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It has been demonstrated that in the presence of weak collisions, described by the Lenard-

Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the

system and constitute a complete set [C.-S. Ng, A. Bhattacharjee, and F. N. Skiff, Phys.

Rev. Lett. 83, 1974 (1999), C.S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 96,

065002 (2004). We present numerical results from an Eulerian Vlasov code that incorpo-

rates the Lenard-Bernstein collision operator [A. Lenard and I. B. Bernstein, Phys. Rev.

112, 1456 (1958)]. The effect of collisions on the numerical recursion phenomenon seen

in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode

solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions

is determined within the limits of numerical resolution. Tests of the orthogonality and the

completeness relation are presented.

PACS numbers: 52.20Fs, 52.25.Dg, 52.27.Aj, 52.35.Fp, 52.65.Ff, 52.65.Vv

a)Electronic mail: Carrie.Black@nasa.gov
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I. INTRODUCTION

The problem of kinetic damping of plasma waves in a Maxwellian plasma is one of the most

fundamental concepts in plasma physics. It is well known that Landau-damped solutions1 are not

true eigenmodes. The true eigenmodes for a collisionless plasma were obtained by Van Kampen2

and Case3. The Case-Van Kampen modes constitute a continuous spectrum, which correspond

to the infinite number of degrees of freedom of the system. At this level of description, each

particle is considered to move independent of any effects from surrounding particles, and there is

no coupling. In most situations of physical interest where the initial conditions are smooth, a broad

and continuous spectrum of Case-Van Kampen modes is excited. The Landau-damped solutions

emerge, in the long-time limit, as remnants due to the interference of the continuous spectrum of

singular Case-Van Kampen eigenmodes.

Lenard and Bernstein (LB)4 reconsidered the kinetic problem using an operator of the Fokker-

Planck type5. They obtained an exact analytic solution with a dispersion relation that formally

yields the Landau root in the limit of zero collisions. However, they did not discuss the nature of

the spectrum or address the issue of completeness of the eigenmodes in the presence of collisions.

In retrospect, this appears a bit surprising because one of the important features of the Lenard-

Bernstein collision operator, unlike the Bhatnagar-Gross-Krook (BGK) collision operator6, is that,

in the limit of zero collision, it leads to a problem in singular perturbation theory in velocity space.

While both BGK and LB operators produce the Landau solution in the limit of zero collision, the

impact on the spectrum is profoundly different in the case of the LB operator, which arguably is

more physical than the BGK operator.

The most recent and direct impetus for theoretical studies on the nature of the kinetic spectrum

in the presence of weak collisions have come from the remarkable experiments and analyses of

Skiff and co-workers7,8, who used laser-induced fluorescence techniques to measure perturbed ion

distribution functions in a stable plasma at unprecedented levels of accuracy (by two orders of

magnitude compared with previous measurements). They offered the important insight that the

linear eigenmode spectrum in the presence of weak collisions is intrinsically discrete. While the

Vlasov description smoothens particle discreteness to form a continuous kinetic fluid in phase

space and allows particles to move essentially independent of each other except through their role

in collectively supporting a self-consistent electric field, binary collisions, embodied in the Fokker-

Planck or the LB operator, introduce particle discreteness in the problem, leading to the emergence
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of a discrete spectrum from the continuum modes. While the transformation of continuous spectra

to discrete spectra behavior has been known to occur in strongly collisional systems that obey fluid

equations (such as hydrodynamics or resistive MHD equations), the weakly collisional kinetic

problem has not received the attention it deserves. Following the work of Skiff and co-workers,

Ng, Bhattacharjee, and Skiff (NBS)9,10, demonstrated that in the presence of weak collisions,

the singular Case-Van Kampen continuous spectrum is completely eliminated, and replaced by

a discrete and smooth spectrum of eigenmodes which, furthermore, constitute a complete set.

The Landau-damped solutions emerge as true eigenmodes of the weakly collisional theory in the

limit of zero collision9. The demonstration of completeness of the discrete eigenmodes by NBS10

appears to resolve a controversy as to whether the total spectrum consists of a discrete as well as a

continuous part11 or only a discrete spectrum. It should be borne in mind, however, that the actual

differentiation of the two types of spectra in real or numerical experiments is a subtle issue.

The main goal of this paper is to test numerically the theoretical results obtained by NBS. For

the first time, we report results from a kinetic Eulerian code in 1d-1v space (that is, phase space

consisting of one spatial coordinate x and one velocity space coordinate v) that includes the LB

collision operator. We describe the code, hereafter referred to as the Kinetic Code, in Section II.

In Section II E, we report on some standard tests of the code and compare the predictions of the

code in the presence of collisions with the linear eigenmode analysis of NBS. In Section III, we

discuss our effort in testing the completeness relation of NBS eigenmodes, which is a significant

numerical challenge. We conclude in Section IV with a summary.

II. KINETIC CODE

A. Description of the Numerical Method

The 1d-1v Kinetic Code integrates the Vlasov–Poisson system, and has been extended to im-

plement the Lenard-Bernstein collision operator in this work:

∂f

∂t
+ v

∂f

∂x
+
qE

m

∂f

∂v
= ν

∂

∂v

[
vf + v2th

∂f

∂v

]
, (1)

∇ · E =
q

ε0

∫ ∞

−∞
[f(x, v, t)− fi(v, 0)] dv. (2)

Here f = f(x, v, t) is the electron distribution function, fi(v, 0) is the spatially uniform ion
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background, m is the electron mass, vth is the electron thermal velocity, ν is assumed to be a

constant collision frequency, E is the self-consistent electric field and ε0 is the permittivity of free

space.

The system is typically initialized with a Maxwellian distribution, Eq.(3). At t = 0, this

equilibrium is perturbed by a sinusoidal perturbation, Eq.(4)

f (0)(x, v) =
n0√
2πvth

e
− v2

2v2
th , (3)

f (1)(x, v) = ε sin(kx)f (0)(x, v), (4)

which corresponds to a perturbed electric field,

E(1)(x) = ε
en0

ε0k
cos(kx). (5)

Here ε is a positive constant, measuring the size of the initial perturbation.

The Kinetic Code employs a numerical method similar to the one proposed by Schumer and

Holloway12, though it uses a finite difference scheme in space rather than a Fourier spectral

method. The spatial boundaries are periodic. The code uses the split-step method of Schumer and

Holloway with a 4th order Runge-Kutta method as the time integrator. For the velocity-dependent

part of the distribution function we choose the symmetrically weighted Hermite functions as a

spectral basis, defined as

ψn(v) = ψn(v) = Cne
−v2/2Hn(v), (6)

whereHn(v) is the nth Hermite polynomial andCn = π−1/4(2nn!)−1/2 is a normalization constant.

These functions are orthonormal and satisfy the following recursion relations:

vψn(v) =

√
n+ 1

2
ψn+1 +

√
n

2
ψn−1(v), (7)

d

dv
ψn(v) = −

√
n+ 1

2
ψn+1 +

√
n

2
ψn−1(v). (8)

Following Schumer and Holloway12, these recursion relations are used to numerically imple-

ment the l.h.s. of Eq. (1). The spatial derivative is generally implemented using 2nd order central

difference and the Poisson equation is solved by inverting a tri-diagonal matrix. However, for the

simulations in this work, we used the linear, single-mode option of the code, which implements

spatial derivatives exactly by multiplication with ik.
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B. Implementation of the Lenard-Bernstein Collision Operator

The Lenard-Bernstein collision operator4 operator comes from the full Fokker-Planck opera-

tor by linearizing and then assuming constant collision frequency, and single spatial and velocity

dimensions. Its effect is to relax a non-thermal distribution function to a Maxwellian with a pre-

scribed thermal velocity. It is known to conserve particle number and, for non-drifting distribution

functions, momentum. These collisions have been implemented in the Kinetic Code by exploiting

the recursion relations, Eqs. (7) and(8).

Given a representation of the distribution function expanded in symmetrically weighted Her-

mite functions, and leaving out the spatial and temporal dependence for brevity,

f(v) =
∞∑
n=0

fmψn(v), (9)

the right hand side of Eq. (1) is expanded and Eqs.(7), (8) are applied.

LB ≡ ν
∂

∂v

[
vf + v2th

∂f

∂v

]
,

= ν
∞∑

n=0

fm
∂

∂v

[√
n+ 1

2
(1− v2th)ψn+1 +

√
n

2
(1 + v2th)ψn−1

]
,

= ν
∞∑

n=0

fm

[
−
√
(n+ 1)(n+ 2)

2
(1− v2th)ψn+2

+

(
n+ 1

2
(1− v2th)−

n

2
(1 + v2th)

)
ψn

+

√
n(n− 1)

2
(1 + v2th)ψn−2

]
.

(10)

Expanding the l.h.s. as well,

LB =
∞∑
n=0

LBnψn(v), (11)

and matching coefficients on both sides, we find the algorithm implemented in the code:

LBn = ν

[
−

√
(n− 1)n

2
(1− v2th)

+

(
1

2
− 2n+ 1

2
v2th

)

+

√
(n+ 1)(n+ 2)

2
(1 + v2th)

]
. (12)
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FIG. 1. Evolution of non-Maxwellian distribution function in the collisional Vlasov-Poisson system. Shown

is the distribution function f(v) as a function of velocity at the initial time t = 0 (dashed), at an intermediate

time t = 2 (dotted) where the oscillations have already strongly damped, and at t = 20 (solid), where the

system has fully relaxed to a Maxwellian distribution.

C. LB Operator Test: Thermalization of a Non-thermal Distribution

The LB collision operator thermalizes non-Maxwellian distribution functions. Here we demon-

strate how our implementation in the Kinetic Code exhibits this behavior.

We start with a filamented perturbed Maxwellian initial condition for the distribution function

f = f(v, t):

f(v, 0) = (1 + ε cosKv)
1√
2πvth

e
− v2

2v2
th . (13)

Figure 1 shows the temporal evolution of the distribution function computed by the Kinetic

Code, where we chose ε = 0.3, K = 3, vth = 3 and ν = 0.01. It can be clearly seen how the
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oscillatory perturbation gets rapidly damped and the system evolves to a Maxwellian distribution

with width vth.

D. Effects of collisions on numerical recursion

Eulerian Vlasov solvers are limited numerically by velocity-space filamentation of the distribu-

tion function. In the absence of collisions, velocity shearing in phase space occurs inevitably due

to the free-streaming or ballistic motion of the particles, represented by the first two terms in the

left-hand-side of Eq. (1)13–16.

This standard phenomenon is illustrated in Fig. 2. We begin at (a) t = 0 showing the initial

perturbation in the distribution function f1 (see Eq. (4)). A little while later, in (b), particles with

large velocities will have moved further in space than those with smaller velocities. At a later time

in (c), the distribution function consists of fine filaments in velocity space. In the collisionless

Vlasov-Poisson system, there is no mechanism to suppress the increasingly fine filamentation, so

eventually the velocity scales fall below the grid size, leading to the well-known phenomenon of

numerical recursion. In the context of the present method, one can postpone this time by increasing

resolution or, to some extent, by rescaling the velocity space basis function, as discussed at length

by Schumer and Holloway12.

Figure 3 demonstrates the consequence of numerical recursion: The electric field in the col-

lisionless run (thin line) follows the exponentially damped standing wave correctly initially, but

recursion occurs at t ≈ 150 where the simulated electric field shows erroneous behavior. The

same plot demonstrates that a small collisionality of ν = 10−4 is sufficient to avoid numerical

recursion, so that the exponential decay continues. It should be noted that while the initial evo-

lution is the same in both cases, in the collisional case the least damped collisional eigenmode

eventually dominates as other modes in the initial condition decay away, which, by virtue of being

an eigenmode, does not exhibit any further steepening of the velocity space gradients. Figure 4

shows the structure of this eigenmode.

To more closely investigate the occurence of recursion in Vlasov solvers and its suppression by

the Lenard-Bernstein collision operator, it is instructive to consider the free-streaming approxima-

tion to the Vlasov equation:

∂f

∂t
+ v

∂f

∂x
= ν

∂

∂v

[
vf + v2th

∂f

∂v

]
. (14)
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FIG. 2. Evolution of the perturbed distribution function f1. As indicated in (a) by the arrows, different

parts of the distribution function will move at their own velocity, leading to the distribution function being

sheared and formation of filaments as shown at later times in (b) and (c).

Setting the collision frequency ν to zero for the moment, the equation is easily integrated along

its characteristic, and in particular for a typical perturbation with wave number k in position space

and Maxwellian distribution in velocity space f(x, v, 0) = ak cos(kx) exp(−v2/(2v2th)), we find
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FIG. 3. Evolution of electric field in the collisionless case (ν = 0, light line), showing numerical recursion

at t ≈ 180ω−1
pe and suppression of the recursion by collisionality ν = 10−4 (thick line).

the solution:

f(x, v, t) = f(x− vt, v, 0) = ak cos k(x− vt) e
− v2

2v2
th . (15)

Taking a cut in velocity space at an arbitrary location x0, we see that the distribution function

now has an oscillatory dependence ∝ cos(ktv) on v in addition the Maxwellian envelope, similar

to our test initial condition in Fig. 1. The period in v-space, 2π/(kt) decreases in time, and it is

clear that the oscillation will become unresolved as we resolve a single cosine period with less

than 4 points in v space:

2π

kτrecur
= 4Δv =⇒ τrecur =

π

2kΔv
. (16)

As the width of Hermite functions is approximately the square root of their order, the resolution of

our velocity-scaled basis functions is Δv ≈ U
√
Nu

Nu
, hence we obtain the recursion time as Schumer
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FIG. 4. Structure of the late-time perturbed distribution function f1 in the collisional case, ν = 10−4. The

initial evolution is virtually identical the the collisionless evolution shown in Fig. 2, but at late time (shown

is t = 253ω−1
pe ), the system has evolved into the least-damped collisional eigenmode.

and Holloway12:

τrecur ≈ π
√
Nu

2kU
. (17)

We performed a number of runs varying the velocity space resolutionNu from 64 through 2048

and determined the recursion times. Figure 5 confirms the expected N
1/2
u scaling of the recursion

time.

While recursion at a finite time is unavoidable for numerical solutions of collisionless Vlasov-

Poisson system, Ng et al.9 showed that the character of the solutions changes fundamentally in

the presence of collisions. In particular, the Landau damped solutions are transformed into actual

eigenmodes, which as such remain unchanged during the temporal evolution, instead of becoming

more and more oscillatory in velocity space. It is therefore expected that the numerical solver

can follow the time evolution for long times, the phenomenon of recursion should disappear given

sufficient resolution.

Turning back to Eq.(14), the initial evolution of the system at finite but small collisionality μ

will be virtually identical, since the initial Maxwellian profile does not have large gradients, so
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FIG. 5. Numerical recursion time τrecur as a function of velocity space resolution Nu. The observed recur-

sion times compare well to the model τrecur ≈ π
√
Nu/(2kU). Parameters were k = 1, vth = 1/3, U =

.5vth.

the collisional terms on the right hand side are small. As time goes on, we again get the filamen-

tation, leading to growing gradients in velocity space. Eventually, the collisional terms becomes

important and serves to suppress growth of even higher modes, the dissipative term νv2th ∂
2f/∂v2

making the most important contribution. Substituting in our previously obtained free-streaming

solution for f (Eq. (15)) and postulating that the collisional term quenches further filamentation

once its contribution is comparable to the decay rate |γ|, we find

τcoll ≈
√

|γ|
ν

1

(kvth)2
. (18)

Recursion is prevented if further filamentation is suppressed before the recursion time, ie.,

τcoll < τrecur. To test this criterion, we solve for the minimum collision frequency needed to
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FIG. 6. Collisionality νnorecur required to prevent recursion as a function of velocity space resolution Nu.

Parameters were k = 1, vth = 1/3, U = .5vth.

prevent recursion given a velocity space resolution Nu:

νnorecur ≈ (2kU)2γ

π2(kvth)4Nu

. (19)

Figure 6 shows the collision frequency ν needed to avoid the recursion previously observed in the

collisionless system. It confirms the expected N−1
u scaling.

E. Kinetic Code Verification

We have benchmarked the collisionless version of the Kinetic Code with roots of the plasma

dispersion relation from a solver written by C.-S. Ng (referred to hereafter as the Plasma Disper-

sion Function (PDF) Solver). The relevant dispersion equation is:

1 + α(1 + ΩZ(Ω)) = 0, (20)
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.

FIG. 7. The Langmuir Dispersion Relation. The upper plots show the frequency of oscillation normalized

by plasma frequency. The lower plot shows the damping rate normalized by plasma frequency. ”PDF root”

is the roots from the Plasma Dispersion Function Solver. ”Code root” is the result from the Kinetic Code.

where α = ω2
p/(kvth)

2, Ω = ω/(
√
2kvth) , and Z(Ω) is the plasma dispersion function. As shown

in Fig. 7, very good agreement is found between the Kinetic Code and the PDF Solver.

We have also performed benchmarks of the damping of collisional Langmuir waves with the

Kinetic Code. Table II, show that the damping rate matches the NBS eigensolver predictions. In

the long-wavelength approximation, the eigenfrequencies, Ω, take the form

Ω = Ω0 + Ω1μ, (21)

where,

Ω1 =
iΩ2

0

[
1
3α

− (
1
3
+ 1

α

)
1

2Ω2
0

]
− 1

α
+
(
1 + 1

α

)
1

2Ω2
0

. (22)
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TABLE I. NBS modesolver damping rates compared with the correction formulae, Eqs. (21) and (22).

α μ Ωi NBS Ωi Correction Formula Relative Error

4.0 0.01 -0.22254755 -0.22253905 0.96565 ∗ 10−5

5.0 0.01 -0.17044662 -0.17044252 0.97423 ∗ 10−5

9.0 0.1 -0.12701015 -0.12863040 0.96470 ∗ 10−3

20.0 0.1 -0.06674260 -0.68091868 0.55108 ∗ 10−3

25.0 0.1 -0.06149031 -0.61999834 0.35246 ∗ 10−3

TABLE II. NBS Benchmark of Kinetic Code. Damping rates for various collision frequencies, μ, recovered

from fitting simulation results, compared to those predicted by the NBS eigenmode solver.

μ Ωi NBS Ωi Kinetic Code Relative Error

0 -0.0548864 -0.0549166 5.50× 10−4

0.00001 -0.0548937 -0.0549240 5.52× 10−4

0.0001 -0.0549601 -0.0549904 5.51× 10−4

0.001 -0.0556237 -0.0556539 5.43× 10−4

0.01 -0.0622458 -0.0622758 4.82× 10−4

0.1 -0.1270101 -0.1269715 3.04× 10−4

Table I shows the comparison between the numerical results obtained by NBS, and the correction

formulae (21) and (22).

III. NBS EIGENMODE STUDY

This section contains tests of the NBS eigenmodes. First, orthogonality of the modes is ex-

amined analytically and numerically. Next, we show that the NBS eigenmodes behave in the

collisional Vlasov-Poisson system as predicted. Finally, we present some evidence that are not

consistent with the property of completeness. (For numerical reasons, discussed below, we are not

able to test the completeness property definitively.)
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A. Orthogonality

NBS9 renormalized and Fourier-transformed the distribution function f in space and time, and

recast the collisional Vlasov-Poisson system, Eqs. (1), in terms of a normalized distribution func-

tion g(v):

(u− Ω)g − η

∫ ∞

−∞
g(u′)du′ = −iμ d

du

(
ug +

1

2

dg

du

)
, (23)

where u ≡ v/(
√
2v0), g(u) ≡ √

2v0f/n0, g0 ≡ exp(−u2)/√π, n0 is the equilibrium electron

density, η(u) ≡ α/2dg0/du, and μ ≡ ν/(
√
2kv0). This is an eigenmode equation with solutions

gm belonging to complex eigenfrequencies Ωm. NBS found the corresponding adjoint equation

and showed that its adjoint solutions Gm are related to the eigenfunctions gm by

Gn(u) ∝ gn(u)e
u2

+
α√
π

∫ ∞

−∞
gn(u

′)du′. (24)

By construction, Gn and gm belonging to different eigenfrequencies Ωn,Ωm are bi-orthogonal,

that is, ∫ ∞

−∞
Gn(u)gm(u)du = 0. (25)

This condition allows us to determine the expansion coefficients cn for expanding an arbitrary

function g(u) =
∑∞

m=0 cmgm(u) in terms of eigenfunctions gm, after the Gm are appropriately

normalized:

cm =

∫ ∞

−∞
Gm(u)g(u)du. (26)

We have confirmed numerically bi-orthogonality for a number of eigenfunctions obtained by

the method described in9. The eigenfunctions are provided as a set of Hermite expansion coeffi-

cients {amn} such that

gm(v) =
∞∑
n=0

amnCnHn(v)e
−v2 , (27)

whereCn = 1/(π1/4
√
2kk!). We express the adjoint functionGm in terms of Hermite polynomials,

too, but without the weight function e−v2 to enable us to use the orthogonality property of Hermite

polynomials to evaluate integrals. We write:

Gm(v) =
∞∑
n=0

AmnCnHn(v). (28)
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TABLE III. Numerical confirmation of the orthonormality of the NBS eigenmodes. Shown is
∫
Gngmdu

for Least Damped Mode and Modes 1 to 4 for μ = 0.1

n\m LDM 1 2 3 4

LDM 1 6.6788e-14 2.4654e-10 4.3470e-07 3.3390e-05

1 1.0726e-14 1 1.9583e-09 2.5373e-06 1.6947e-04

2 2.1735e-11 1.0749e-09 1 6.8720e-06 3.4759e-04

3 2.6671e-08 9.6933e-07 4.7828e-06 1 7.6067e-04

4 1.5850e-06 5.0094e-05 1.8717e-04 5.8853e-04 1

Substituting the expansions for Gn, gn into Eq. (24), multiplying by CmHm(u) exp(−u2) and

integrating over u in the usual manner, we determine the coefficients Anm:

Anm = bn [anm + α an0δm0] . (29)

since
∫∞
−∞ gn(u)du = π1/4an0. The bn are yet undetermined normalization constants. For any

function g(u) expanded in Hermite functions, g(u) =
∑∞

n=0 anCnHn(u) exp(−u2), we can per-

form a change of basis to find its coefficients {cm} for an expansion in collisional eigenfunctions:

cm =

∫ ∞

−∞
Gn(u)g(u)du, (30)

=
∞∑
k=0

Ankak = bn

[
(1 + α) an0a0 +

∞∑
k=1

ankak

]
. (31)

The normalization coefficients can now be determined by plugging in gn for g, for which we

require

1 =

∫ ∞

−∞
Gngndu,= bn

[
(1 + α)a2n0 +

∞∑
k=1

a2nk

]
, (32)

=⇒ bn =

[
(1 + α)a2n0 +

∞∑
k=1

a2nk

]−1

. (33)

Table III shows an example calculation where we have calculated and normalized the adjoint

functions Gn and checked that the resulting functions are in fact bi-orthogonal. It is evident that

the numerical eigenfunctions exhibit large and rapid oscillations near the phase speed of the wave,

which makes it numerically challenging to determine them to very high accuracy.
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FIG. 8. Time evolution of the k = 1 component of the electric field for separate simulations initialized with

LDM and Modes 1 to 4, μ = 0.1. Solid lines show the best fit to the exponential decay phase.

B. Structure of the Eigenmodes

The NBS eigensolver identified the least damped mode and 4 further modes for μ = 0.1. The

complex eigenfrequencies are given in Table IV.

Figure 8 shows the time evolution of Vlasov simulations initialized with eigenmodes found

by the NBS eigensolver for μ = 0.1. Indicated are the electric field (symbols) and least square

fits to the exponential decay part of the evolution. It can be clearly seen that all modes initially

show exponential decay as expected for an eigenmode, and examination of the full distribution

function output confirmed this, as well. For all modes other than the least damped mode (LDM),

the exponential decay eventually breaks down and we see further slow decay at the growth rate of

the LDM.

We compare the growth rates found from the Vlasov simulations to the imaginary part of Ω

18



TABLE IV. Growth rates of the collisional eigenmodes at μ = 0.1, showing that the results of the Vlasov

code agree very well with the eigenvalues found by the NBS solver.

Mode Ωi NBS Ωi Vlasov code Relative Error

LDM -0.12701014 -0.12700989 1.97× 10−6

1 -1.63253445 -1.63253647 1.24× 10−6

2 -2.44408929 -2.44409574 2.64× 10−6

3 -3.06241689 -3.06242860 3.83× 10−6

4 -3.58772051 -3.58797131 6.99× 10−5

calculated by the eigensolver in Table. IV. The Vlasov code clearly captures the temporal evolution

of the eigenmodes to high accuracy in the initial phase of the simulations.

The reason why the higher modes seemingly cease to evolve according to their linear dynamics

can be understood better by considering the shape of the eigenfunctions in velocity space, as

plotted in Fig. 9. All the eigenfunctions gm are normalized with respect to their zeroth moment,

ie.,
∫∞
−∞ gm(v)dv = 1, hence they all contribute equally to the charge density and also the electric

field. In particular, while all the modes in Fig. 8 start at the same value of the electric field, the

distribution function g4 of Mode 4 is actually up to 106 times larger than the distribution function

of the least damped mode gLDM . Due to numerical discretization error, the initial Mode 4 is not

exact, but contains small contributions from other modes, in particular the least damped mode. An

LDM error component of 10−6 of the magnitude of Mode 4 would create an error in the electric

field of order unity already. While the initial LDM error component is actually smaller, about

10−10, it decays away much slower than the main mode, so eventually the electric field contributed

by this small component overwhelms the electric field of the main mode and shows up as the

slowly decaying evolution after the initial exponential phase. It should be noted that the structure

of the eigenmodes is numerically rather challenging – they contain large oscillatory components

that almost cancel out as one integrates over v-space, which leads to a significant loss of precision

when performed in floating point arithmetic.
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FIG. 9. Real part of the collisional eigenfunctions gm(v) shown on a semi-logarithmic scale. Solid lines

indicate positive values, while dashed lines indicate negative values. Collisionality is μ = 0.1. Note that

the maximum amplitude of the modes grows with mode number. In the plot here, the gLDM has the lowest

maximum amplitude and g3 has the largest.

C. Decomposition into Eigenmodes

Our goal in this work is to analyze simulation results by decomposing the plasma evolution

into a linear combination of eigenmodes, which all evolve according to their eigenfrequencies,

explaining the dynamics of the system as interference of those eigenmodes. In order to test our

method, we have performed a simulation that starts with a superposition of 5 modes, all them

equally weighted with cm = 0.2. Figure 10 should be compared to Fig. 8, only that this time we

perform a single simulation evolving all 5 modes at once, and instead of focusing on the electric

field, we decompose the distribution function back into its eigenmode basis coefficients cn(t). We

reproduce fundamentally the same behavior, as one would expect for a linear system, but with
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FIG. 10. Evolution of a superposition of LDM and Modes 1 to 4, initially weighted equally with coefficient

0.2.

some caveats. LDM and modes 1 and 2 show the same evolution as before. Mode 3 turns over into

the LDM behavior at an early point, while Mode 4 shows bleeding from other modes right away

and is therefore not plotted. The main reason for the additional numerical difficulty lies in the fact

that the numerical modes are not exactly orthogonal, as previously shown in Table III, which makes

it impossible to obtain an exact decomposition. In addition, the eigenmodes and orthogonality

relations are written for modes expanded of asymmetrically weighted Hermite functions, while the

Kinetic Code uses symmetrically weighted polynomials, incurring additional conversions when

setting up the initial conditions and analyzing distribution functions. In fact, the eigenmodes are so

sensitive to small numerical errors that 64-bit floating point precision turned out to be insufficient

to maintain even the already limited orthogonality under conversion between the bases. We have

hence implemented the conversion routines in high-precision arithmetic using the mpmath Python
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FIG. 11. Simulation initialized with a standing Langmuir wave, shown is the electric field E and the

magnitude of the decomposition coefficients |cn| vs time.

module17.

D. Collisional Landau damping of a standing wave

We now analyze the temporal evolution of a standing Langmuir wave in the presence of col-

lisions. The electric field, as shown in Fig. 11 shows the expected standing wave oscillation,

enveloped by exponential decay at the expected growth rate from the least damped mode. The

composition of the initial Maxwellian into LDM and Modes 1 to 4 is also shown, and those com-

ponents behave similarly to the test case where we used an equally weighted superposition of

modes as initial condition. Modes 1 to 4, as expected, show rapid exponentially decay, leaving

only the least damped mode to support the observed total electric field. The evolution, in fact,

looks quite similar to our synthetic test initial condition, where we superposed 5 modes with equal
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weights, which subsequently decayed at their respective growth rates. In particular, the turning

over of the fast exponential decay for the higher modes into slower decay at LDM rate is just

the previously described numerical artifact. Our simulations also explain why the first “bump”

in the electric field is higher than the exponential fit would have us expect, a phenomenon also

observed in collisionless simulations, e.g.12. Landau damping describes the late time evolution

of the electric field, however, there is an initial transient phase. In the context of the collisional

system, the transient phase can be explained in terms of the additional modes which contribute

to the initial condition. These modes also carry electric field, which explains the initially higher

values, however, as they rapidly decay away, their contribution becomes insignificant quickly and

the evolution of the electric field is well described by just the least damped mode itself.

E. Completeness

The NBS modes were shown to be a complete set of eigenmodes by10. First, we will examine

the completeness problem by using numerically constructed linear eigenmodes from the method

described at the end of the last section. Using this method, an eigenmode gm(v) is expanded in the

form

gm(v) =
∞∑
n=0

amnHn(v)e
−v2 , (34)

based on normalized variables. Numerically of course the summation over n can only be done up

to a finite number of modes number, say nmax, since only a finite number of amn can be calculated.

In the same way, the adjoint function corresponding to gm(v) can be obtained,

Gm(v) =
∞∑
n=0

AmnHn(v). (35)

The orthonormal condition requires∫ ∞

−∞
gm(v)Gn(v)dv = δmn, (36)

or
∞∑
l=0

amlAnl = δmn. (37)

In other words, the transpose matrix AT is the right inverse of the matrix a. Numerically this

relationship can be confirmed to a high accuracy by including enough modes in the summations

in Eqs. (34) and (35), i.e., with a large enough nmax.
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Using the same formulation, the completeness condition then requires

∞∑
m=0

gm(v)Gm(v
′) = δ(v − v′), (38)

or

Γpq ≡
∞∑

m=0

ampAmq = δpq. (39)

In other words, the transpose matrix AT is also the left inverse of the matrix a, or that a is invert-

ible. Again, numerically we can only sum up a finite number of terms in Eq. (39), or that m can

only take up to mmax, the number of eigenmodes that can be evaluated accurately.

Unlike the orthonormal condition, Eq.(37), the completeness condition, Eq. (39), is much more

difficult to test numerically. This is because the eigenmode gm(v) gets more and more singular in

the v space for larger m, and thus is more and more difficult to be expanded accurately in the form

of Eq. (34) for a given finite number of terms, nmax. In other words, the number of eigenmodes,

mmax, that can be calculated accurately is not large enough. As a matter of fact, this is much

more so for the temporal problem than the spatial problem. When mmax is not too large, there are

enough terms in the sum in Eq. (39) to get to converged values.

Facing this great difficulty, one way to proceed in order to at least testing the numerical frame-

work, rather than studying physically interesting cases, is to consider the spatial problem when

the collision is strong. This is because gm(v) is more singular, i.e., with very fine structures in the

v space with very small widths in the small μ limit. In the case of large μ, the eigenmodes are

smooth enough in the v space that a large mmax of eigenmodes can be calculated accurately.

As an example, we show in Table V, some results of the calculation of Γpq as defined in Eq. (39)

for the first few values of p and q, for the case with μ = 1, α = 0.1, mmax = 5020, nmax =

21600.We see that generally these values of Γpq differ from the expected value of δpq in the order

of O(10−2).Note that Γpq is identically zero by symmetry if p and q are not both even or both

odd. The reason we cannot get even better agreement is again because of a finite mmax that can be

calculated. In fact, in the calculation of each Γpq, the trend in convergence is not consistent with

the theoretical expectation, although the rate of convergences appears to be quite slow.

IV. CONCLUSION

In this paper, we report results from a kinetic Eulerian code in 1d-1v space that includes the

Lenard-Bernstein collision operator. Some standard tests of the code are given. We have shown
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p q Γpq

0 0 0.99999925 + 0.011i

1 1 1.0000007− 7.1× 10−7i

0 2 0.016− 0.008i

2 0 1.1× 10−6 − 0.008i

2 2 0.989− 0.0056i

1 3 −3.4× 10−6 − 9.2× 10−7i

3 1 −1.5× 10−6 + 2.6× 10−7i

0 4 −0.028 + 0.0069i

4 0 −2.6× 10−6 + 0.0069i

3 3 1.000003 + 3.9× 10−6i

0 6 0.038− 0.0063i

6 0 5.0× 10−6 − 0.0063i

2 4 0.0195− 0.0049i

4 2 0.0098− 0.0049i

1 5 6.5× 10−6 + 5.8× 10−6i

5 1 2.3× 10−6 + 3.9× 10−7i

TABLE V. Numerical Test of Completeness

Numerical values of Γpq as defined in Eq. (39) for the first few values of p and q, for the case with μ = 1,

α = 0.1, mmax = 5020, nmax = 21600.

that a non-thermal distribution is thermalized by the LB operator. We have examined the effect

that collisions have on numerical recursion. Significantly, we have benchmarked the code with the

NBS modes.

We have discussed in detail our efforts in testing the orthogonality and completeness relation

of NBS eigenmodes. The numerical challenges in providing definitive tests are quite formidable,

but we have presented some evidence in support of these properties.
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