is the 3D environment where the ants are foraging.

The game field is a square plane without obstacles except for borderlines in the

four directions: north, east, west, and south. The ant turns back if it encounters

a borderline in front of it.

33

b. Collision Avoidance

The ant character animated in the BGE obeys its physics engine, which detects

collisions among characters and resolves them. If two ants try to approach each other

after collisions are resolved, another collision happens and they are stuck in one place.

To avoid this, each ant has a “radar” which scans a defined heading area, and it turns

back when its radar detects other ants on a borderline.

c. Random Walk

Random walk cycles occur in two cases:

1. The ant avoids collisions with other ants while bringing leaves to the nest.

2. The ant is looking for a pheromone trail.

In the former case, the ant still tries to carry a leaf to the nest after it avoids

collision (i.e. no obstacle is detected ahead of it). In the latter case, the ant walks

randomly to find a pheromone trail and the ant’s behavior is similar to a real ant.

A real ant gets confused if the trail is blurred and cannot find their way to the food

supply. Often, the finder does not go home at all, but simply circles around the food

it has discovered [22].

To create this behavior, the following steps are applied to a random walk:

Step A The ant draws a circle from the grid at which it begins its random walk.

The ant goes forward four grids and then turns right. The ant repeats four

times and comes back to the grid where it started this step.

Step B The ant draws another circle in the opposite direction. The ant turns left in

this step.

34

Step C The ant moves toward the direction either a) where the leaf exists, or b) its

nest in a defined amount of time. If the ant found a leaf before, the case a) is

applied in this step. Otherwise, b) is applied to find the pheromones near the

nest.

Step D After repeating process A to C two times, it goes back to the nest and

repeats its random walk. Two times repeating helps the ant find pheromone

around the leaf discovered before or nest.

Step A and B cause the ant to seek a pheromone trail or a leaf near the place

where its trail became lost. Step C and D cause the ant to approach either a leaf

or the nest to find the pheromone trail in that location. At any time the ant finds

pheromone in neighbor grids, it trails the pheromone.

3. Configurations and Results

Two configurations of the game objects are tested:

1. The 20 x 20 grid game field with two ants and five leaves.

2. The 30 x 30 grid game field with three ants and twenty leaves.

The duration of pheromone existing in the field is the same in both configurations.

Foraging simulation in the game field resulting from these two configurations are:

In the first configuration, all leaves are gone after one and a half minutes. In the

second configuration, all leaves are gone after seven minutes.

The Blender game engine for this simulation was executed on the Blender 2.41

that is run on Linux workstation with an Intel r©Pentium r©4 CPU 3.00GHz speed

and 1G-byte memory. See Fig. 17.

35

(a)

(b) (c)

Fig. 17. (a) Two ants bring leaves to their nest. The dots on the field represent their

pheromone. (b) One ant reached to their nest. (c) The other an ant is walking

near the pheromone.

36

B. The Ant’s Walk Through System in the 3D Nest

1. Game Character and Environment Settings

The following character and environment are designed for the game prototyping of

the first stage:

1. The 3D model of a non-player character

2. The office of the “BUG BING!”

The player ant’s character used in the walk through system is the 3D ant model.

The ant model and animation created for the pheromone trail implementation are

used for the system. The non-player characters have two different appearances; one

is a real ant style and the other is a half-ant-half-human style. When the player

encounters them on his or her way to the nest, they are shown in the real ant style.

When the player communicates with them, they are in the other style as shown in

Fig. 18.

“BUG BING!” is the place where the mafia ants have meetings. It is named

after the place called “BADA BING!” which is one of the most popular places in

“The Sopranos.” A player meets with other mafia ants in its office. See Fig. 19.

A player visits the back office and speaks with the mafia ants. In this prototype,

the player does not have many choices for the conversation. Instead, the player installs

a transmitter somewhere in the office. A table, a TV set and a fish toy are in the

office. See Fig. 20.

2. Game Navigation

The player ant character explores the 3D nest and visits the “BUG BING!” The walk

through system in the 3D nest is developed with the Blender Game Engine (BGE)

37

Fig. 18. The 3D model of a non player character.

Fig. 19. The non-player characters in “BUG BING!”.

38

Fig. 20. The office of the “BUG BING!”

and the player ant walks along a pre-determined path with a pre-keyframed camera

animation for the first stage prototype.

The terrain used for the system is a part of the entire nest model as shown in

Fig. 21.

If no one is in the office, the player installs a transmitter. After the player installs

the transmitter, the agent shows the result of his or her mission. The best place to

install the transmitter is under the table in the office. See Fig. 22.

C. Cutscenes

Two intermission cutscenes are created for the game prototype: one is the intermission

between the first and the second stage. The other is between the second and the third

stage. The first intermission cutscene shows that the player character listening to the

conversation in the back office of the “BUG BING!” through the transmitter which

is supposed to be installed by the player in the first stage. The 3D model of the

39

Fig. 21. The terrain used for the walk through system.

Fig. 22. The system shows an overlay message to a player.

40

characters and environment are rendered with BlenderTMand MayaTM. See Fig. 23.

The cutscenes are edited with the soundtrack which includes the actual voices from

the TV show.

Fig. 23. The intermission cutscene for the second stage.

The second intermission cutscene describes the black ant under boss’s accidental

death which causes the war between the two ant families in the third stage. The black

ants are crushed with a crumb of a cookie and they suspect that their underboss is

killed by the red ants. See Fig. 24.

The foraging ant characters are animated with the pheromone trail behavior

implemented on the BGE. The result of the simulation is converted to keyframes and

used to animate the ants for the cutscene. See Fig. 25.

D. Game Trailer

The game trailer starts with the second intermission cutscene. The second sequence

is the capture from the ant’s nest walk through. The third sequence is the player

installing the transmitter in the “BUG BING!” followed by the first intermission

cutscene. The last sequence shows the black ants outside the nest. See Fig. 26. The

trailer ends with the game title logo.

41

(a)

(b)

Fig. 24. The intermission cutscene for the third stage.

(a)

(b)

Fig. 25. The foraging ants are animated with the pheromone trail simulation.

42

Fig. 26. Four stills from the game trailer.

43

The soundtrack of the trailer includes those of two cutscenes as well as the title

song of the TV show, “Woke Up This Morning” written and performed by A3.

44

CHAPTER V

CONCLUSION AND FUTURE WORK

A. Discussion of Results

The conceptual framework for this video game is as an example of an interactive story

with insect characters. Characters are modeled after human characters in the popular

TV series “The Sopranos,” which also serves as an engaging plot structure for the

game. Interesting leaf-cutter ant behavior, such as growing fungus, is introduced as

the family business of organized crime.

The game is based on real world ants in terms of behavior and colony structure.

A unique innovation is included in the game design: a 3D model from a GPR scan of a

leaf-cutter ant colony. The model is created with the “marching cube” algorithm and

crafted with MayaTMto be used as a 3D environment. The algorithm produced the

model, which consists of polygons. The model was easily converted to a 3D terrain in

the game, and it was manually modified and textured to become one seamless surface

model.

The technical framework for simulating an ant’s pheromone trail is used to cre-

ate a group of non-player ant characters whose behavior is similar to that of an

existing colony. A crowd controlling system is successfully implemented on the

BlenderTMGame Engine. Non-player ant characters are programmed as autonomous

agents animated interactively with Game Logic and Python scripting.

The prototyping process of the game and its cutscenes with two 3D graphics

tools is a useful experiment. MayaTMis used to model 3D objects used in the game.

BlenderTMis used to animate objects for both interactive sequences and cutscenes.

The BlenderTMGame Engine is effectively used for rapid prototyping of game navi-

45

gation and the 3D environment layout. Cutscenes were also created with BlenderTM.

Its rendering performance and quality are acceptable for the prototyping process.

B. Implications for Future Research/Creative Work

The following tasks are needed to complete the game:

1. An entire game navigation with all game characters designed.

2. All 3D objects and environment models.

3. All animations for interactive sequences and cutscenes.

The game characters are modeled after key characters in “The Sopranos” and

their roles in the games are various depending on the entire game story; some of them

are informers that help the player solve the game and others are enemies that try to

trap the player. The player’s tasks in the game involve the following steps:

1. Exploring inside or outside the nest.

2. Talking with ants and collecting information to complete the mission.

3. Speaking with the player’s agent to complete the mission.

The game objects and environments are modeled and textured properly. They

are used in both interactive sequences and cutscenes. Character animation, which

includes lip-syncing for dialog, is a time consuming process. A character’s rig could

be reused among different character models and lip-syncing could be automated with

voice recognition.

Implementation of the agents and crowd system, based on pheromone trail be-

havior, could be extended for animating more ants at once in a scene. The collision

46

avoidance algorithm could be improved so that more agent ants could be animated

without losing the game engine’s performance and interactivity.

The 3D nest model could be developed for use in other creative works. A 3D

ant nest walk-through with a virtual reality system is one example. The ant model is

also reusable for developing a walk-through nest environment. The game prototyp-

ing process itself could also be reused for general game creation. Performance and

quality of consumer 3D graphics cards have improved dramatically. Graphics cards

are becoming more common and prices are dropping. BlenderTMis supported by a

robust developer community and is expected to become a more powerful 3D graphics

platform in the future. One promising development of BlenderTMgame creation is

that of supporting networking games.

While gaming is becoming one of the most-consumed media forms today, new

titles are still being developed by large companies. I hope my thesis project will be

useful to those who wish to create video games independently.

47

REFERENCES

[1] B. Höllodobler and E. O. Wilson., The Ants. Cambridge MA: Belknap Press of

Harvard University Press, 1990.

[2] B. Robertson, “Pixar has taken a unique approach to animating crowds of char-

acters for its next feature film A Bug‘s Life,” Computer Graphics World, Vol.

21, July 1, pp. 24-34, 1998.

[3] B. Robertson, “Faces and crowds,” Computer Graphics World, Vol. 21, July 1,

pp. 61-63, 1998.

[4] J. Patterson, “Implementing Autonomous Crowds In a Computer Generated

Feature Film.” M.S. thesis, Visualization Sciences, Texas A&M University, 2005.

[5] D. Hopkins, Designing User Interfaces to Simulation Games. [Online]. Available:

http://www.donhopkins.com/drupal/node/9.

[6] Strategy First, Empire of the Ants. [Online]. Available:

http://www.strategyfirst.com/en/games/redir/?iGameID=13.

[7] B. Werber, Empire of the Ants. New York: Bantam, 1991.

[8] R. Nelson, A Bug’s Life Review. [Online]. Available:

http://psx.ign.com/articles/160/160232p1.html.

[9] H. Hancock, “Better Game Design Through Cutscenes,” Gamasutra. [Online].

Available: http://www.gamasutra.com/features/20020401/hancock 01.htm.

[10] R. North, ANTS. London: Whittet Books, 1996.

48

[11] J. H. Tumlinson, R. M. Silverstein, J. C. Moser, R. G. Brownlee, and J.M.

Ruth, “Identification of the Trail Pheromone of a Leaf-cutting Ant, Atta texana,”

Nature, Vol. 234, December 10, pp 348-349, 1971.

[12] S. Ravin and M. Deloura, AI Game Programming Wisdom. Hingham MA:

Charles River Media, 2002.

[13] M. Deloura, Game Programming Gems. Hingham MA: Charles River Media,

2001.

[14] S. Johnson, “A Pheromone Based Ant Foraging Simulation.” M.S. thesis, Com-

puter Sciences, University of Sheffield, 2001.

[15] Blender Foundation, Blender. [Online]. Available: http://www.blender.org/

[16] Wikimedia Foundation, Game Engine. [Online]. Available:

http://en.wikipedia.org/wiki/Game engine.

[17] T. Bryant, S. Engineer, and H. Hu, Robotics. [Online]. Available:

http://www.mbhs.edu/˜ lpiper/Robotics03/.

[18] L. B. Conyers, Ground-Penetrating Radar for Archaeology. Lanham MD: Al-

taMira Press, 2004.

[19] C. LaFayette, atta. [Online]. Available: http://www-

viz.tamu.edu/faculty/lurleen/main/attamain.htm.

[20] L. Wibaux, Insect Procedural Walk Tutorial. [Online]. Available:

http://americanhistory.si.edu/muybridge/.

[21] T. Roosendaal and C. Wartmann, The Official Blender GameKit: Interactive

3D for Artists. San Francisco CA: No Starch Press. 2003.

49

[22] W. Goetsch, the ants. Ann Arbor MI: The University of Michigan Press, 1957.

50

VITA

Tatsuya Nakamura

Visualization Laboratory

A216 Langford Architecture Center

3137 TAMU

College Station, TX 77843-3137

Education

M.S. in Visualization Sciences Texas A&M University, August 2006

M.S. in Information Science Kyoto University (Japan), 1998

B.S. in Information Science Kyoto University (Japan), 1996

Employment

Technical Artist Intern Electronic Arts,

June 2005 - August 2005

Research Assistant Texas A&M University,

September 2004 - December 2004

