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 45 
ABSTRACT 46 

 47 
 48 

Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid 49 

simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) 50 

upstream of quasi-parallel bow shocks during steady solar wind conditions and in the 51 

absence of discontinuities. The results show the formation of a large number of structures 52 

along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and 53 

magnetic field enhancements, while their cores exhibit drops in density, magnetic field, 54 

solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the 55 

simulation, we show that the signatures of these structures in the time series data are very 56 

similar to those of SHFAs seen in THEMIS data and conclude that they correspond to 57 

SHFAs. Examination of the simulation data shows that SHFAs form as the result of 58 

foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due 59 

to the nonlinear evolution of ULF waves generated by the interaction of the solar wind 60 

with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock 61 

dissipation process, the formation of SHFAs is also an inherent part of the dissipation 62 

process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath 63 

including large scale density and magnetic field cavities.  64 

 65 

 66 

 67 

 68 

 69 
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INTRODUCTION70 

 71 

Collisionless dissipation processes at the bow shock result in reflection and/or 72 

leakage of ions into the upstream region forming the ion foreshock region (Asbridge et 73 

al., 1968; Greenstadt et al., 1968;1980; Gosling et al., 1978; Paschmann et al., 1979; 74 

Bonifazi et al., 1980a,b). The ion foreshock is populated with a variety of ULF waves 75 

(e.g. Russell and Hoppe 1983; Le and Russell, 1992; Greenstadt et al., 1995) with wave 76 

vectors towards the sun but carried back by the solar wind in the opposite direction. Both 77 

observations and theoretical studies have also established the turbulent nature of the 78 

quasi-parallel shocks and the cyclic reformation of the shock front (e.g. Greenstadt et al., 79 

1977, 1993; Russell, 1988, Thomsen et al., 1988, Thomsen et al., 1990a,b; Burgess 1989; 80 

Thomas et al., 1990; Winske et al., 1990; Omidi et al, 1990; Scholer et al., 1993). This 81 

behavior is thought to be caused by the convection of upstream generated ULF waves 82 

into the shock. 83 

 84 

In an accompanying paper, Zhang et al. [2012] use THEMIS multi-spacecraft 85 

measurements to identify a new structure at the quasi-parallel bow shock named 86 

Spontaneous Hot Flow Anomaly (SHFA). SHFAs and Hot Flow Anomalies (HFAs) 87 

exhibit similar signatures in spacecraft time series data that consist of enhancements in 88 

density and magnetic field in the outer part and depletions in these parameters in the core 89 

which is also associated with increased temperature and deflected solar wind flow. 90 

However, while HFAs form due to the interaction of solar wind discontinuities with the 91 

bow shock (e.g. Schwartz et al., 1988;1995;2000; Thomsen et al., 1986;1988;1993; 92 
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Paschmann et al., 1988; Thomas et al., 1991; Sibeck et al., 1998;1999;2000; Lin, 93 

1997;2002; Lucek et al., 2004; Omidi and Sibeck, 2007; Facsko et al., 2008; Eastwood et 94 

al., 2008; Jacobsen et al., 2009), SHFAs form in the absence of discontinuities. In the 95 

past, local and global hybrid (kinetic ions, fluid electrons) simulations have been used 96 

successfully to examine the formation and impacts of HFAs at the bow shock (e.g. 97 

Thomas et al., 1991; Lin, 1997; 2002 and Omidi and Sibeck, 2007). Motivated by SHFA 98 

observations, we have conducted an investigation of the quasi-parallel bow shock using 99 

global hybrid simulations. As we demonstrate here, simulations show the formation of 100 

copious structures at the quasi-parallel bow shock and foreshock whose time series 101 

signatures resemble those of SHFAs presented by Zhang et al. [2012]. The results 102 

indicate that SHFAs are an inherent part of the super-critical quasi-parallel shock 103 

dissipation processes and result in highly turbulent and non-uniform magnetosheath 104 

plasma.  105 

 106 

The structure of the paper is as follows. Section 2 describes the hybrid model used in 107 

this study while the simulation results are described in section 3. Section 4 provides a 108 

summary and conclusions. 109 

 110 

2. HYBRID SIMULATION MODEL111 
 112 
 113 

The main tool of investigation in this study is a 2.5-D (2-D in space and 3-D in 114 

currents and electromagnetic fields) global hybrid simulation model used extensively in 115 

the past (e.g. Omidi et al., 2004, 2005, 2006, 2009a,b; 2010; Omidi and Sibeck, 2007; 116 

Blanco-Cano et al., 2006a,b, 2009, 2011;  Sibeck et al., 2008). In electromagnetic hybrid 117 
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codes, ions are treated as macro-particles and consist of one or more species (e.g., 118 

differing mass, charge, etc.) whereas electrons are treated as a massless, charge 119 

neutralizing fluid (see e.g. Winske and Omidi, 1993, 1996).  120 

 121 

The model consists of a dipole inside a sphere whose surface represents the 122 

ionospheric boundary. A solar wind type plasma  with electron and ion betas (ratio of 123 

thermal to magnetic pressure) of 0.3 each and flow speed of 12 VA (Alfven speed) is 124 

uniformly loaded in the system except for the region inside the ionospheric boundary. 125 

This plasma is continuously injected from the left hand boundary throughout the whole 126 

run. The remaining boundaries remain open for the plasma to leave. Similarly, open 127 

boundary conditions are applied for the electromagnetic fields so that excited waves and 128 

turbulence in the system leave through these boundaries. The simulation box lies in the 129 

X-Z (noon-midnight meridian) plane with X along the solar wind flow direction (Sun-130 

Earth line) and the magnetic dipole moment in the Z direction so that X corresponds to –131 

XGSM and Z corresponds to ZGSM. The simulation box extends 1500 ion skin depths c/ p 132 

(where c is the speed of light and p is the ion plasma frequency) in the X and Z 133 

directions with cell size of 1 ion skin depth. The interplanetary magnetic field (IMF) lies 134 

in the X-Z plane and makes a cone angle of 10o with the X axis. To optimize the 135 

computational resources, the simulated magnetosphere is smaller (by a factor of ~5) than 136 

the Earth’s magnetosphere. On the other hand, the simulated plasma parameters and 137 

characteristic time and spatial scales such as gyroperiod, or ion skin depth are the same as 138 

in the solar wind and magnetosphere. This ensures that the simulations are capable of 139 

generating plasma and field values and characteristic scales that can be directly compared 140 
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to observations at the Earth’s bow shock. As demonstrated in our earlier studies, the 141 

physical processes occurring in smaller bow shocks and magnetospheres are similar to 142 

those at the Earth’s magnetosphere and much can be learned from these simulations 143 

including scaling properties of various magnetospheric processes (e.g. Omidi et al., 2004, 144 

2005, 2006, 2009a,b, 2010; Omidi and Sibeck, 2007; Blanco-Cano et al., 2006a,b, 2009, 145 

2011;  Sibeck et al., 2008). 146 

 147 

3. FORMATION OF SHFAs  148 

 149 

Panel (a) in Figure 1 shows the plasma density (normalized to solar wind value) 150 

and magnetic field lines in a portion of the simulation domain. The quasi-perpendicular 151 

and parallel portions of the bow shock are labeled in this panel with the latter falling 152 

primarily in the southern hemisphere. Also labeled is the ion foreshock, upstream of the 153 

quasi-parallel shock, and the Foreshock Compressional Boundary (FCB) that separates a 154 

highly disturbed and turbulent ion foreshock plasma from a nearly pristine like solar wind 155 

that falls inside the ion foreshock (beam) boundary (see Sibeck et al., 2008; Omidi et al., 156 

2009b). Panel (b) in Figure 1 shows the density zoomed around the quasi-parallel shock 157 

and the ion foreshock. The latter includes regions of low density labeled foreshock 158 

cavitons. The presence of these structures was predicted by global hybrid simulations 159 

(Lin, 2003; Lin and Wang, 2005; Omidi, 2007) and confirmed in the ion foreshock 160 

(Blanco-Cano et al., 2009, 2011; Kajdi  et al. 2010, 2011). Foreshock cavitons are about 161 

an RE (Earth radii) in size and are associated with drops in density and magnetic field in 162 

their core by as much as 50% or more and plasma and magnetic field enhancements in 163 
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their outer edge. They form as a result of the nonlinear evolution of ULF waves and are 164 

carried back by the solar wind towards the bow shock.  As we show here, the interaction 165 

between foreshock cavitons and the bow shock is highly significant and an inherent part 166 

of the quasi-parallel shock dissipation processes. 167 

 168 

Although at any given time the structure of the quasi-parallel bow shock is highly 169 

turbulent, a closer examination reveals processes that occur at and upstream of the shock 170 

on a regular basis. An example of this is illustrated in Figures 2 and 3 that show the 171 

density and ion temperature (normalized to solar wind value) respectively at 4 different 172 

times (normalized to proton gyroperiod -1) zoomed around the quasi-parallel bow 173 

shock. Ion temperature is obtained by calculating the second moment of the velocity 174 

distribution function and includes the effects of the energetic ions in the foreshock.  Panel 175 

(a) in Figure 2 shows a structure at and upstream of the bow shock consisting of density 176 

enhancements surrounding a low density region. Examination of panel (a) in Figure 3 177 

shows the ion temperature in the low density region is over 600 times hotter than the 178 

pristine solar wind.  Note that the ion temperature scale in Figure 3 is set to a maximum 179 

of 600 for better clarity.  This structure looks similar to a simulated HFAs formed at the 180 

bow shock due to solar wind discontinuities, e.g. Omidi and Sibeck [2007]. Panels (b) 181 

through (d) in Figures 2 and 3 show the time evolution of this structure that penetrates 182 

further into the magnetosheath and eventually becomes a part of the highly non-uniform 183 

and turbulent magnetosheath. In the process the energetic ions within the structure are 184 

injected into the magnetosheath.  185 

 186 
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To see the signature of this structure and its time evolution as might be observed 187 

in spacecraft data, Figure 4 shows the ion density, total pressure (normalized to solar 188 

wind value), velocity (normalized to VA) and temperature, as well as the magnetic field 189 

(normalized to solar wind value) as observed in time at the location marked by “X” in 190 

panel (a) of Figure 2. As can be seen, the signature consists of enhancements in density 191 

and magnetic field (beginning at time ~250 -1) that reach a factor of ~3 above the solar 192 

wind levels. This is followed by large drops in density (minimum value of ~15% of solar 193 

wind density) and field (minimum value of ~30% of solar wind magnetic field) in 194 

association with flow deceleration and deflection and enhancements in ion temperature. 195 

Note that despite the temperature enhancements, the total pressure in the low density core 196 

region is below that in the solar wind. Subsequently, the density and magnetic field 197 

increase above the solar wind levels by a factor of ~5 before returning to solar wind 198 

values.  This signature is identical to that of HFAs in general and the SHFAs reported by 199 

Zhang et al. [2012]. Given the absence of a solar wind discontinuity in the simulation, we 200 

identify this structure as a SHFA. 201 

 202 

To illustrate the formation of this SHFA, Figure 5 shows the total magnetic field, 203 

ion temperature and ion velocity in the X direction at two separate times. The top panels 204 

show a well developed foreshock caviton upstream of the bow shock. The bottom panels 205 

show that the convection of this caviton by the solar wind into the bow shock transforms 206 

it into a SHFA.  This transformation is associated with further energization of the ions in 207 

the core of the caviton and the enhancement of the cavity (reduction in magnetic field and 208 

density) which in turn increases the magnetic field and density in the outer parts. The 209 



9 
 

details of the ion velocity distribution functions within the SHFA and their time evolution 210 

and their relationship to particle energization process remain to be understood and are 211 

under investigation. Preliminary results suggest that ion trapping by the cavitons and also 212 

ion reflection between the bow shock and the cavitons may play an important role in the 213 

acceleration process. Given the convection of the cavitons towards the bow shock, the 214 

back and forth motion of ions between the cavitons and the bow shock can result in 215 

particle acceleration through first and second order Fermi processes.   216 

 217 

Examination of the simulation results show that SHFAs form regularly along the 218 

quasi-parallel bow shock surface as isolated foreshock cavitons, such as that in Figure 5, 219 

encounter the shock. We also find that at times, multiple cavitons arrive at the bow shock 220 

near simultaneously and result in the formation of larger and more complex structures. 221 

An example of this is illustrated in Figure 6 that shows the density zoomed around the 222 

quasi-parallel shock at 4 different times. Panel (a) in Figure 6 shows the presence of a 223 

number of SHFA like structures along the bow shock that formed at about the same time 224 

due to the arrival of multiple foreshock cavitons at the shock. Panels (b) through (d) show 225 

the time evolution of these SHFAs as they penetrate into the magnetosheath and result in 226 

large inhomogeneities and turbulence in the quasi-parallel magnetosheath.  227 

 228 

  Figure 7 shows the signature of this event in time series data as observed at points “A”, 229 

“B”, “C” and “D” shown in panel (a) of Figure 6. Density, magnetic field and 230 

temperature are normalized to solar wind values and flow speed is normalized to the 231 

Alfven speed in the solar wind. The data looks quite different at each observing point. At 232 
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point “A”, the data shows signatures associated with 2 SHFAs that are shaded. At point 233 

“B” two shaded signatures are present that show density and field enhancements and 234 

depletions, flow deceleration and the presence of energetic ions and look similar to 235 

SHFAs, however, some differences to SHFAs can also be observed. Similarly, at points 236 

“C” and “D” signatures similar to SHFAs are present (shaded regions) but clean and full 237 

signatures of SHFAs are harder to identify. In effect the presence of multiple SHFAs at 238 

the bow shock and their mutual interactions result in highly nonlinear and complex 239 

structures whose signatures in spacecraft data would be similarly complex and hard to 240 

decipher.        241 

   242 

5. SUMMARY AND CONCLUSIONS 243 
 244 

Motivated by the multi-spacecraft THEMIS observations of Spontaneous Hot 245 

Flow Anomalies at the quasi-parallel bow shock, by Zhang et al. [2012] we have 246 

examined the structure of a super-critical quasi-parallel bow shock using global hybrid 247 

simulations. The results show the formation of copious structures at the quasi-parallel 248 

shock whose time series data resemble those of HFAs and SHFAs. Given the steady 249 

nature of the solar wind and the absence of a discontinuity in the simulation, these 250 

structures are identified as SHFAs.  The formation of SHFAs in the simulation is tied to 251 

the convection of foreshock cavitons by the solar wind and their interaction with the bow 252 

shock. Foreshock cavitons are structures of the order of ~1 RE (Blanco-Cano et al., 2009, 253 

2011; Kajdi  et al., 2010, 2011) consisting of low density and magnetic field core region 254 

populated with energetic ions and an outer layer with increased density and magnetic 255 

field strength. Transformation of a caviton to a SHFA is associated with further 256 
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energization of ions, reductions in density and magnetic field in the core of the cavitons 257 

and the enhancements of the density and magnetic field in the outer region. The size of 258 

SHFAs in the Z direction is ~50 ion skin depths which is comparable to that of foreshock 259 

cavitons and is of the order of 1 RE which is also comparable to the size of HFAs at the 260 

bow shock. 261 

 262 

Foreshock cavitons have been observed under a wide range of solar wind 263 

velocities (Mach number) and IMF orientations. During small and intermediate IMF cone 264 

angles when the foreshock falls upstream of the dayside magnetosphere, foreshock 265 

cavitons are carried by the solar wind into the bow shock. As a result, we expect the 266 

formation of SHFAs at the quasi-parallel bow shock over a wide range of solar wind 267 

conditions. Although the simulation results shown here correspond to Alfven Mach 268 

number of 12 and IMF cone angle of 10o, examination of other runs with lower Mach 269 

numbers (down to 6 VA) and cone angles (smaller than 45o) also shows the formation of 270 

SHFAs at the shock. As such, we believe the formation of SHFAs at the quasi-parallel 271 

bow shock is a common process and quite significant for ion acceleration and dissipation 272 

at the super-critical quasi-parallel bow shock. Similarly, the formation and dissipation of 273 

SHFAs as they interact with the bow shock, is critical for determining the properties of 274 

the magnetosheath plasma. 275 

 276 

The simulation results also demonstrate that when a number of foreshock cavitons 277 

arrive and interact with the bow shock near simultaneously, structures larger and more 278 

complex than SHFAs are formed. These structures are influenced by the interaction of the 279 
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cavitons with the bow shock but also with each other. As a result, the time series data 280 

obtained at various points along the bow shock are more complex and varied from point 281 

to point and exhibit full or partial signatures of multiple SHFAs. Such interactions also 282 

lead to large inhomogeneities in the magnetosheath. The results presented by Zhang et al. 283 

[2012] and here demonstrate that ion dissipation processes at the quasi-parallel shock are 284 

even more complex than previously thought. Future data analysis and simulations are 285 

needed to shine more light on the impacts of SHFAs on the bow shock, magnetosheath 286 

and the magnetosphere. Similarly, differences between HFAs and SHFAs and their 287 

magnetospheric impacts need to be explored further.  The fact that the formation of HFAs 288 

is associated with the presence of solar wind discontinuities while SHFAs form due to the 289 

interaction of cavitons with the bow shock provide a means of distinguishing between 290 

HFAs and SHFAs. For example, Zhang et al. [2012] use the absence of a solar wind 291 

discontinuity associated with an event to identify it as an SHFA. As we learn more about 292 

SHFAs and how they compare and contrast to HFAs other means of distinguishing 293 

between the two may become available.  294 

 295 
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 495 
 496 

FIGURE CAPTIONS 497 
 498 

 499 
Figure 1. Panel (a) shows the plasma density normalized to solar wind value and marks 500 
various parts of the bow shock and the ion foreshock. Panel (b) zooms closer into the 501 
foreshock and bow shock showing foreshock cavitons. 502 
 503 
Figure 2. Plasma density normalized to solar wind value at 4 times (proton gyroperiods 504 

-1) demonstrating the interaction of SHFA with the bow shock. 505 
 506 
Figure 3. Ion temperature normalized to solar wind value at 4 times demonstrating 507 
injection of energetic ions into the magnetosheath by SHFA. 508 
 509 
Figure 4.  Time series data showing plasma density, three components of velocity and 510 
magnetic field and ion temeperature generated at the point marked by “X” in panel (a) of 511 
Figure 2. Density, total pressure, magnetic field and temperature are normalized to solar 512 
wind values and velocities are normalized to the Alfven speed in the solar wind. The data 513 
shows signatures of a SHFA. 514 
 515 
Figure 5.  Total magnetic field, ion temperature and velocity in X direction are shown at 516 
two times demonstrating the transformation of a foreshock caviton into a SHFA. 517 
 518 
Figure 6.  Plasma density at 4 times showing the evolution of a number of SHFAs as they 519 
interact with the bow shock and eventually end up in the magnetosheath. 520 
 521 
Figure 7.  Time series data showing the variations of total magnetic field, flow speed 522 
along X, ion temperature and density at points A, B, C and D marked in panel (a) of 523 
Figure 6. Density, magnetic field and temperature are normalized to solar wind values 524 
and flow speed is normalized to the Alfven speed in the solar wind. 525 
 526 
 527 
 528 
 529 
 530 
 531 
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