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ABSTRACT 

 

The Integration of Dow's Fire and Explosion Index into Process Design and 

Optimization to Achieve an Inherently Safer Design. (August 2005) 

Jaffee Suardin, B.S., Bandung Institute of Teknologi, Indonesia 

Chair of Advisory Committee: Dr Sam Mannan 

 

The integration of the safety parameter into process design and optimization is 

essential. However, there is no previous work in integrating the fire and explosion index 

(F&EI) into design and optimization. This research proposed a procedure for integrating 

safety into the design and optimization framework by using the safety parameter as 

optimization constraint. The method used in this research is Dow’s Fire and Explosion 

Index which is usually calculated manually.  

This research automates the calculation of F&EI. The ability to calculate the 

F&EI, to determine loss control credit factors and business interruption, and to perform 

process unit risk analysis are unique features of this F&EI program. In addition to F&EI 

calculation, the F&EI program provides descriptions of each item of the penalties, 

chemicals/materials databases, the flexibility to submit known chemical/material data to 

databases, and material factor calculations. Moreover, the sensitivity analyses are 

automated by generating charts and expressions of F&EI as a function of material 

inventory and pressure. The expression will be the focal point in the process of 

integrating F&EI into process design and optimization framework.   
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The proposed procedure of integrating F&EI into process design and 

optimization framework is verified by applying it into reactor-distillation column 

system. The final result is the optimum economic and inherently safer design for the 

reactor and distillation column system. 
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1CHAPTER I 

INTRODUCTION 
 
 
 
1.1. OVERVIEW 

Along with its advances and benefits to the society, the chemical industry has 

also brought along the hazards that need to be managed appropriately. Unfortunately in 

some occurrences, lack of knowledge, technology, or failures in management systems 

has led to tragic incidents. Examples are the Flixborough incident with 28 fatalities 

(Crowl & Louvar, 2001), the Bhopal incident with more than 2,000 fatalities (Crowl & 

Louvar, 2001), the Pasadena-Texas explosion with 23 fatalities (Crowl & Louvar, 2001), 

and the more recent Texas City-refinery explosion which cost the lives of 15 people, not 

to mention multiple injuries, capital loss, lawsuits, decreased stock price, ruined 

image/brand, etc. Loss prevention, as the term used by insurance industry, comes not 

only from the cost of replacing the damaged plant or equipment and third party claim but 

also from the loss of revenue from the opportunity of production and sales. 

“What exactly had happened?” and “what are the reasons behind those 

incidents?” are the questions that can be raised. In answering those questions, we need to 

understand what the hazards are. Adapted from the Center for Chemical Process Safety 

(CCPS), hazard is defined as physical or chemical characteristic that has the potential for 

causing harm to people, the environment, or property (Crowl, 1996). It is very important 

                                                 
This thesis follows the style and format of the Journal of Loss Prevention in the Process 
Industries. 
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to note that the hazards are intrinsic and are the basic properties of the material or its 

conditions of use. For example, 10,000 lbs of propane holds the same amount of energy 

which could be released by 28 tons of TNT. Those energies are inherent to the propane, 

cannot be changed, and will be released when equipment or other failure happens and 

leads to an incident.  

While an “inherently safe” plant infers a plant that has no hazards on an absolute 

basis, such plant with “zero risk” might be impossible to design and to operate. 

Therefore, the need to manage hazards and risks strategically and systematically arises 

and one of the strategies is inherently safer design concept (as opposed to inherently safe 

plant). In addition, the best strategy seeks to combine inherently safer design with 

process design and optimization at the early stages of design where the degree of 

freedom for modification is still high.  

In the next sections, the objectives, the details of inherently safer design concept, 

pertinent previous research, process design and optimization, and their current industry 

practice are discussed. The description of the methodology, design and optimization 

models, and summary of the research are presented as well. 

 

1.2 INHERENTLY SAFER DESIGN 

While layers of protection assist in controlling and managing risks associated 

with the hazards, it is better to reduce the inherent hazard. The term “Inherently Safer 

Design” started appearing in safety discussion after Trevor Kletz introduced this concept 
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as an identifiable element of process safety in one of his most famous phrases “What 

You Don’t Have Can’t Leak”.  

Inherently safer design infers the elimination of hazards as much as possible out 

of a chemical or physical process permanently as opposed to using layers of protection. 

It is a challenge for engineers to design an optimal and inherently safer process to 

produce good quality and high yield products within acceptable economic limits. There 

are four primary principles of inherently safer design concept proposed by Kletz (1991): 

1. Intensification – to reduce the inventories of hazardous materials as more 

inventory of hazardous chemicals mean more hazards. 

2. Substitution – to use less hazardous materials in the process. 

3. Attenuation – to operate a process at less dangerous process conditions (pressure, 

temperature, flow rate, etc).  

4. Limitation of effects – to design the process according to the hazards offered by 

the process in order to reduce the effects of the hazards. 

In the US, inherently safer design started receiving more attention following a highly-

praised paper presented by Kletz in 1985 at the 19th Loss Prevention Symposium of the 

American Institute of Chemical Engineers (AIChE) (Hendershot, 1999). 

 

1.3 SAFETY STUDIES 

In the recent years, public concern about safety issues has increased due to risk 

posed by more complex and more extreme conditions of the chemical industries to the 

employees, communities living near the site, properties, and environment. In the 
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Chemical Process Industries (CPI) point of view, there are also potential economic and 

business losses. Therefore, CPI has had significant efforts to manage and to control the 

hazards. The most common and traditional approach has focused on layers of protection 

(LOP) where additional safety devices and features are added to the process, as shown in 

Figure 1.2.  

The LOP method has been successful in producing an excellent safety record. 

However, this approach has several disadvantages as listed below (Crowl 1996): 

• LOP increase the complexity of the process, and hence the capital and 

operating cost. In the oil and gas industries, 15-30 % of the capital cost goes 

to safety issues and pollution prevention (Palaniappan & Srinivasan, 2004). 

• The hazards within the process remain, even when LOP are installed and are 

built based on the anticipation of incidents, as shown in Figure 1.2 (a). Since 

nature might find creative ways to release hazards, there are always dangers 

from unanticipated failure mechanisms that the LOP are not ready for, as 

shown in Figure 1.2 (b). 

• Since no LOP can be perfect, failures or degradation in LOP may pose risks 

offered by the hazards that lead to incidents, as shown in Figure 1.2 (c). 

Other efforts by the industries and researchers toward safety studies tend to focus 

on hazard identification and control. There has been some work in developing more 

advanced hazard and risk analysis methods such as Failure Modes and Effects Analysis 

(FMEA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Cause-Consequences 

Analysis (CCA), Preliminary Hazard Analysis, Human Reliability Analysis (HRA) and 
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Fig. 1.1 Typical layers of protection for CPI (Adapted from Hendershot, 1999) 

 
 
Hazard and Operability Study (HAZOP) in addition to traditional methods such 

as check list, safety review, relative ranking, and “What-if” analysis (Wang, 2004). 

These methods provide qualitative or quantitative information about the hazards and 

risks posed by the process, but have not been integrated into process design and 

optimization framework. 
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In this section, several inherent safety efforts taken by US corporations and US 

affiliates of European company are listed: 

• Dow Chemical Company – Developed the Dow Fire and Explosion Index 

(AIChE, 1994a) and the Dow Chemical Exposure Index (AIChE, 1994b) as 

hazard ranking methodology based on inherent safety principles. 

• Exxon Chemical Company – Described inherent safety, health and 

environment review process based on a life cycle approach (French, 

Williams, & Wixom, 2004). 

• Rohm and Haas Major Incident Prevention Program – used checklist based 

on inherent safety principles for hazard elimination and risk reduction 

(Hendershot, 1999). 

 
Safety studies were not only considered by the industries, but also by the US 

federal government by issuing federal regulations such as Process Safety Management 

(PSM) of the Occupational Safety and Health Administrations (OSHA), and Risk 

Management Program (RMP) of the Environmental Protection Agency (EPA). 

Overall impression on these efforts is that inherently safer design principles have 

not been systematically applied. Comparison between traditional efforts and inherently 

safer design must be performed to understand the importance of inherently safer design 

principles. As opposed to layer of protection concept, the concept of inherently safer 

design is to reduce the inherent hazards rather than to control them. There are two things 

about having lower hazards: they need lesser LOP, less complex LOP and offer lower 

magnitude of hazards, as shown in Figures 1.3 and 1.4. 
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Fig. 1.2. Layers of protection characteristics 

(a) LOP reduces the anticipated potential incidents, (b) LOP does not reduce unanticipated 
potential incidents, (c) degraded LOP does not reduce any potential incidents (adapted from 
Hendershot, 1999) 

 

 

Another impression on the traditional approaches is that the efforts focus on 

hazard identification and control without actively changing the design. This research 

seeks to integrate inherently safer design concept into process design and optimization 

using well-accepted hazard identification method, which will be discussed in the next 
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section. The integration is most effective at the early design stages where there are a lot 

of degrees of freedom for making changes. In addition, the integration of safety into 

process design and optimization at the early stages of design will show that safety 

parameters have active role and give strong feedback to the basic process design 

strategy.  
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Fig. 1.3 Inherently safer process design requires no or less additional LOP 
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Fig. 1.4 Potential incidents for inherently safer design (adapted from Hendershot, 1999) 

 
 
 
1.4 HAZARD INDICES 

Most methodologies such as HAZOP, FMEA, and FTA are applicable later in the 

design stage and require significant funding, special expertise, detailed data and time 

(Khan, Sadiq, & Amyotte, 2003a). On the other hand, hazard indices offers some 

characteristics which are applicable to the early stage of design: they can be done 

quickly, and provide score, penalty, or credit that is easy to interpret, enables 

comparisons among several design options, and does not require detailed data and 

special expertise.   

There are several hazard indices available as tools for chemical process loss 

prevention and risk management. Although no index methodology can cover all safety 

parameters, Dow Fire and Explosion Index (F&EI) and Safety Weighted Hazard Index 

(SWeHI) are found to be robust (Khan, Sadiq, & Amyotte, 2003a). The F&EI is the most 
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widely known and used in the chemical industries. The following are indices available in 

the industries: 

• Dow Fire and Explosion Index (F&EI) (AIChE, 1994a) and Dow’s Chemical 

Exposure Hazards (AIChE, 1994b) as tools to determine relative ranking of fire, 

explosion, and chemical exposure hazards. 

• SWeHI as a tool to define fire, explosion, and toxic release hazards (Khan, Sadiq, 

& Amyotte, 2003a). 

• Environmental Risk Management Screening Tools (ERMST®) from Four 

Elements, Inc. for ranking environmental hazards including air, ground water, 

surface water pollution (Khan, Sadiq, & Amyotte, 2003a). 

• Mond Index as a tool to define fire, explosion, and toxic release hazard (Khan, 

Sadiq, & Amyotte, 2003a). 

• Hazardous Waste Index (HWI) as a tool for flammability, reactivity, toxicity, and 

corrosivity hazard of waste materials (Khan, Sadiq, & Amyotte, 2003a). 

• Transportation Risk Screening Model (ADLTRS®) as a tool for determining risk 

to people and environment posed by chemical transportation operations (Khan, 

Sadiq, & Amyotte, 2003a). 

• Inherent Safety Index, which was developed by Heikkila (1999) of Helsinki 

University of Technology. This method classifies safety factors into two 

categories, chemical and process inherent safety. The chemical inherent safety 

includes the choice of material used in the whole process by looking at its heat of 

reaction, flammability, explosiveness, toxicity, corrosivity, and incompatibility 
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of chemicals. The process inherent safety covers the process equipment and its 

conditions such as inventory, pressure, temperature, type of process equipment, 

and structure of the process. 

• Overall Inherent Safety Index, which was developed by Edwards & Lawrence 

(1993) to measure the inherent safety potential for different routes of reaction to 

obtain the same product. 

Fuzzy Logic-based Inherent Safety Index (FLISI), which was developed by 

Gentile (2004) of Mary Kay O'Connor Process Safety Center at Texas A&M University. 

One of the major problems in applying inherent safety is that safety mostly based on the 

qualitative principles that cannot be easily be evaluated and analyzed. The FLISI was an 

attempt to use hierarchical fuzzy logic to measure inherent safety and provide conceptual 

framework for inherent safety analysis. The fuzzy logic is very helpful for combining 

qualitative information (expert judgment) and quantitative data (numerical modeling) by 

using fuzzy IF-THEN rules. 

 

1.5 PROCESS SAFETY, DESIGN, AND OPTIMIZATION 

Currently optimization is performed as an attempt to enhance the process design 

and the operation conditions of equipment to achieve the largest production, the greatest 

profit, minimum production cost, the least energy usage, etc. However, neither objective 

functions nor constraint conditions contain safety parameters in the traditional process 

optimization. Safety studies are usually performed after process design and optimization. 
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Safety studies as part of process design and optimization are an iterative 

procedure and there will not be a single “correct” or “safe” solution. Thus, a “trade off” 

must be considered, especially when cost benefit analysis is involved. The objective of 

safety studies is to reduce the frequency and the magnitude of hazardous events as long 

as economically practicable. All design engineers must be aware of those hazards and 

make sure that the design is at an acceptable risk level.  

Safety is a focal point of any process design that must be balanced with many 

other factors such as economics, practicality, technology, market, etc (Mansfield & 

Cassidy, 1994). Safety must be integrated in all aspects of design starting from 

conceptual to detailed design. Therefore, safety must be integrated into the overall 

design procedure and presented alongside with other objectives and constraints 

(Mansfield & Cassidy, 1994). 

 

1.6 OBJECTIVES 

It is essential to integrate safety into process design and optimization to achieve 

inherently safer design. Therefore, this research is to integrate Dow’s Fire and Explosion 

Index into process design and optimization to achieve inherently safer design. 

The objectives of this research are: 

1. To computerize Dow’s Fire and Explosion Index Calculation 

2. To generate fire and explosion hazards expressions as a function of operating pressure 

and the amount of materials in the process units based on the Dow’s Fire and 

Explosion Index. 
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3. To optimize the reactor and distillation column as case study with economic, 

performance, and safety parameters as the constraints.  

4. To develop a general procedure for integrating safety parameters into process design 

and optimization. 

 

1.7 CONTENTS OF THIS RESEARCH 

To achieve the objectives stated above, there are steps, methods and limitation 

that are applied to this research. This section discusses the detailed contents of this 

research. 

 

1.7.1 Design Stage Used in This Research 

Table 1.1 provides the procedure of plant design (Mansfield & Cassidy, 1994). 

This research aims at integrating safety at an early stage of design, specifically process 

conceptual design. 

Table 1.1. The procedures of plant design (Mansfield & Cassidy, 1994) 

Decision Point Key Question/Decisions Information Used 

Initial Specification 

 

What product 

What throughput 

Market research 

R&D new product ideas 

Process Synthesis Route How to make the product 

What route, what reactions 

and materials 

R&D chemist’s research 

Known synthesis routes and 

techniques 

Chemical Flowsheet Flow rate, conversion,  Process synthesis route, lab  
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Table 1.1. Continued 

Decision Point Key Question/Decisions Information Used 

 pressure, temperature, 

solvents, etc. 

pilot scale trials and 

knowledge of existing 

process. 

Process Flowsheet Batch vs continuous 

operations 

Unit operation selection 

Control philosophy 

Info above plus process 

engineering design 

principles and experience. 

Process Conceptual Design Equipment selection and 

sizing, inventory of process, 

overdesign/flexibility, 

preliminary plant layout, 

material construction 

As above plus equipment 

suppliers data, raw material 

data, company design 

procedures and 

requirements 

Process Detailed Design Detailed specification based 

on concept 

Process conceptual design 

and codes/standard and 

procedures on past 

project/design 
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1.7.2 Hazard Analysis Tools and Program Developer 

It is essential to integrate process design with a well-accepted hazard index. 

Dow’s Fire and Explosion index (F&EI) 7th edition is employed for fire and explosion 

hazard analysis. To facilitate the calculation, F&EI calculation is computerized by 

developing a built in Excel program with Microsoft Visual Basic® Application. 

After developing a mathematical model of the process under study, optimization 

is basically solving the model. Hence, an advanced computational solver is needed to run 

the calculation faster and more efficiently. There are a lot of optimization solvers 

available. This research employs LINGO® optimization software to handle the 

optimization model because of LINGO ®’s simplicity, availability, and researcher’s 

familiarity as well. 

 

1.7.3 Integrating Hazard Analysis into Process Design and Optimization 

Most safety analyses are qualitative and an equation that relates safety to process 

parameters is hardly available. On the other hand, optimization requires mathematical 

model or equations. Hence, it is impossible to design and optimize the process to obtain 

optimal and inherently safer design without equations. This research generates the 

equation relating safety to process components from the well-accepted hazard analysis 

method, Dow’s Fire and Explosion Index. Fire and explosion hazard are expressed as a 

function of pressure and the amount of hazardous chemicals in the process unit. We can 

also see the effects of having safety as one of the optimization constraints on process 

design and optimization. 
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Economic factors are the driving force of the process design and optimization, 

and are normally used as optimization objective functions. This research will combine 

process unit performance, economic performance and safety parameter into one 

optimization case. The resulting design is expected to be optimal, inherently safer, and 

cost effective.  

 

1.7.4 Case Study: Distillation Column, and Reactor 

Basic chemical engineering processes includes mixing, separating, and reaction. 

Mixing might occur in the reactor and be combined with reaction. A separator is usually 

used to separate important products produced from a reactor. The reactor-separator 

system is widely used and should be considered as a whole system since the output of 

the reactor will define the type and the size of the separator. Therefore, a reactor and 

distillation column system is used as a case study in this research. 

 

1.8 ORGANIZATION OF THESIS 

This thesis consists of seven chapters. Chapter I discusses the motivation, 

objectives, and contents of this research. Chapter II discusses the hazard analysis method 

used in this research, Dow’s Fire and Explosion Index (FEI). All procedures, limitations, 

equations, qualitative expressions, options, important guidance, and other detailed data 

are provided. Chapter III discusses the selection of the reactor and distillation column 

system, their performance and economic factors in the case study of this research. 

Chapter IV covers the theory of optimization, kinetic, design, and economic models used 
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in the optimization of the case study. Chapter V discusses the development of the F&EI 

program using Microsoft Visual Basic® Application, Microsoft Excel® and LINGO® 

optimization solver. 

Chapter VI recaps the results of this research while Chapter VII gives 

conclusions and future works that can be done based on this research. The appendix will 

provide all codes and databases employed in the programming of F&EI calculations. 
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2CHAPTER II 

DOW’S FIRE AND EXPLOSION INDEX* 
 
 
 
2.1 OVERVIEW 

Dow’s Fire and Explosion Index (F&EI) is the most widely used hazard index 

and has been revised six times since 1967. The latest edition (7th edition), which was 

published in 1994, is employed in this research. AIChE (1994) describes F&EI as the 

quantitative measurements which are based on historical data, energy potential of the 

materials under evaluation, and the extent to which loss prevention practices are 

currently applied. F&EI is valuable as a guide to decide whether it is necessary for 

process designers to consider other less hazardous materials and/or other process routes 

(Etowa, Amyotte, Pegg, & Khan, 2002). Moreover, F&EI helps engineers to be aware of 

the hazards in each process unit while making important decisions in reducing the 

severity and/or the probability of the potential incident.  

F&EI relates process hazards to process information (i.e., process conditions, 

materials, type of equipment, and other characteristics of the process) in terms of 

“penalties” and “credit factors”. It should be borne in mind that not every penalty is 

applicable to the process under evaluation so that careful judgment should be made and 

discussed with the expert if necessary. F&EI is based on the “worst case” which means 

only the most hazardous material are evaluated at a time in a specific operational state 

                                                 
*This chapter is a summary of and all tables and Figure 2.1, 2.7, 2.8, 2.9 are reprinted with permission 
from Dow’s Fire & Explosion Index Hazard Classification Giude, by American Institute of Chemical 
Engineers (AIChE), 1994, AIChE, New York, Copyright 2005 by AIChE. All rights reserved 
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(i.e., start up, shut down, and normal operation). For example, when a process unit has 

hazards posed by flammable liquids and dusts, F&EI must be determined based on both 

flammable liquids and dusts. Then, the higher F&EI and business interruption must be 

the one that is reported to the management as the worst case.  

The details of procedures, guidelines, and equations to determine the penalties 

and the credit factors of the F&EI are described in the next section. It is very important 

to understand that all of the information provided in this chapter is primarily a summary 

of the method given in Dow’s Fire and Explosion Hazard Classification Guide 7th 

edition which was published in 1994 by American Institute of Chemical engineers 

(AIChE). 

 

2.2 DOW’S FIRE AND EXPLOSION INDEX CALCULATIONS 

F&EI calculation is composed of steps as shown in Figure 2.1 (AIChE, 1994) 

and is discussed below. To calculate F&EI, the following documents are required 

(AIChE, 1994): 

1. Plot of the plant/process and/or process flow sheet 

2. Replacement cost data for the installed process equipment under study 

3. Fire and Explosion Index Hazard Classification Guide, 7th Edition 

4. Fire and Explosion Index, Loss Control Credit Factors, Process Unit Analysis 

Summary, and Manufacturing Unit Risk Analysis Summary Form. 

The method starts with the selection the process unit to be evaluated. The user 

must select the process unit that could pose a significant impact in a potential incident. 
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Therefore, these important factors must be considered when selecting the process units 

under evaluation (AIChE, 1994): 

• Chemical energy potential (Material factor). 

• Quantity of hazardous material. 

• Business interruption and capital density (dollars per ft2). 

• Operating pressure and temperature. 

• History of fire and explosion incident related to the same type of process 

unit. 

• The importance of the process unit to the whole process. 

The F&EI has two components, Process Unit Hazards Factor (F3) and Material 

Factor (MF). F3 consists of General Process Hazards (F1) and Special Process Hazards 

(F2). The F&EI is determined by the Equations (2.1) and (2.2) (AIChE, 1994): 

213 FFF ×=       (2.1) 

3& FMFEIF ×=      (2.2) 

213 ,, FFF and MF  are discussed hereafter. 

 

2.2.1 Material Factor (MF) 

Material factor is the intrinsic rate of potential energy release caused by fire or 

explosion produced by combustion or chemical reaction. It is the basic starting point of 

the F&EI calculation and plays a critical role in the magnitude of the F&EI. MF is 

obtained from reactivity value (NR) and flammability value (NF). Appendix A provides a 
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list of chemicals that are mostly used in the CPI and their MF. For unlisted chemicals, 

the data can be obtained from the material safety data sheet (MSDS).  
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Fig. 2.1 Procedures for calculating F&EI and other risk analysis information (Reproduced with 
permission. Copyright 1994 AIChE) 
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Table 2.1 NF classifications and material factor (MF) determination guide (Reproduced with 
permission. Copyright 1994 AIChE) 

  Reactivity or Instability 

Liquids & Gases 
Flammablity or 
Combustibility1 

NFPA 
325 M 
or 49 

NR = 0 NR = 1 NR = 2 NR = 3 NR = 4 

Non-combustible2 NF = 0 1 14 24 29 40 

F.P > 200oF NF = 1 4 14 24 29 40 

100 oF< F.P < 200 oF NF = 2 10 14 24 29 40 
73 oF <F.P > 100oF or 
F.P < 73 oF and BP � 
100 oF NF = 3 16 16 24 29 40 
F.P < 73 oF & BP < 
100 oF NF = 4 21 21 24 29 40 
Combustible Dust or Mist3     24 29 40 
St-1 (Kst � 200 bar m/sec) 16 16 24 29 40 
St-2 (Kst = 201-300 bar m/sec) 21 21 24 29 40 
St-3 (Kst > 300 bar m/sec) 24 24 24 29 40 
Combustible Solids     24 29 40 

Dense > 40 mm thick4 NF = 0 4 14 24 29 40 

Open < 40 mm thick5 NF = 1 10 14 24 29 40 
Foam, Fiber, Powder, 
etc6 NF = 2 16 16 24 29 40 
       
F.P = Flash Point, Closed cup B.P = Boiling Point (STP)   
Notes:       
1: Includes volatile solids      
2: Will not burn in air when exposed to T = 1500 oF for five minutes.   
3: Kst values are for a 16 liter or larger closed test vessel with strong ignition source 
4: Includes wood-2 inches nominal thickness, magnesium ingots   
5: includes coarse granular material such as plastic pellets, rack storage, wood pellets,  
6: Includes rubber goods (tyre, boots), styrofoam, methocel, etc   

 

 

If the chemicals are not listed in either MSDS or Appendix A, MF can be 

determined from NF and NR. NR and NF are applicable for temperatures up to 140 oF, 

therefore MF for chemical/material exposed to temperatures higher than 140 oF must be 

adjusted by “Temperature Adjustment of Material Factor” procedures. The flammability 
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value (NF) and the reactivity value (NR) and their qualitative descriptions are presented 

in Table 2.1 and Table 2.2, respectively. 

 

Table 2.2 Qualitative descriptions for determining reactivity value (NR) (Reproduced with 
permission. Copyright 1994 AIChE) 

NR = 0 Normally stable material even under fire which include: 

• Material that do not react with water 

• Material that exhibit exothermic behavior at 572 F < T < 932 F 

NR = 1 Normally stable material but unstable at elevated pressure (P) and temperature (T), 

which include: 

• Material that change or decompose on exposure to air, light, or moisture 

• Material that exhibit exothermic behavior at 302 F < T < 572 F 

NR = 2 Material that readily go through violent chemical change at elevated P and T, which 

include 

• Material that exhibit exothermic behavior at T < 302 oF 

• Material that reacts violently or forms potentially explosive material with 

water 

NR = 3 Material that is capable of detonation of explosive decomposition or reaction at the 

availability of strong intiating source or heated under confinement before initiation. 

This usually includes: 

• Material that is sensitive to thermal or mechanical shock at elevated P and T 

• Material that reacts explosively with water even at unavailability of heat or 

confinement. 

NR = 4 Material that is readily capable of detonation or explosive decomposition or explosive 

reaction at normal P and T. This includes materials that are sensitive to localized 

thermal or mechanical shock at normal P and T. 
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Temperature adjustment is performed only when the temperature of the process 

unit under study is above 140oF. No adjustment required for material that exhibits 

reactivity at temperature less than 140oF, has flash point less than 140oF, and is handled 

at above its flash point at ambient temperature. The temperature adjustment of MF is 

determined using table 2.3 (AIChE, 1994). “Exotherm start” is the temperature where 

heat-generating chemical reaction temperature is detected in Accelerating Rate 

Calorimeter (ARC) or similar calorimeter. 

 

Table 2.3 Material factor temperature adjustment (Reprinted with permission. Copyright 1994 
AIChE) 

MATERIAL FACTOR TEMPERATURE  ADJUSMENT NF St NR 

A. Enter NF (St for dusts) and NR    

b. If Temperature < 140oF, go to “e”    

c. If temperature above flash point or if temperature > 140oF, 

enter “1” under NF 
   

d. If temperature above exotherm start (see paragraph below) or 

autoignition, enter “1” under NR 
   

e. Add each column, but enter 4 when total is 5    

f. Using “e” and tanle 1, determine MF 

 
 
 
2.2.2 Process Unit Hazard Factor (F3) 

Process unit hazard factor incorporates all factors that are likely to contribute to 

the occurrence of fire and explosion incidents. The numerical value of process unit 
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hazard factor is determined by general process hazards and special process hazards that 

are described hereafter. 

 

2.2.2.1 General Process Hazards (F1) 

General process hazard items have historically played an important role in 

determining the magnitude of potential incidents, and are applicable to most process 

conditions. General process hazards cover six items, namely, exothermic chemical 

reactions, endothermic processes, material handling and transfer, enclosed or indoor 

process units, access and drainage and spill control, although it may not be necessary to 

apply all of them.  

 

A. Exothermic Chemical Reactions 

This item only concerns the reactor where the chemical reactions take place. The 

chemical reactions are classified into several categories and each receives a different 

penalty. The chemical reactions considered include: 

• Mild exothermic reaction (i.e., hydrogenation, hydrolysis, isomerization, 

sulfonation, and neutralization) requires a penalty of 0.30. 

• Moderate exothermic reaction (i.e., Alkylaton, edterification, addition reactions, 

oxidation, polymerization, and condensation) requires a penalty of 0.50. 

• Critical-to-control exothermic reaction (i.e., halogenation) requires a penalty of 

1.00. 

• Particularly sensitive exothermic (i.e., nitration) require a penalty of 1.25. 
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B. Endothermic Processes 

All endothermic processes in the reactor require a penalty of 0.2 unless the 

energy for the endothermic processes is provided by combustion of a solid, liquid or 

gaseous fuel, whose penalty is 0.4. For example, calcination has a penalty of 0.4, 

electrolysis has a penalty of 0.20, and pyrolysis or cracking has a penalty of 0.20 if 

electricity is used as the energy source (and 0.40 if direct fired heat is used). 

 

C. Material Handling and Transfer 

This penalty considers the potential fire hazard in process unit during the 

handling, transfer and warehousing of the material. The loading or unloading process of 

Class I flammables or LPG type chemicals with the lines that can be connected or 

disconnected requires a penalty of 0.50. The air present in the centrifuges, batch reactors, 

or mixers (inerted or not inerted) that might initiate a flammability or reactivity hazards 

requires a penalty of 0.50. Warehouse storages or yard storages (not storage tanks) 

involving chemical with potential fire hazards require a penalty of 0.85, 0.65, 0.40, and 

0.25 depend on the flammability of the chemicals handled. Utilizing racks without in-

rack sprinkler will add 0.20 to the penalty.  

 

D. Enclosed Indoor Process Units 

Enclosed area is defined as any roofed area with three or more sides or an area 

enclosed by a roofless structure with walls on all sides. Open construction is usually 
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more effective than any mechanical ventilation in an enclosed area unless the ventilation 

is designed in such a way that all flammables can be collected and dispersed. In such 

case the penalty will be reduced. The categories are as follows: 

• Dust collectors located inside an enclosed area requires a penalty of 0.50. 

• Handling flammable fluids at a temperature above their flash point in an 

enclosed area requires a penalty of 0.30. If more than 1,000 gallons of liquids 

are handled, the penalty will be 0.45. 

• Liquefied petroleum gas (LPG) or any flammable fluids handled at 

temperatures above their boiling point in an enclosed area require a penalty 

of 0.60. However, if more than 10,000 lb of liquids are handled, the penalty 

will be 0.90. 

• All of the penalties above will be reduced by 50% if mechanical ventilation is 

properly designed for the fire hazard.  

 

E. Access 

The pertinent process unit must have adequate and ready-to-use access. The 

minimum requirements look for at least accesses from two sides, at least one access from 

a roadway and an accessible monitor nozzle during operation. Process areas over 10,000 

ft2 or warehouses over 25,000 ft2 with inadequate accesses will have 0.35 as the penalty.  
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F. Drainage and Spill Control 

Incidents involving spills of flammable and combustible liquids around or near 

process equipment have been mostly caused by inadequate design of drainage and spill 

control. This penalty is given only for material with flash point below 140 oF or material 

handled above its flash point. The main factors of the penalty are the total volume of 

combustible or flammable materials and fire fighting water that are safe enough to 

handle such amount of materials. The drainage is calculated as the combined volume of 

the following: 

• For process and storage facilities, the total volume used is given by Equation 2.3 

(AIChE, 1994): 

Total volume = 100 % largest tank capacity + 10 % next largest tank  (2.3) 

• Assume 30 minutes flow rate of fire fighting water or 60 minutes for agricultural 

chemicals or environmentally harmful chemicals. 

The penalty is assigned according to the following guidelines: 

• Diking which prevents the spill from reaching other areas but expose all the 

equipment within the dike or flat areas around process unit will receive a penalty of 

0.50. 

• If a basin or trench exposes utility lines or does not meet the required distance, the 

penalty will be 0.50. 

• There is no penalty if the diking design requirement below are met: 

• Diking surrounds three sides of an area and direct spills to an impounding 

basin or unexposed drainage trench. 
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• Earthen surface requires 2% (min) of the slope to basin or trench while 

hard surface requires 1%. 

• The nearest edge of trench or basin must be separated at least 50ft from 

the equipment. However, if firewall were installed, the distance can be 

reduced. 

• The impounding basin must have the capacity at least equal to the total 

volume of the fire fighting water.   

 

2.2.2.2 Special Process Hazards (F3) 

Special process hazards are the factors that play an important role in increasing 

the probability of a potential incident and comprise of the specific process condition that 

historically contribute to the major causes of fire and explosion incidents. There are 12 

items that are listed as special process hazards and are described below: 

 

A. Toxic Material(s) 

Toxic material will cause difficulties and limit the ability of emergency response 

personnel to reduce the magnitude of the incident.  

This penalty depends on health factor (NH) of the material. For mixture, take the highest 

NH. The penalty is given by the Equation (2.4) (AIChE, 1994): 

HNPenalty ×= 20.0     (2.4) 

NH is defined in NFPA 704 or NFPA 325 M and attached in Appendix A. Table 2.3 

summarizes the NH according to its qualitative description. 
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Table 2.4 Qualitative descriptions to determine health factor (NH) (Reproduced with permission. 
Copyright 1994 AIChE) 

NH = 0 No hazards beyond that normal combustible material offer will occur even on short 

exposure under fire conditions. 

NH = 1 Irritation only on minor residual injury but requires the use of an approved air-

purifying respirator when short exposure of the material happens. 

NH = 2 Temporary incapacitation, possible residual injury and the use of respiratory protective 

equipment with independent air supply will occur on intense or short exposure of the 

material. 

NH = 3 Full body protection is required and serious temporary injury will occur when short 

exposure of the material happens. 

NH = 4 Death and major residual injury occur even at very short exposure of the material. 

 
 
 
B. Sub-Atmospheric Pressure 

This section is applied based on the knowledge that the introduction of air into 

process equipment (i.e., strippers, compressors, etc) could create or increase the risk of 

fire or explosion. This will happen only if the inner pressure of the process equipment is 

lower than the surrounding pressure. This penalty is applied only if the absolute pressure 

of the process equipment under evaluation is less than 500 mmHg and will receive a 

penalty of 0.50. If this penalty were applied, do not use the specified penalty given in 

Section C of “Operation In or Near Flammable Range” and the penalty given in the 

Section E of “Relief Pressure”.  
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C. Operation in or Near Flammable Range 

The introduction of air into process equipment could create fire and/or explosion 

hazards based on the materials and the equipment conditions. The more hazardous the 

material and/or process conditions are, the higher the penalty it will receive. However, 

no penalty is applied if penalty given in section B is applied. This section covers the 

following conditions: 

• Tank storage handling flammable liquid with NF = 3 or 4 and there is a 

possibility that air can leak into the tank during pump-out or sudden cooling of 

the tank receives a penalty of 0.50. Open vent or non-inert gas padded operating 

pressure-vacuum relief receives a penalty of 0.50. Non-inerted storage handling 

combustible liquids at temperatures above their flash point receive a penalty of 

0.50. 

• Process equipment that happens to be near flammable range of some material 

upon instrumental failure receives a penalty of 0.30. Any process that depends on 

inert purge to have it out of flammable range receives a penalty of 0.30. Barges 

or tank cars receives a penalty of 0.30. 

• Process or operation that will always be at or near flammable range by nature 

will receive a penalty of 0.80.  

 

D. Dust Explosion 

This penalty is applied to any process handling dusts such as transferring, 

blending, grinding, bagging, and etc. The hazards come from the maximum rate of the 
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pressure rise and the maximum pressure generated which are both influenced by the 

particle size. The finer the dust, the higher the maximum rate of the pressure arise and 

also the higher the maximum pressure generated, hence the higher the hazards. The 

penalty is based on the particle range size of 90 % of the dust coarser that are measured 

using Tyler mesh size. Table 2.5 presents penalties for different particle size ranges. 

 

 

Table 2.5 Dust explosion penalty (Reproduced with permission. Copyright 1994 AIChE) 

Particle Size (Micron) Tyler Mesh Size 
Penalty (reduce by 50% in the 

presence of an inert gas) 

175+ 60 to 80 0.25 

150 to 175 80 to 100 0.50 

100 to 150 10 to 150 0.75 

75 to 100 150 to 200 1.25 

< 75 > 200 2.00 

 
 
 
E. Relief Pressure 

Operating pressure above atmospheric pressure might cause the release of 

flammable materials when leakage occurs. Moreover, the rate of release will increase 

with higher operating pressure. Therefore, this penalty concerns the likelihood of 

flammable material release upon failures of some components in the process unit. The 

penalty is determined by the following procedure: 
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• The penalty for operating pressures in the range of 0 to 1,000 psig is given by 

Equation (2.5) (AIChE, 1994). 

32

1000
5172.0

1000
42879.1

1000
61503.1

16109.0 �
�

�
�
�

�+�
�

�
�
�

�−+= PPP
Penalty  (2.5) 

With P as the operating pressure. 

• The penalty for operating pressure higher than 1,000 psig is given in Table 
2.5. 

 
 
 

Table 2.6 High pressure penalty for flammable & combustible liquids (Reproduced with 
permission. Copyright 1994 AIChE) 

Pressure (psig) Pressure (kPa gauge) Penalty 

1,000 6,895 0.86 

1,500 10,343 0.92 

2,000 13,790 0.96 

2,500 17,238 0.98 

3,000 to 10,000 20,685 to 69,950 1.00 

> 10,000 > 68,950 1.50 

 
 
 
F. Low Temperature 

This section is based on the fact that carbon steel or other metal might be brittle 

when exposed to a temperature at or below their ductile/brittle transition temperatures. 

No penalty needs to be applied if there is no possibility of such temperatures. If the 

process utilizes carbon steel construction and operates at or below its ductile/brittle 

transition temperature, the penalty is 0.30. Other materials receive a penalty of 0.20. 
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G. Quantity of Flammable/Unstable Material 

This section concerns the effects of the quantities of flammable and unstable 

materials on the hazard. There are three categories, calculated separately by considering 

only one applicable category based on the material selected as the MF, and discussed 

hereafter.  

• Liquids or Gases in Process 

This section considers the quantity of a material that may be spilled and 

creates a fire, explosion, or a reactive chemical event. The penalty is based on the 

flow rate of the material for 10 minutes, where the larger value between the quantity 

of material in the process unit and the quantity of material in the largest connected 

unit is applied. The penalty is determined by using Figure 2.2 or given by Equation 

(2.6) (AIChE, 1994): 

( ) ( ) ( )2
37244.042988.017179.0 LogXLogXYLog −+=    (2.6) 

( ) ( )4029984.0
3

17712.0 LogXLogX −+  

where Y is the penalty and X is total energy in the process (BTU x 109). This 

penalty applies only to these materials: 

• Flammable and combustible liquids with flash point < 140oF. 

• Flammable gases and liquefied flammable gases. 

• Combustible liquids with F.P > 140 oF 

• Reactive chemicals. 
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Fig. 2.2. Penalty for liquids or gases in process (Plot of Equation 2.6) 

 
 
 

• Liquids or Gases in Storage (Outside the Process Area) 

This penalty considers flammable and combustible fluids in storage (i.e., 

drums, tanks, material in tank farms, portable container, containers, etc) where no 

process is involved. There are three categories which depend on the amount of the 

material, the type of the liquid/gases and the heat of combustion (HC). The penalty 

is determined by using Figure 2.3 or given by Equation (2.7), (2.8) and (2.9) 

(AIChE, 1994):  
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Fig. 2.3. Quantity of flammable/unstable material penalty to liquids or gases in storage (Plot of 
Equations (2.7), (2.8), and (2.9)) 

 

 

Curve A: Liquefied Gases 

( ) ( ) ( ) ( )32 018641.0074585.0472171.0289069.0 LogXLogXLogXYLog +−+−=  (2.7) 

Curve B: Class I Flammable Liquids (F.P < 100 oF) 

( ) ( ) ( ) ( )32 015379.0046402.0378703.0403115.0 LogXLogXLogXYLog −−+−=  (2.8) 

Curve C: Class Combustible Liquids (100 oF < F.P < 140 oF) 

( ) ( ) ( ) ( )32 057296.0057296.0363321.0558394.0 LogXLogXLogXYLog +−+−=  (2.9) 

where Y is the penalty and X is total energy in the process (BTU x 109). 
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• Combustible Solids in Storage/Dust in Process 

This penalty covers the quantities of stored solids and dusts when they are 

involved as the basis for the MF. The penalty based on the density of the material, 

the ease of ignition, and the ability to sustain a flame. The penalty is determined by 

the Figure 2.4 or Equations (2.10) and (2.11) (AIChE, 1994):  
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Fig. 2.4. Quantity of flammable/unstable material penalty to combustible solids in storage/dust in 
process (Plot of Equations (2.10) and (2.11)) 

 
 
 

Curve A: Material with Density < 10 lb/cu ft 

LogXLogY ×+= 464559.0280423.0    (2.10) 

( ) ( )32 066218.028291.0 LogXLogX ×+×−  

Curve B: Material with Density > 10 lb/cu ft 
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LogXLogY ×+−= 459926.0358311.0    (2.11) 

( ) ( )32 02276.0141022.0 LogXLogX ×+×−  

where Y is the penalty and X is total amount in the process (BTU x 106). 

 

H. Corrosion and Erosion 

The corrosion rate is the sum of the external and internal corrosion rate. These 

following penalties should be applied: 

• If the corrosion rate<0.005 in/yr with risk of pitting or local erosion, the 

penalty is 0.10 

• If 0.127 mm/yr < Corrosion rate < 0.254 mm/yr, the penalty is 0.20. 

• If the corrosion rate > 0.254 mm/yr, the penalty is 0.50. 

• If the risk of stress-corrosion cracking might develop, the penalty is 0.75. 

This occurs in process areas contaminated by chlorine vapor over prolonged 

periods. 

• If lining is required to avoid corrosion, the penalty is 0.20. However, this is 

not the case if the lining is simply to protect the product from developing 

color. 

 

I. Leakage-Joints and Packing 

The leaking of flammable or combustible fluids can be found in gaskets, seals of 

joints, shafts or packings, especially where thermal and pressure cycling occurs. The 
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penalty is given according to the design of the process unit. These penalties should 

be applied: 

• If it is possible to develop a minor leakage at the pump and gland, the penalty 

is 0.10. 

• If the leakage occurs regularly at pumps, compressors, and flange joints, the 

penalty is 0.30. 

• Processes that have the potential to undergo thermal and pressure cycling 

receive a penalty of 0.30. 

• If the material is penetrating in nature or abrasive slurry that causes problems 

with sealing and if the process unit uses rotating shaft seal or packing, the 

penalty is 0.40. 

• Any process unit with sight glasses, bellows assemblies, or expansion joints 

receive a penalty of 1.50 

 

J. Use of Fired Equipment 

This penalty considers the additional hazards offered by fired equipment. It is 

decided based on distances from probable leak points to air intake of the fired equipment 

and is determined by using Figure 2.5 or given by Equation (2.12) and (2.13) (AIChE, 

1994): 

• Curve A-1 is used for material released above its flash point and for 

combustible dust. 
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• Curve A-2 is for material released above its boiling point 
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where Y is the penalty and X is distance (ft).  
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Fig. 2.5. Quantity of flammable/unstable material penalty to fired equipment (Plot of Equations 
(2.12) and (2.13)) 

 
 
 

If the fired equipment itself is being evaluated, then the distance will be zero. If the 

equipment is heating a flammable or combustible material, the penalty will be 1.00. 
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K. Hot Oil Heat Exchange System 

This penalty is determined based on the quantity and the temperature of the heat 

exchange fluids used in the unit. Penalty is not applied to the non-combustible hot oil or 

to combustible fluids used below their flash point. The quantity of the fluids used in 

calculating the penalty is the smaller value between 15 minutes of spill or the hot oil 

inventory in an active circulating hot oil system. Table 2.7 summarizes the penalty for 

different quantity of hot oils in heat exchange systems. 

 
 

Table 2.7 Hot oil heat exchange system penalty (Reproduced with permission. Copyright AIChE 
1994) 

Quantity, Gallons Above Flash Point Penalty 
At or Above Boiling Point 

Penalty 

< 5,000 0.15 0.25 

5,000 to 10,000 0.30 0.45 

10,000 to 25,000 0.50 0.75 

> 25,000 0.75 1.15 

 

 

L. Rotating Equipment 

This penalty concerns about the hazard offered by large rotating equipment such 

as pumps, compressors, agitators, circulating pumps, and centrifuges. The penalty is 

defined based on the statistical evidence available for some rotating equipment at a 

certain size that is likely to contribute to a potential incident. 
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Process units having compressors in excess of 600 hp and/or pumps in excess of 

75 hp receive a penalty of 0.50. The same penalty is given to agitator (mixers) and 

circulating pumps in which failure creates exothermic reactions when lack of cooling 

occurs and also to other large high speed rotating equipment with substantial loss 

history. 

 

2.2.3 The Determination of Fire and Explosion Index 

The Dow Fire and Explosion Index (F&EI) is the product of the Process Unit 

Hazard Factor (F1) and the Material Factor (MF). Then, the degree of hazards (severity) 

of the process evaluated can be determined by using Table 2.8. 

 

Table 2.8 Degree of Hazard for F&EI (Reproduced with permission. Copyright AIChE 1994) 

F&EI Index Range Degree of Hazards 

1 – 60 Light 

61 – 96 Moderate 

97 – 127 Intermediate 

128 – 158 Heavy 

159 – up Severe 

 

2.2.4 Loss Control Credit Factors 

These factors represent the loss control (protective) features that have been 

historically and statistically proven beneficial in preventing or limiting serious incidents. 

The basic thinking of using this credit factor is different from the F&EI value. High 
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F&EI shows that process under evaluation contains high hazards while high loss control 

credit factor shows that there is less chance for the incident to occur. Therefore, a good 

design is usually defined as one which has the lowest possible of the F&EI and the 

highest possible loss control credit factor.  

There are three categories of loss control credit factors: Process Control (C1), 

Material Isolation (C2) and Fire Protection (C3). If no credit factor is applied to a 

particular item, the credit factor is 1.0 for that item. The total credit factor is given by 

Equation (2.14) (AIChE, 1994): 

321 CCCCtotal ××=     (2.14) 

The next sections list items in all categories. 

 

2.2.4.1 Process Control Credit Factors (C1) 

Process control credit factors consist of: 

• Emergency Power – credit factor of 0.98 

This credit factor is applicable only if emergency power is available to 

control an incident. 

• Cooling 

If process cooling system is able to handle 10 minutes of normal cooling 

during abnormal situation, the credit factor is 0.99. If a backup cooling 

system is available to handle 150% of cooling requirement for at least 10 

minutes, the credit factor is 0.97.  
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• Explosion Control  

If explosion suppression systems are employed on dust or vapor-handling 

equipment, the credit factor is 0.84. If the overpressure relief systems utilize 

rupture disks or explosion-relieving vents that protect the process unit from 

abnormal conditions, the credit factor is 0.98. 

• Emergency Shutdown – credit factor of 0.96 to 0.99 

If redundant system is able to activate and initiate shutdown sequence in the 

event of an incident, the penalty is 0.98. If rotating equipment (i.e., 

compressors, turbines, fans) is designed with vibration detection, the credit 

factor is 0.99. 

• Computer Control – credit factor of 0.93 to 0.99 

• Inert Gas – credit factor of 0.94 to 0.96 

• Operating Instruction/Procedures – 0.91 to 0.99 

• Reactive Chemical Review – 0.91 to 0.98 

• Other Process Hazards Analysis – 0.91 to 0.98 

 

2.2.4.2 Material Isolation Credit Factor (C2) 

• Remote Control Valves – credit factor of 0.96 to 0.98 

• Dump/Blowdown – credit factor of 0.96 to 0.98 

• Drainage – credit factor of 0.91 to 0.97 

• Interlock – credit factor of 0.98 
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2.2.4.3 Fire Protection Credit factor (C3) 

• Leak Detection – credit factor of 0.94 to 0.98 

• Structural Steel - credit factor of 0.95 to 0.98 

• Fire Water Supply - credit factor of 0.94 to 0.97 

• Special Systems – credit factor of 0.91 

• Sprinkler Systems – credit factor of 0.74 to 0.97 

Credit factors for wet and dry pipes used in indoor manufacturing areas and 

warehouses are shown in Table 2.9 

Table 2.9 Credit Factors for wet pipe and dry pipe used in indoor manufacturing areas and 
warehouses (Reproduced with permission. Copyright AIChE 1994) 

 
 Design Credit Factor 

Occupancy Gpm/ft2 Lpm/m2 Wet Pipe Dry Pipe 

Light 0.15 – 0.20 6.11 – 8.15 0.87 0.87 

Ordinary 0.21 – 0.34 8.56 to 13.8 0.81 0.84 

Extra 

Hazard 
� 0.35 � 14.3 0.74 0.81 

 

 

• Water Curtain - credit factor of 0.97 to 0.98 

• Foam - credit factor of 0.92 to 0.97 

• Hand Extinguisher/Monitors – credit factor of 0.03 to 0.98 

• Cable Protection – credit factor of 0.94 to 0.98 
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2.2.5 Process Unit Risk Analysis Summary 

To identify equipment that potentially contributes to the occurrence of an 

incident and to communicate it to the top management in the company, engineers can 

use “process unit risk analysis summary”, which presents hazards based on F&EI and 

business interruption of particular equipment. This section discusses how to determine 

the business interruption.   

 

2.2.5.1 The Fire and Explosion Index (F&EI) 

All calculation is based on F&EI calculation presented in Section 2.2. The higher 

the F&EI value, the higher the hazard thus the higher the business interruption. 

 

2.2.5.2 The Radius of Exposure 

This radius of exposure is the radius in which all equipment in the radius range 

will be exposed to the potential incident. For large pieces of equipment, the radius starts 

from the surface of the equipment while for small equipment the radius starts at the 

center of the item considered. The F&EI is converted into the radius of exposure by 

using Equation (2.15) (AIChE, 1994): 

( ) ( )EIFftExposureofRadius &*84.0=   (2.15) 

 

2.2.5.3 The Area of Exposure 

The area of exposure is determined from the radius of exposure using the area of 

a circle formulation, as shown in Equation (2.16) (AIChE, 1994). 
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( ) 22 RftExposureofArea π=     (2.16) 

Theoretically, any equipment inside the area of exposure range will be exposed 

to the hazard. Better assumption can also be done by taking cylindrical volume over the 

equipment under evaluation with the height equal to the radius of exposure. 

 

2.2.5.4 Value of the Area of Exposure 

The value of the area of exposure is calculated from the replacement values of all 

the property contained within it and the inventory of the material, as shown in Equation 

(2.17) (AIChE, 1994). 

factorescalationtoriginalvaluetreplacemen ××= 82.0cos  (2.17) 

The factor 0.82 is the allowance for items that is not subjected to loss or 

replacement (i.e., site preparation, roads, foundation). This factor is flexible to change 

when more accurate factor is available. The escalation factor is the chemical engineering 

plant cost index (CEPCI) which is different for each year and is available in several 

chemical engineering journals. 

 

2.2.5.5 Damage Factor 

Damage Factor corresponds to the overall effects resulting from a release of 

energy contained in process unit and is calculated from the process unit hazards factors 

(F3) and the material factors (MF). For MF equal to 1, 4, 10, 14, 16, 21, 24, 29, and 40 

and F3 less or equal to 8, the damage factors are calculated by the Equations (2.18) – 

(2.26) (AICHE, 1994). For F3 greater than 8, use F3 equal to 8. 
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Material Factor of 1: 

32 *00029.0*004031.0*002957.0003907.0 XXXY −++=    (2.18) 

Material Factor of 4: 

32 *00029.0*00081.0*019071.0025817.0 XXXY −−+=    (2.19) 

Material Factor of 10: 

32 *000013.0*000809.0*017596.0098582.0 XXXY −++=   (2.20) 

Material Factor of 14: 

32 *00057.0*007628.0*017596.020592.0 XXXY −++=    (2.21) 

Material Factor of 16: 

32 *00088.0*011055.0*019886.0256741.0 XXXY −++=    (2.22) 

Material Factor of 21: 

32 *00073.0*003912.0*076531.0340314.0 XXXY −++=    (2.23) 

Material Factor of 24: 

32 *00038.0*00135.0*096443.0395755.0 XXXY −−+=    (2.24) 

Material Factor of 29: 

32 *00031.0*00216.0*094288.0484766.0 XXXY −−+=    (2.25) 

Material Factor of 40: 

32 *00044.0*000332.0*080772.0554175.0 XXXY −++=    (2.26) 
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2.2.5.6 Base Maximum Probable Property Damage (Base MPPD) 

Base MPPD is the value (in US dollar) of the plant equipment evaluated or 

property losses within the theoretical area of exposure. It is based on the value of the 

area of exposure and the damage factor, as shown in Equation (2.27) (AIChE, 1994). 

osureofareaofValueFactorDamageMPPDBase exp×=   (2.27) 

 

2.2.5.7 Loss Control Credit Factor 

This is calculated based on the section 2.2.4. 

 

2.2.5.8 Actual Maximum Probable Property Damage (Actual MPPD) 

Having loss control (protective) features in the equipment will reduce the 

magnitude of the incident, thus the damages. Therefore, base MPPD must be modified 

according to the loss control features to estimate actual MPPD, which are more 

reasonable property damage losses. The actual MPPD is determined by Equation (2.28) 

(AIChE, 1994). 

MPPDBaseControlLossMPPDActual ×=   (2.28) 

 

2.2.5.9 Maximum Probable Days Outage (MPDO) 

The business interruption consists not only of property damages but also of 

product and inventory losses that will determine the value of MPDO. For example, 

losses depend on the ability to make up the lost product at distant facilities, the ability to 
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get one-of-a-kind equipment, and loss of profits due to the shutdown of the plant. More 

days of outage result in more MPDO, thus more business interruptions. 

If such real data for equipment and days of outage are not available, MPDO is 

calculated by using Figure 2.6 or by using Equations (2.29), (2.30) and (2.31) (AIChE, 

1994). For the equipment which is hard to get, the upper 70 % probability limit is used. 

For in-stock equipment, the lower 70 % probability limit is applied.   

Upper 70 % Probability Limit 

( ) ( )XLOGYLOG *598416.0550233.1 +=   (2.29) 

Normal 

( ) ( )XLOGYLOG *592471.0325132.1 +=   (2.30) 

Lower 70 % probability Limit 

( ) ( )XLOGYLOG *610426.0045515.1 +=   (2.31) 

 

2.2.5.10 Business Interruption (BI) 

Business interruption in the event of incident is calculated by Equation (2.32) 

(AIChE, 1994): 

( ) 7.0
30

$ ××= VPM
MPDO

USBI    (2.32) 

VPM is the value of the months and 0.70 represents the fixed cost plus profit. 
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Fig. 2.6. Determining MPDO from Actual MPPD (Plot of Equations (2.29), (2.30), and (2.31)) 

 
 
 

2.3 FIRE AND EXPLOSION INDEX FORM 

All values from F&EI calculation are submitted to the Fire and Explosion Index 

form, Loss Control Credit factors form, and Process Unit Analysis Summary form. This 

is intended to be a summary of the calculations. The forms are shown in Figures 2.7, 2.8, 

and 2.9. 

Dow’s Fire and Explosion Index is the hazards analysis method used in this 

research. It is very important to have design equations for each of the equipment under 

evaluation available in order to integrate the safety parameters into process design and 

optimization. The next chapter, Chapter III, provides the design equations used in this 

research. 
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PROCESS UNIT ANALYSIS SUMMARY 
    

1 Fire and Explosion Index (F&EI)     

2 Radius of Exposure   
ft or 
m 

3 Area of Exposure   
ft2 or 
m2 

4 Value of area of exposure $MM   
5 Damage Factor     
6 Base Maximum Probable Property Damage (Base MPPD) [4 x 5] $MM   
7 Loss Control Credit Factor     
8 Actual Maximum Probable Property Damage (Actual MPPD) [6 x 7] $MM   
9 Maximum Probable Days Outage (MPDO)     

10 Business Interruption (BI) $MM   

Fig. 2.7. Process unit analysis summary form (Reproduced with permission. Copyright AIChE 1994) 
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1. Process Control Credit Factors (C1) 
Feature Credit Factor Range Credit Factor Used 

A Emergency Power   0.98 
B Cooling   0.97 
C Explosion Control   0.84 
D Emergency Shutdown   0.99 
E Computer Control   0.97 
F Inert Gas   0.94 
G Operating Instructions/Procedures   0.97 
H Reactive Chemical Review   1 
I Other Process Hazard Analysis   0.94 
  C1 Value 0.66 
    

2. Material Isolation Credit Factor (C2) 
Feature Credit Factor Range Credit Factor Used 

A Remote Control Valve   1 
B Dump/Blowdown   1 
C Drainage   0.97 
D Interlock   0.98 
  C2 Value 0.95 
    

3. Fire Protection Credit Factor (C3) 
Feature Credit Factor Range Credit Factor Used 

A Leak Detection   0.94 
B Structural Steel   0.98 
C Fire Water Supply   0.97 
D Special Systems   1.00 
E Sprinkler Systems   0.92 
F Water Curtains   0.97 
G Foam   0.94 
H Hand Extinguishers/Monitors   0.98 
I Cable Protection   0.94 
  C3 Value 0.69 
    
    

Loss Control Credit Factor = C1 x C2 x C3 = 0.43 

 

Fig. 2.8. Loss Control credit factor form (Reproduced with permission. Copyright AIChE 1994) 
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  Material Factor  
    

1 General Process Hazards 
Penalty Factor 

Range 
Penalty 

Factor Used 
  Base Factor     
  A. Exothermic Chemical reactions     
  B. Endothermic Processes     
  C. Material Handling and Transfer     
  D. Enclosed or Indoor Process Units     
  E. Access     
  F. Drainage and Spill Control     
        
2 Special Process Hazards     
  Base Factor     
  A. Toxic Material(s)     
  B. Sub-Atmospheric Pressure (, 500 mmHg)     

  
C. Operation In or Near Flammable Rang  __*__ 
Inerted   _____ Not Inerted     

      1. Tank Farms Storage Flammable Liquids     
      2. Process Upset or Purge Failure     
      3. Always in Flammable Range     
  D. Dust Explosion     

  
E. Pressure              Operating Pressure ____788.5_ 
psig or kPa gauge     

  
                                Relief Setting  
________850_____ psig or kPa gauge     

  F. Low Temperature     

  
G. Quantity of Flamable/Unstable Material:    Quantity 
_____ lb/kg     

  
                                                Hc = _________ 
BTU/lb or kcal/kg     

       1. Liquids or Gases in Process     
       2. Liquids or Gases in Storage     
       3. Combustible Solids in Storage, Dust in Process     
  H. Corrosion and Erosion     
  I. Leakage-Joints and Packing     
  J. Use of Fired Equipment     
  K. Hot Oil Heat Exchange System     
  L. Rotating Equipment     
        
  Special Process Hazards Factor (F2)     
  Process Unit Hazards Factor (F1 x F2) = F3     
  Fire and Explosion Index (F3 x MF = F&EI)     

 

Fig. 2.9. Fire and Explosion Index Form (Reproduced with permission. Copyright AIChE 1994) 
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CHAPTER III 

REACTOR -DISTILLATION COLUMN DESIGN  

AND ECONOMIC PARAMETER 
 
 
 
3.1 BACKGROUND 

3.1.1 Reactor 

Basic chemical engineering processes include reaction, separation, and mixing.  

Reactors are used in the industry to conduct commercial scale reactions. There are 

several characteristics of reactor and its reaction. Reactor physical dimension depends on 

the required structure to withstand the operating conditions (pressure, temperature, flow 

rate, etc) and the rate of the reaction. The size of a reactor is large not because the 

desired output is large but due to the low reaction rate and/or the low conversion (Kletz, 

1991). Low conversion means that more un-reacted reactant must be recycled; also, 

larger inventory is needed. It is common in the chemical industries that reactor is 

followed by separator to separate the un-reacted raw materials and the specified 

products. Thus, reactor-distillation column system is a common system used in the 

chemical industries. Reactions are slow because of poor mixing or inherently slow 

reaction. From an inherently safer design (ISD) point of view, vapor phase reaction is 

preferable than liquid phase because the vapor density is less than that of liquid (Kletz, 

1991). Therefore, the rate of leak through a hole of a certain size is lower.   

In performing economic analysis of a reactor, the separator should be included 

since there is trade-off between reactor-separator systems as shown in Figure 3.1. 
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Economic balance between a high reactor cost at high conversion and a high separation 

cost at low conversion will determine the optimum reactor conversion. Therefore, it is 

necessary to have a procedure to improve reactor performance and/or reactor-distillation 

column system to produce desired products while in the range of acceptable economic 

profit and safety level. The design equations and economic parameters of a reactor are 

presented in this chapter.  

 
 
 

!� ���
��

����
��

��
��

*45
��� 
����

�
�
�

�
%6
&

����
�����	������	�%�&

5

 

Fig.3.1. Costs of reactor and distillation column as a function of reactor conversion (Smith, 1995) 



57 

 

3.1.2 Distillation Column 

Distillation column is probably the most widely for separation process in the 

chemical industries. Its application ranges from alcohol purification to crude oil 

fractionation. Distillation column separates materials based on the volatility of the 

components. The component with greater volatility will be easier to separate. A simple 

distillation column is shown in Figure 3.2. The rectifying section is the section above the 

feed where the concentration of the more volatile components is increased to produce the 

top products. The stripping section is located below the feed where the more volatile 

components are stripped by the liquid then the bottom products produce. The vapor will 

flow upward counter-currently while the liquid will flow downward. Liquid and vapor 

are contacted on plates or packing inside the column.  

Equations to model distillation column must be developed before optimizing 

distillation column. These equations are described in section 3.3. 

 

3.1.3 Economics as Objective Functions of Optimization 

Economics as objective functions of optimization consists of two major 

components: operating cost and capital cost (Edgar, Himmelblau, & Lasdon, 2001). 

Capital cost estimation is available at the following four stages of increasing levels of 

accuracy (Seider, Seader, & Lewin, 2004): 

• Order-of-magnitude estimate – based on laboratory data to estimate the types of 

equipment and how to organize the equipment in order to produce chosen 

products. Only two things are needed, production rate in lb/year and flow sheet 
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considering gas compressors, reactors, and separation equipment only. Heat 

exchanger and liquid pump are not included in the estimation. Mass balance and 

equipment sizing are not required either. The accuracy of this method is ± 50 %. 

• Study estimate – based on preliminary plant design. This estimation uses method 

of Lang (Seider, Seader, & Lewin, 2004). The accuracy of this method reaches 

±35 %. The detailed description about the Lang  method is described later in this 

chapter.  

• Preliminary estimate – based on detailed design (P&ID) and performed after 

optimal design has been achieved. More time is required to perform this method 

but the accuracy is increased to ± 20 %. 

• Definite estimate – based on detailed process design, detailed drawings, cost 

estimates, and other data to have accurate cost accounting. It is intended for 

construction. 

Total production costs consist of direct production cost (operating cost), fixed 

charges, plant overhead costs, administrative expenses, and distribution and marketing 

expenses (Peters & Timmerhaus, 1991). The optimization variables in this research that 

are related to total production cost are operating cost, with the capability to include other 

cost if data are available.  Operating cost depends on several factors such as raw 

materials, operating man, operating supervision, royalties, utilities, etc. However, this 

research only uses the raw materials and utilities cost as the operating cost to 

demonstrate the proposed methodology. 
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3.2 THE METHOD OF LANG 

The method of Lang estimates capital cost using overall factors that multiply the 

cost of f.o.b purchase cost of the equipment. The f.o.b purchase cost is the cost of the 

equipment paid by the buyer where the seller has the obligation to deliver the equipment 

to a certain place for transfer, not directly to the plant site. The data needed for this 

method are process design with its material and energy balances, equipment sizing, and 

the material of construction. The accuracy of the method of Lang is ± 35 %. 

The method of Lang proceeds by steps as follows (Seider, Seader, & Lewin, 

2004): 

• Prepare an equipment list and their size, the materials of construction, the design 

temperature, and the design pressure. 

Calculate the total permanent investment ( TCIC ) by using Equation (3.1) (Seider, 

Seader, & Lewin, 2004): 

iTCI P
bi

i
LTCI C

I
I

fC ��
�

�
��
�

�
�= 05.1     (3.1) 

with TCIC represents total permanent investment, 
TCILf  as Lang’s factors, 

bi

i

I
I

is the ratio 

of cost index, and 
iPC is the total f.o.b purchase cost of the equipment. Lang factor 

recommended by Peters & Timmerhaus (1991) for fluids processing chemical plants is 

5.7, for solids-fluids processing plants is 4.9, and for solids processing plants is 4.6. 

These numbers are based on a value of 100 for the total delivered cost, which is 1.05 

times the f.o.b purchase cost.  
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In this research, f.o.b purchase cost for distillation column and reactor are 

estimated before using method of Lang and determining the total investment cost, as 

shown in the following section. In addition, the technical design equations are also 

described. 

 

3.3 DISTILLATION COLUMN AND REACTOR DESIGN EQUATIONS 

3.3.1 Column Distillation Design Equations 

The design of distillation column consists of many procedures and equations and 

commercial simulators have been developed. However, it is very important to 

understand the basic design calculations of distillation column, especially those related 

to the capital cost and operating cost. Those costs depend on reflux ratio, number of 

stages, number of trays, reflux ratio, size of the distillation column vessel, feed flow rate, 

the composition of the products required, and the utilities needed by reboiler and 

condenser (Edgar, Himmelblau, & Lasdon, 2001).   

Increasing reflux ratio increases required condenser heat duty but reduces the 

number of stages required thus reducing the capital cost as well as the operating cost. 

Thus, the engineer must find the optimal value for the reflux ratio. Total reflux happens 

when all condensate is returned to the column as reflux so there will be no product taken. 

Total reflux requires only the minimum number of stages that are theoretically necessary 

to achieve the separation. Total reflux is usually done at start-up commission and 

column testing. The minimum reflux ratio is the reflux ratio required to achieve the 
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specified separation at a certain number of stages. For practical purposes, optimum 

reflux ratio will lie between total reflux and minimum reflux ratio.  

 

 

Fig. 3.2. Distillation column 

 

 

Reflux ratio (R) (Sinnot, 1996) and minimum reflux ratio (Rm) (Eduljee, 1975) 

are shown in Equations (3.2) and (3.3): 

D
L

offtakenproducttopofflow
refluxasreturnedFlow

R ==    (3.2) 
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with XD as  mol fraction of specified product in distillate stream, XV as  mol fraction of 

specified product in feed stream, Rm as the minimum reflux ratio, L as the flow rate of 

the liquid back into column for reflux, D as distillate to product,  andα as relative 

volatility. Physical definition of the symbol can also be seen in Figure 3.2. 

The expression of reflux ratio, number of stages ( N ) and minimum number of 

stages ( )mN  are shown in Equations (3.4) and (3.5) (Edgar, Himmelblaue, & Lasdon, 

2001): 
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with α = relative volatility. 

 

3.3.1.1 The Diameter and the Height of the Column 

The tower diameter is designed to avoid flooding when the liquid is filling the 

tower due to too high vapor velocity. Therefore, to calculate the diameter, the flooding 

velocity must be determined by Equations (3.7) and (3.8) (Peters & Timmerhaus, 1991). 

Then the diameter is determined by using Equation (3.6) (Peters & Timmerhaus, 1991). 
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v

vL
f Ku

ρ
ρρ −

= 1      (3.8) 

with : 

fu = flooding vapor velocity, m/s, based on the total cross-sectional area. 

1K = empirical constant [=]
s
ft

 

Lρ = liquid density [=] 3ft
lb

 

vρ = vapor density [=] 3ft
lb

 

T = operating temperature [=] K 

MW = Molecular weight [=] 
lbmol

lb
 

Po = operating pressure [=] atm 

Di = inside diameter [=] ft 

The height of the distillation column (L) is calculated by using Equation (3.9). 

NspacingtrayL ×=      (3.9) 
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Based on the diameter and the height of the column, the cost of the distillation column 

can be determined. 

 

3.3.1.2 The Distillation Column f.o.b Purchase Cost Estimation 

Distillation column consists of tower vessel and plates/packing. The detailed 

description is presented hereafter. The capital cost of the distillation column is the 

summation of the vessel cost and the installed plates/packing cost.  

A. Vessel 

Distillation column tower is a vertical pressure vessel in cylindrical form. Seider, 

Seader, & Lewin (2004) presented a method of intermediate complexity which is based 

on the weight of the shell and two 2:1 elliptical heads. The f.o.b (free on board) purchase 

cost ( TC ) of distillation column tower includes the nozzles, the manholes, a skirt, and 

the internals (not plates and/or packing). The f.o.b cost is based on the platform, the 

ladder, the weight of the tower, the wall thickness of the shell, two heads, the tower 

diameter, and the tower height.  

The equations are shown in Equations (3.10) – (3.13): 

Towers for 9,000 lb < W  < 2,500,000 lb (Seider, Seader, & Lewin, 2004): 

( )[ ] ( )[ ]{ }2ln02297.0ln18255.00374.7exp WWCV ++=    (3.10) 

Platform and ladder are additional cost, PLC  and depend on inside diameter iD  (ft) and 

the length of the shell L  (ft): 

Towers with 3 < iD  < 24 ft and 27 < L < 170 ft (Seider, Seader, & Lewin, 2004): 
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( ) ( ) 80161.062216.01.237 LDC iPL =     (3.11) 

The weight,W , depends on the iD  (ft) and the length of the shell L  (ft). For 2:1 

elliptical heads, the weight of the shell and its two heads is determined by using 

Equation (3.12) (Seider, Seader, & Lewin, 2004): 

( ) ( ) ρπ sisi tDLtDW 8.0++=     (3.12) 

When corrosion, wind, and earthquake are neglected and the internal pressure is greater 

than the external pressure (i.e., excluding vacuum operation), the wall thickness is 

calculated by ASME pressure-vessel code formula as shown in Equation (3.13) (Seider, 

Seader, & Lewin, 2004): 

 

d

id
p PSE

DP
t

2.12 −
=       (3.13) 

with pt as the wall thickness to bear up the internal pressure (inches), dP as the internal 

design pressure (psig), iD as the inner shell diameter (inches), S as the maximum 

allowable stress of the material at the design temperature (psi), and E as the fractional 

weld efficiency.  

The maximum allowable stress S  depends on the material of construction and 

the design temperature. The design temperature can be taken as the operating 

temperature plus 50oF. It is recommended that the design pressure be greater than the 

operating pressure (Seider, Seader, & Lewin, 2004). For operating pressures between 0 

and 5 psig, the recommended design pressure is 10 psig. In the range of operating 
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pressures from 10 psig to 1,000 psig, Equation (3.14) should be used to determine design 

pressure (Seider, Seader, & Lewin, 2004): 

( )[ ] ( )[ ]{ }2
0ln0015655.0ln91615.060608.0exp PPP od ++=    (3.14) 

with 0P represents operating pressure (psig). 

For operating pressures greater than 1,000 psig, the design pressure is 1.1 times the 

operational pressure. 

  

B. Plates 

The cost for plates with all downcomer, TC , is provided by Equation (3.15) 

(Seider, Seader, & Lewin, 2004): 

BTTMTTNTTT CFFFNC =      (3.15) 

BTC  is the base cost. 

For Sieve Trays at CE cost index of 394 and inside diameter in the range of 2 to 16 ft, 

BTC  is given by Equation (3.16):  

( )iBT DC 1739.0exp369=      (3.16) 

TN  is the number of trays utilized in the column distillation. If TN  is greater than 20 

then 1=NTF , and if it is lesser than 20 then 1>NTF  as given by Equation (3.17) (Seider, 

Seader, & Lewin, 2004) 

NTNTF
0414.1

25.2=       (3.17) 
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TTF for the sieve tray is 1.0 (Seider, Seader, & Lewin, 2004). TMF  accounts for the 

correction for the material of construction and depends on the column diameter as given 

by Equations (3.18) – (3.22) (Seider, Seader, & Lewin, 2004): 

For Carbon Steel: 

TMF =1.0       (3.18) 

For 303 Stainless steel: 

TMF = iD 0.0577  1.189+      (3.19) 

For 316 Stainless steel: 

TMF = iD 0.0724  1.401+      (3.20) 

For Carpenter 20CB-3: 

TMF = iD 0.0788  1.525+      (3.21) 

For Monel: 

TMF = iD 0.1120  2.306+      (3.22) 

 

3.3.2 Reactor Design Equations 

In this research we use the Plug Flow Reactor (PFR) as a case study. PFR 

assumes that there is no diffusion along the flow path, all materials have the same 

velocity as the materials advance through the length of the reactor, no longitudinal 

mixing along the flow path, and no radial gradient in either temperature and 

concentration. The performance of the reactor can be determined by using the following 

data: 
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1. The rate of reaction and the mass transfer characteristics of the reacting fluid. 

This determines the volume of the reactor needed to produce the specified 

product. 

2. The constraints dictated by the reactor are set up such as the type and the 

geometry of the reactor. This determines the cost of the reactor and thus the 

economic parameter. Economic variables of reactor are type, diameter, height, 

design pressure, material of construction, and capacity (Edgar, Himmelblau, & 

Lasdon, 2001).  

Conversion (X) is the measure on how far the reaction has proceeded and is in 

the range of 0 to 1 (100 % conversion). In optimizing a reactor, the conversion might not 

reach 100% conversion due to other constraints such as economic factors. For reaction 

with more than one reactant, the material which the conversion is based on must be 

specified. Conversion expression is: 

         
providedmaterialamount
consumedmaterialofamount

Conversion =  

( ) ( )
streaminletinamount

streamoutletinamountstreaminletinamount −=   (3.23) 

 

Generally, the independent variables are pressure, temperature, flow rate, and 

concentration of the feed. There is no general optimization model for reactor hence the 

model is developed for each specific case. For this research, Plug Flow Reactor (PFR) 

reactor is used with reaction of: A � B + C (gas phase), whose models are given in 

Equations (3.24) – (3.26) (Fogler, 2002): 
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• PFR design equations, rate law for A ----> B + C, and stoichiometry: 

� −
==
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π

     (3.24) 

 AA Ckr =−         (3.25) 

( )
( )X
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A ε+
−

=
1

1
      (3.26) 

with Di as inside diameter, FAo as  molar flow rate of the reactant A, X as the reactor 

conversion, CA as the concentration of A in the reactor, ε as volume changes in gas 

phase reaction, and CA0 as the concentration of component A at the reactor entrance. 

• Combining design equation, rate law, and stoichiometry: 

( ) �	
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3.3.2.1 The Reactor f.o.b Purchase Cost Estimation 

PFR reactor is a cylindrical vessel that can be determined in the same way as that 

of the distillation column with several modifications, only in different orientation. The 

reactor is a horizontal pressure vessel in cylindrical form. The f.o.b purchase cost ( PC ) 

of horizontal pressure vessel including the nozzles, the manholes, a skirt, and the 

internals (not plates and/or packing) are described by Seider, Seader, & Lewin (2004) in 

Equations (3.28) – (3.29): 

Horizontal vessel for 1,000 lb < W  < 920,000 lb (Seider, Seader, & Lewin, 

2004): 
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( )[ ] ( )[ ]{ }2ln04333.0ln2330.0717.8exp WWCV +−=   (3.28) 

Platform and ladder are additional cost, PLC  and depend on the inner diameter iD  (ft) 

and the length of the shell L  (ft): 

Horizontal vessel with 3 < iD  < 12 ft (Seider, Seader, & Lewin, 2004): 

( ) 20294.0580,1 iPL DC =      (3.29) 

W, pt , and dP  are evaluated by Equations(3.12), (3.13), and (3.14). 

Chapter III has presented the reactor-distillation column design and economic 

parameters. Optimization models in this research are built based on the equations in 

Chapter III. Before performing optimization, it is necessary to understand the theory of 

optimization, which is described in Chapter IV.  
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CHAPTER IV 

OPTIMIZATION 
 
 
 
4.1 OVERVIEW 

It is one of the primary tasks of a chemical engineer to design and operate 

chemical processes and ensure them working faster, better, cheaper, safer and greener 

(El-Halwagi, 2003). During designing process, there is a correlation between technical 

design and economic analysis. In practice, it is very important to have an economically 

optimum and inherently safer design which is the best design based on technical and 

business performance within acceptable safety level. How do engineers incorporate 

those three parameters into process design while achieving the specified product(s)? 

Process optimization with technical performance, business performance, and safety 

parameters as the constraints might be a good solution. This research attempts to 

perform this optimization and analyze the result.   

There are several methods available to solve the optimization problem, manually 

or computerized. This research solves the optimization problem using software LINGO® 

by LINDO Inc which is a linear and non-linear solver. Computer software offers faster 

and efficient calculation so that this research can focus more on the development of the 

mathematical models of the process evaluated and the validation of the proposed 

methodology.  We decide to use LINGO® based on availability, simplicity, and 

researcher’s familiarity as well. 
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4.2 BASIC OF OPTIMIZATION 

Optimization deals with the use of efficient and effective quantitative method to 

find the optimal solution in the whole solution space. Optimization consists of two steps: 

formulating the problem and using mathematical techniques to solve it. However, as 

many mathematical tools are available, the formulation of the problem becomes an 

important task. Chemical engineers play a very important role in chemical process 

optimization as they have enough basic knowledge in equipment design and chemical 

processes. Chemical engineer must find the optimization variables that affect the process 

significantly as well as define the objective function criteria. The purpose of 

optimization is to maximize or minimize the values of a set of functions (called objective 

functions) subject to a variety of restrictions (called constraints) (El-Halwagi, 2003). A 

typical optimization problem consists of three essential parts: at least one objective 

function, equality equations, and inequality equations as constraint. 

Edgar, Himelblau, & Lasdon (2001) presented the optimization problem in the 

form of: 

Minimize : ( )xf   objective function (a) 

Subject to : ( ) 0=xh  equality constraints (b) 

   ( ) 0≥xg  inequality constraints (c) 

With x is a vector of n  variables ( ),....,,, 4321 xxxx , ( )xh is a vector of equations of 

dimension 1m , ( )xg  is a vector of inequalities of dimension 2m  and the total number of 

constraints is ( )21 mmm += . 
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For example: 

 Objective function: maximum conversion (X). 

 Equality constraint: ( )XFF AA −= 1
0

 

 Inequality constraint: 0≥X  

Edgar, Himmelblau, & Lasdon (2001) also proposed seven steps to solve 

optimization problems as follows: 

1. Define the process variables and specific characteristics of interest by generating a 

list of all available variables. 

2. Develop the process models by determining the optimization criteria and the 

objective functions in terms of variables defined in step 1 together with the 

coefficients. 

3. Develop mathematical process or equipment models that relate the input-output 

variables together with the coefficients, including both equality and inequality 

constraints.  

4. Define the type of process model (underdetermined, over-determined, unique 

solutions) by identifying the independent and dependent variables to obtain the 

number of degree of freedom. Mass balances, energy balances, empirical equations, 

conceptual constraints (non-negativity requirement such as conversion must be 

greater than zero, etc), external restriction and other physical and chemical principles 

are among the base knowledge in developing the model. 

5. If the process model is too large and complex: 

a. Divide into smaller and manageable model. 
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b. Simplify the objective model and the process model. 

6. Apply the appropriate optimization method to the process model. 

7. Cross check the answer and do the sensitivity analysis for the uncertainty with the 

coefficients and assumptions of the model to analyze or examine the answer. 

Since this research employs computer software to solve the optimization, this 

chapter will also focus on the development of mathematical/optimization model of the 

system under evaluation. The mathematical model is developed based on the 

fundamental chemical and physical laws applied to the system as well as the objective 

function. There is no specific method on developing mathematical models, it is specific 

for an individual system. For example, this research is using a reactor-separator system 

with the total of operating and capital cost as the objective function. Based on their 

physical properties, reactor and separator consist of vessels. The diameters, the heights, 

and the constructing materials of the vessels will determine the total cost. The diameters 

and the heights of the vessels are calculated from the rate of reaction, the material 

balance, the operating temperature and operating pressure, which are based on the 

chemical process of the system. In addition, by incorporating the fact that safety 

concerns set limits on the temperature, pressure and material, conversion is in the range 

of 0 to 100%, and design limits the product specification, the equality and inequality 

constraints can be developed. 

All of the equations involved will be the input for LINGO. The detail of the 

equation used has been presented in Chapter III. The next chapter, Chapter V, presents 
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the case study which shows the mathematical model for reactor-separator system 

developed and the solution from LINGO.  
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CHAPTER V 

FIRE AND EXPLOSION INDEX PROGRAM DEVELOPMENT 
 
 
 
5.1 OVERVIEW 

As described previously in chapter II, F&EI seeks to quantify the process 

information which is related to hazards (i.e., process conditions, materials, types of 

equipment and other characteristics of the process) in the form of “penalties” and “credit 

factors”. AIChE (1994) presented the F&EI manual which provides detailed procedures, 

descriptions, equations, graphical data, and tabular data, but not in the form of computer 

software. This makes the calculation even more time consuming when it is done 

manually. Moreover, manual calculation requires the user to have the Dow handbook at 

hand, limits the ability to document the F&EI calculation process, and reduces the 

capability to perform sensitivity analysis and multiple calculations. Therefore, the idea to 

automate the F&EI calculation arises. 

Etowa, Amyottee, Pegg, & Khan (2002) developed a computer program to 

automate F&EI calculation and perform sensitivity analysis using Microsoft® Visual 

Basic. However, their program was not intended to determine business interruption and 

loss control credit factors, to conduct process unit risk analyses, to automate the 

sensitivity analysis, or to integrate F&EI calculation into process design and 

optimization framework.  

F&EI program developed in this research is presented in this chapter. The ability 

to calculate the F&EI, to determine loss control credit factors and business interruption, 
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and to perform process unit risk analysis is the unique feature in this F&EI program. In 

addition to F&EI calculation, F&EI program provides the descriptions of each item of 

the penalties and the chemicals/materials databases. The ability to add chemical/material 

data to the databases and to calculate material factors are provided so that the user can 

use the program without the F&EI book at hand. Moreover, the sensitivity analyses are 

automated by generating charts and expressions of F&EI as a function of material 

inventory and pressure. The expression will be the focal point in integrating F&EI into 

process design and optimization framework.   

Part of this research is to develop a user-friendly program based on the Dow Fire 

and Explosion Index 7th edition (1994 version). The programming language used is 

Microsoft Visual Basic® Application (VBA) with Microsoft® Excel (Excel) as the host 

application. All codes related to penalties, credit factors, databases, and other functions 

of the F&EI program are available in the Appendix: Algorithms for Microsoft® Visual 

Basic application.  

The optimization problem could be solved by various tools. We investigate the 

optimization problem using LINGO® 8.0 software by Lindo System Inc.. LINGO® is 

employed because of its simplicity, availability, and researcher’s familiarity as well. 

LINGO® is a comprehensive tool to solve linear, nonlinear, and integral optimization 

models faster, more easily and efficiently. 

This chapter presents guidelines to use the F&EI program.  
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5.2 LINGO® 

LINGO® is a mathematical modeling language and different from other basic 

programming languages such as BASIC or C ++. LINGO® is non-procedural so that the 

users are only to specify what they want, not how to find the solution. Therefore, 

LINGO® allows the user to express the model in a standard mathematical notation 

without additional codes or syntaxes.  

 

5.2.1 LINGO® Syntax and Functions  

There are several rules on writing problem statements in LINGO®, which are: 

• It is not necessary to write the mathematical statement in a certain order. All 

statements are considered as the variable that must be satisfied. 

• LINGO® does not differentiate small and big caps, i.e., y and Y are considered as 

the same variable. It handles up to 32 characters length of variables which must 

begin with a letter (A-Z) and allows any alphanumeric character and underscore. 

• Every statement must end with a semicolon (;). This allows the user to have a 

long statement with more than 1 line. Example: tp=(Pd*Di)/(25500-1.2*Pd); 

can also be written as:  

tp=(Pd*Di)/ 

(25500-1.2*Pd); 

• Comment begins with exclamation point (!) and ends with semicolon (;). 

Comment can be more than 1 line or share lines with other LINGO® statement. 

Example:  Comments 
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Cao=0.00415; ![=]lb mol/ft3; 

LINGO® defines only two types of mathematical functions: general and 

trigonometric. This research employs the following LINGO® general mathematical 

functions: 

• @EXP(X) – returns the constant e(2.718281…) to the power X. 

• @LOG(X) – returns the natural logarithm of the function X. 

• MIN=f(X) or MAX=f(X) - to find maximum or minimum value of the objective 

function statement. 

After all models are submitted to LINGO®, LINGO® will provide the result in a 

new opened-window. All LINGO® models and their solutions applied in this research are 

available at Appendix B. 

 

5.3 SYNTAX USED IN MICROSOFT® VISUAL BASIC APPLICATION (VBA) 

VBA file is not an executed file, thus it must be open in any Microsoft® Office™. 

In this research, the host application is Microsoft® Excel, thus the user must open 

Microsoft® Excel to run the F&EI program. Based on the written text, tabular data, 

graphs, and expressions in the Dow book, most of the safety parameters, penalties, and 

credit factors on the F&EI can be described as If…Then statements, hence algorithms for 

the F&EI are prepared in that form. The following are several things that must be 

understood before the algorithm can be written:  
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1. Function Procedures 

Function procedures are applied to create functions with named arguments, 

optional arguments, and specific data type results that are compatible to Microsoft® 

Excel. It is a VBA procedure that returns a result. Harris (1997) present that the user 

simply specifies the arguments the function uses, the actions to be performed, and the 

value that the function returns and describes the general syntax for a function as the 

following:  

Function name ([arglist]) 

‘VBA Statements 

[name = expression] 

End Function 

Here name denotes the name of the function; arglist is the argument list of the 

function (several arglist must be separated with comma) and name=expression is the 

function assignment which tells VBA what value the function should return. The 

function procedure begins with the keyword Function followed by the function’s name 

and ends with End Function keyword. 

 

2. Variable Constant Data Type 

• String Constant 

It is a non-numeric constant and must be enclosed in double quote marks (“ ”). A 

blank string constant is identified by two question marks together with nothing in 

between: “”.  
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• Boolean Constant 

There are only two Boolean constants: true and false.  

• Numeric Constant 

This consists only of the number 0 through 9 with no symbols or characters. 

 

3. Decision Making Commands 

Decision making command is the VBA capability to choose between two 

alternatives of procedures based on whether or not the condition is satisfied. For 

choosing between branches of decisions, the general VBA syntax is:  

If Condition1 Then 

 Statement1 

ElseIf Condition2 Then 

Statement2 

Else 

 Statement3 

End If 

The conditions represent any logical expression and statements represent the 

consequences when the conditions are true. VBA executes all conditions according to 

the order. For the syntax given, if the logical expression represented by condition1 is 

true then VBA executes statement1. However, if the logical expression represented by 

condition1 is false then VBA immediately checks condition2 without considering 

statement1, and so on. Every decision making command begins with If….Then keyword 

and ends with End If keyword. 
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4. User-Defined Functions 

In the VBA, the user can expand the collection of the built-in worksheet 

functions in Excel. Excel will recognize it as user-defined functions which are the 

function procedures stored as worksheet functions in Excel. The user-defined functions 

are named by the user and contain any guidelines, arguments, and restrictions defined by 

the user. The codes for the function procedure combined with decision making command 

for exothermic chemical reaction penalty on F&EI is shown in Figure 5.1 

 

 

 

Fig. 5.1. Example: Syntax for exothermic chemical reaction penalty 
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Excel will recognize PenaltyExotherm as name of the user-defined function. To 

access the PenaltyExotherm in Excel, the function name and its arguments are 

introduced as a formula in a worksheet cell the same way the user would enter any input 

to any Excel’s built-in functions. If the user does not remember the name of the function, 

the function can be found in user-defined functions organized under Excel’s insert - 

function dialog, as shown in Figure 5.2.  

 
 
 

 

Fig. 5.2. User-defined functions in Microsoft Excel (Adapted from Microsoft Excel) 

 
 
 
5. Creating List Box 

List Box displays a list of values/statements that the user can select from. The list 

boxes are arranged to allow the user to select only one single value from several 

User-defined 
functions list 

Select user-defined 
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available values/statements. As shown in Figure 5.3, VBA recognizes each 

value/statement as a sequenced number. So, the first row of value/statement is 

represented as 1, the second row value/statement is represented as 2, and so on. 

 

 

Fig. 5.3. Example of List Box for exothermic chemical reaction (Adapted from Microsoft Excel) 

 
 
 

The user assigns a cell for each input and output by doing right click while the 

arrow is on the List Box and then selects format control button. In Figure 5.3, the input 

range is A3 to A9. If the user selects “moderate exotherm” which is the 2nd row of 

value/statement, then cell B2 (Cell link) will be filled by a number “2”. This number is 

ListBox 

Input Range Cell Link 

Cell Link 

Input Range 
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an input to the user-defined function that was described on the section 3- User-Defined 

Functions. This research employs not only the List Box, but also Check Box and Option 

Box. The procedure for developing Check Box and Option Box are the same as the one 

for List Box. 

 

6. Check Box 

Check Box is a square box with checkmark when selected and is not for mutually 

exclusive procedures. Hence, the user can select more than one statement. The output of 

CheckBox is in the form of true/false statement which appears on the cell link assigned 

by the user and will be the input for the user-defined function. Figure 5.4 shows an 

example of CheckBox built for this research.  

 

 

 

Fig. 5.4. Example of CheckBox for operation instruction/procedure credit factor 
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7. Option Button. 

It is a round box that is filled with black dot when selected and is mutually 

exclusive. Thus, the user can select only one statement. The example of an Option 

Button is shown in Figure 5.5. 

 

 

Fig. 5.5. Check box for material factor determination 

 

 

5.4 GUIDELINES FOR OPERATING F&EI PROGRAM 

The F&EI program has so many features that are represented by buttons. To be 

able to use those features, the user selects the certain buttons available in F&EI 

navigator. The detailed features are described in the following sections. 

 

5.4.1 F&EI Navigator 

F&EI navigator box is a house for many buttons to perform other functions in 

F&EI calculation, as shown in Figure 5.6. For example, to determine the material 

factors, the button Material Factor on the F&EI navigator must be selected. The 

following section will describe the features of each buttons. 

• Data Input 

This button is used to verify whether the material used in the F&EI calculation is 

in the databases that the program provides. 
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Fig. 5.6. F&EI navigator 

 
 
 

• Data Known 

This button is selected when material data is not in the databases but available on 

other sources. The user submits the data to the program databases using a pop-up 

form that appears after clicking Data Known button. 

• Material Factor 

This button is used only when the material data is neither listed in the database 

nor available on other sources. This button will lead the user to the Material 

Factor Determination for Unlisted Substances page and shows a form for 

calculating the material factor.  

• Input Penalty 

This button will bring the user to the page where F&EI calculation is performed. 
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• F&EI Table  

This button is selected if the user wants to review the summary of every penalty 

submitted, the final F&EI value, and the sensitivity analysis form.  

• Loss Control Credit 

This button leads to the submission form for loss control credit factors. 

• Process Unit Risk Analysis 

This button allows the user to determine the business interruption. 

• View Graphic 

This button takes the user to the chart of F&EI versus operating pressure and the 

amount of the hazardous material along with their equations. 

• Limitation 

This button shows the limitations of the F&EI method and program. 

• Select pertinent Unit 

This button provides guidance on how to select the pertinent unit used in F&EI 

calculation. 

• F&EI Diagram 

This button shows the procedure of F&EI calculation diagram. 

• About the Program 

This button provides important information about the program. 
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5.4.2 Material Factor Determination 

As illustrated in chapter II, Material factor represents the intrinsic rate of 

potential energy release caused by fire or explosion produced from combustion or 

chemical reaction. It is the basic starting point of the F&EI calculation and plays a 

critical role in the magnitude of the F&EI. MF is obtained from reactivity value (NR) and 

flammability value (NF). The material factor determination is demonstrated in the next 

sections. 

 

5.4.2.1 Material Data Available in the F&EI Program Databases 

The F&EI program provides chemical databases for more than 250 

chemicals/materials and allows the user to select it from process data from listed data 

ListBox. When the material data is available in the F&EI program databases, the user is 

permitted to have up to four chemicals/materials in the process unit under evaluation. As 

mentioned in Chapter II, the program selects the chemical with the highest material 

factor (MF) as the basis for material factor. The Process Data for Listed Data ListBox is 

shown in Figure 5.7.     

 

5.4.2.2 Known Data 

It is possible that the material used in process unit evaluated is not available in 

the databases. If the data is available in any other sources, the program allows the user to 

input the data into the F&EI program database. Select Data Known button on F&EI 
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navigator then the page contained the Data Input form appears and permits the user to 

input the known-data by selecting Store button. Data Input form is shown in Figure 5.8.  

 

 

Fig. 5.7. The Process data for listed data ListBox  

 

5.4.2.3 Material Data Unknown 

When the material data is unknown, the user can determine it by using the material 

factor determination feature in the F&EI program. The material factor depends on 

reactivity value NR and flammability value NF (liquid, solid and gas) or dust class St (for 

combustible dust or mists) which are available on Material Factor Determination for 

Unlisted Substances page.  
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Fig. 5.8. The Data Input form 

 

The selection of Material Factor button on F&EI navigator will lead the user to 

that page. NR for liquid, gas, dust, and combustible solids is determined by Reactivity 

Value ListBox. Then, check the Option Box according to the material used. Figure 5.9 

shows the Material Factor Determination for Unlisted Substances page with 

combustible solid checked. 

 

5.4.3 Fire and Explosion Index Calculation 

As mentioned in Chapter II, F&EI calculation consists of sequential steps. The 

determination of each step is presented in the next sections. To make the penalty 

determination easier, the description of each option is available in the column next to the 

penalty form. 
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Fig. 5.9. The Material Factor determination for unlisted substances page 

 

5.4.4 General Process Hazards 

Selecting Input Penalty button will bring the user to the Fire and Explosion Index 

Calculation page which is composed of five green buttons: general process, special 

process hazards, process control credit factor, process unit risk analysis, and chart. To 

complete the F&EI calculation successfully, the user should go through each of them. 

General process hazard calculation is conducted by selecting the General 

Process button then the page shown in Figure 5.10 appears and allows the user to give 

penalty for each ListBox (A-F) according to the process under evaluation. 
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Fig. 5.10. The General Process Hazards page 

 

5.4.5 Special Process Hazards 

The Special Process Hazards page is available by selecting the Special Process 

Hazard button. There are the Special Process Hazard Penalty ListBox (A-L) and the 

Special Process Hazard Data ListBox. Both ListBox are shown in Figure 5.11 and 5.12. 
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Fig. 5.11. The Special Process Hazard Data ListBox 
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Fig. 5.12. The Special Process Hazard Penalty ListBox  

 

5.4.6 Process Control Credit Factor 

The “process control credit factor” page, as shown in Figure 5.13, will appear 

upon selecting the “Process Control Credit Factor” button. This page contains three 

parts: Process Control Credit Factor (C1) with A-I list box, Material Isolation Credit 

Factor (C2) with A-D list box and Fire Protection Credit Factor (C3) with A-I list box.      
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Fig. 5.13. The Loss Control Credit Factor ListBox 

 

5.4.7 Process Unit Risk Analysis 

Process Unit Risk Analysis page is accessible by clicking the Process Unit Risk 

Analysis button. This page contains process unit risk analysis data form and process unit 

risk analysis summary, as shown in Figure 5.14. 
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Fig. 5.14. The Process Unit Risk Analysis Summary ListBox 

 

5.4.8 Sensitivity Analysis Chart 

The data for sensitivity analysis is given by selecting F&EI button. The user 

submits various values for the pressure and the weight of material, then select the run 

sensitivity button to run sensitivity analysis. F&EI value for each data submitted will be 

calculated and plotted as sensitivity analysis chart. Sensitivity analysis chart is available 

by selecting the View Graph button. This page contains the sensitivity curve and the 

equation that represents the curve. The sensitivity analysis form and chart are shown in 

Figure 5.15 and Figure 5.16, respectively. 
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Fig. 5.15. Sensitivity chart for the weight of material and its equation 

 
 
 

Expression of F&EI as functions of the operating pressure and the amount of 

material can be obtained. The expressions are ready to be integrated into process design 

and optimization framework. Based on process models which are presented in Chapter 

III and IV, we are ready to apply them into case studies. Chapter VI presents the 

integration of F&EI into process design and optimization with case studies. 
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Fig. 5.16. Sensitivity analysis form 
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CHAPTER VI 

CASE STUDIES AND VALIDATION 
 
 
 
6.1 OVERVIEW 

This research presents F&EI program to generate the safety parameter expression 

as a function of material inventory and operating pressure and incorporate the expression 

into process design and optimization framework as an attempt to integrate the safety 

parameter integrated into design and optimization. This integration is performed 

according to the proposed diagram for integrating F&EI into process design and 

optimization as shown in Figure 6.1. The safety parameter used is Dow’s Fire and 

Explosion Index method by AIChE (1994).  

The case study and validation are performed to both the F&EI program and the 

proposed procedures. The validation has to confirm that the F&EI program is able to 

calculate the F&EI value according to the method presented by AIChE (1994) and is 

performed by comparing the F&EI programmed-calculation value with published F&EI 

value for the three case studies. Once the F&EI program is valid to be used, then it is 

ready to be employed to the case study of reactor-separator system. 

 The validation of the proposed procedures are carried out in order to make sure 

that integrating Dow’s Fire and Explosion Index (F&EI) as a safety parameter into 

process design and optimization will bring benefit without sacrificing the specified 

economic and design parameters. In addition, the validation shows how to integrate the 
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F&EI, what data should be used and what kind of useful output should be getting. The 

remainder of this of this chapter presents the case study and validation.  

 

 

 

Fig. 6.1. Proposed procedure for integrating safety into process design and optimization to achieve 
inherently safer design 
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6.2 F&EI PROGRAM VALIDATION 

The case study used are the calculation of F&EI for the Bhopal Incident 

presented by Etowa, Amyottee, Pegg, & Khan (2002), the Nitric Acid Plants presented 

by Sinnot (1996), the installation of a new railcar tank unloading facility presented by 

Crowl & Louvar (2002), and the ammonia synthesis reactor presented by Gupta, 

Khemani, & Mannan (2003). Etowa, Amyottee, Pegg, & Khan (2002) calculated the 

F&EI for Bhopal by using their own F&EI program to calculate F&EI value. However, 

their program is not able to calculate the business interruption, to perform sensitivity 

analysis and to generate the F&EI expression as a function of material inventory and 

operating pressure. Moreover, all of the case studies only present the F&EI value except 

the one by Gupta, Khemani, & Mannan (2003). Therefore, the comparison of F&EI 

value is performed on the first three of the case study while the comparison of the loss 

control credit factor and process unit risk analysis are performed to the fourth case study.  

The sensitivity analysis is confirmed by changing the value of both material 

inventory and operating pressure in the special process hazards section of F&EI 

manually. Then see whether the sensitivity analysis given by F&EI program will give 

the same results as in the manual attempt. The safety expression as the functions of the 

material inventory and operating pressure are generated by F&EI program through 

sensitivity analysis and least square method performed by MS Excel. MS Excel has been 

proved to give an accurate result. Hence, once the F&EI program including sensitivity 

analysis is validated by case studies, then the expressions are validated as well. The 

demonstration of F&EI program on case studies is shown in the next section.  
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6.2.1 Case Study 1: Bhopal Incident by Etowa, Amyottee, Pegg, & Khan (2002) 

6.2.1.1 Problem Statement 

The problem statement and data are given by Etowa, Amyottee, Pegg, & Khan 

(2002). The name of the equipment involved was tank 610 which was a horizontal tank 

with 2.44 m in diameter and 12.20 m long. The F&EI calculation is performed for tank 

610 at normal operation. Listed are the data used in F&EI calculation given by Etowa, 

Amyottee, Pegg, & Khan (2002).  

Data used: 

• MIC in the tank is flammable liquid 

• MIC reacts exothermically with water 

• MIC is transferred from tank 610 to the process area continuously using pump 

with power more than 75 hp. 

• Minor leaks on joints and flanges in the unit might occur due to corrosion which 

ranges from 0.127-0.254 mm/year. 

• Operating temperature is 20 oC. 

• Operating Pressure is 138.2 kPa 

• Relief Pressure is 284 kPa. 

 

6.2.1.2 F&EI Program Calculation 

Based on the data above, the F&EI value is calculated using F&EI program. The 

comparison of the results is shown in Table 6.1. 
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Table 6.1 The comparison of results by Etowa, Amyotte, Pegg, & Khan (2002) and by F&EI 
program 

Data 
Etowa, Amyotte, Pegg, & Khan 

(2002) 
By F&EI 
Program 

F1 1.8 1.85 

F2 4.4 4.5 

F3 8.2 (7.92) 8.3 
F&EI 238 (230) 241.7 
      
Degree of Hazards Severe Severe 

 

 

 

Table 6.1 shows some differences occur due to calculation error or undefined 

data. For example, F3 calculated by Etowa, Amyotte, Pegg, & Khan (2002) is F1 times F2 

so that F3 must be 7.92 instead of 8.2. This results a different F&EI value. Other 

example is F1 value. While it is possible for material handling/transfer section to receive 

the penalty of 0.85, the penalty based on the data given by Etowa, Amyotte, Pegg, & 

Khan (2002) should be 0.85. In that case, F1 should be 1.85 and not 1.80. The last 

example is the F3 where the difference came from pressure penalty section. To obtain the 

F3 equal to 4.4, the adjustment for pressure penalty must be 0.7 which is applied only for 

highly viscous material. On the other hand, Etowa, Amyotte, Pegg, & Khan (2002) gave 

the liquid property not as highly viscous material but as flammable liquids.  

However, all F&EI penalties are within a certain ranges defined by AIChE 

(1994) so that any value can be used as penalty as long as it is in the specified ranges. To 

accommodate the need for submitting values that is not available in the ListBox, F&EI 

program provides the user the ability to input the penalty according to their judgment. In 
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this case study, this ability enables the F&EI value calculated by F&EI program to be 

similar to the one by calculated Etowa, Amyotte, Pegg, & Khan (2002). 

 

6.2.2 Case Study 2: The Nitric Acid Plants by Sinnot (1996) 

6.2.2.1 Problem Statement 

F&EI calculation for Nitric acid plants had been presented by Sinnot (1996) 

according to the block diagram shown in Figure 6.2.  

 

 

Fig. 6.2. The production of nitric acid from the oxidation of ammonia (adapted from Sinnot, 1996) 

 

 

The detailed data also presented by (Sinnot, 1996): 

• Unit under evaluation: Whole plant. It means that all units as a whole without 

separate areas and not considering main storages. Although F&EI generally 

performed for each pertinent unit, it is possible to consider all plant units as one 

pertinent unit. It is allowed only if there are no separate areas between the units 

and no roots of incidents for particular equipment analysis is needed.   

• The largest quantity of ammonia is in Vaporizer which contains 1,100 lbs in 

liquid phase. 
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• Adequate access and drainage system are provided. 

• Operating pressure is 103 psig. 

• Relief valve is operated at 20 % above operating pressure. 

• Corrosion due to nitric oxide fumes occurs. 

• Large turbines and compressors are employed. 

 

6.2.2.2 F&EI Program Calculation 

Based on the data above, the F&EI value is calculated using F&EI program. 

Table 6.2 shows the comparison of the results. 

 
 

Table 6.2 The comparison of results by Sinnot (1996) and by F&EI program 

Data By Sinnot (1996) 
By F&EI 
Program 

F1 1.5 1.5 

F2 3.45 3.44 

F3 5.2 5.2 
F&EI 21 21 
      
Degree of Hazards Light Light 

 

 

There is slightly difference but can be ignored. This results show that the F&EI program 

is able to calculate F&EI value for this case study. 
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6.2.3. Case Study 3: Ammonia Synthesis Reactor 

6.2.3.1 Problem Statement 

The calculation of F&EI value, process control credit factor, and process unit risk 

analysis for ammonia synthesis reactor have been presented by Gupta, Khemani, & 

Mannan (2003). They offered several penalties, credit factor and other data needed as the 

following: 

• The material under evaluation is hydrogen. 

• For general process hazards, the exothermic chemical reaction section receives 

the penalty of 0.30 and the access section receives the penalty of 0.20. Other 

sections are not applicable. Therefore, the total general process hazards factor 

(F1) is 1.50. 

• For special process hazards, process upset or purge failure receives the penalty of 

0.30, the always in flammable range section receives the penalty of 0.80, the 

pressure section receives the penalty of 0.93, and corrosion and erosion section 

receives the penalty of 0.10. Therefore, the total special hazard factor (F2) is 5.13 

• The total process unit hazards factor (F3) is 7.7 and the F&EI value is 161.7 

• For process control credit factor (C1), emergency power, cooling, explosion 

control, emergency shutdown, computer control, reactive chemical review and 

other process hazards analysis section receive the penalty of 0.98, 0.98, 0.91, 

0.98, 0.96, 0.95, and 0.95, respectively. Inert gas, operating 

instruction/procedures are not applicable. Then, the total of C1 is 0.742. 
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• For material isolation credit factor (C2), remote control valves, drainage, and 

sections receive 0.97 and 0.94, respectively. Dump/blowdown and interlock 

sections are not applicable. The total of C2 is 0.9118. 

• For fire protection credit factor (C3), leak detection, structure steel, fire water 

supply, sprinkler system, hand extinguisher/monitors and cable protection 

sections receive the penalty of 0.96, 0.97, 0.96, 0.86, 0.96, and 0.96 respectively. 

The special system, water curtains and foam are not applicable in this case study. 

The total of C3 is 0.7085. 

• For process unit risk analysis, the value of area of exposure is $ 5000/m2. 

• Escalation factor x 0.82 is 1. 

 

6.2.3.2 F&EI Calculation with F&EI Program 

Based on the data given by Gupta, Khemani, & Mannan (2003), the F&EI value, 

process control credit factor, and process unit risk analysis for ammonia reactor 

synthesis reactor are calculated using F&EI program developed in this research. The 

results are presented in Table 6.3. 

Gupta, Khemani, & Mannan (2003) were concentrating on calculating the loss 

control credit factor and process unit risk analysis. The detailed process data that are 

needed for F&EI were not all presented thus some differences value might occur when 

comparing, as shown in Table 6.3. The operating pressure and pressure relief pressure 

were not explicitly given by Gupta, Khemani, & Mannan (2003) so that this research is 
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using operating pressure for ammonia production in fertilizer companies given by 

Shreve (1967), which is 1049 psig. 

 

Table 6.3 The results calculated by F&EI program and by Gupta, Khemani, & Mannan (2003) 

Data 
By Gupta, Khemani, & Mannan 

(2003) 
By F&EI 
Program 

F1 1.5 1.5 

F2 5.13 5.16 

F3 7.7 7.7 
F&EI 161.7  161.7 
      

C1 0.742 0.742 

C2 0.9118 0.9118 

C3 0.7085 0.7074 
LCCF 0.4793 (+ 0.15 %) 0.4786  
      
Radius of Exposure (m) 41.4 41.40 
Damage Factor 0.83 0.83 
MPDO (Days) 86.15 85.94 
Business Interuption ($ 
MM) 201.017 

200.516 (-0.25 
%) 

 

 

The pressure relief pressure has to be higher than operating pressure and is 

assumed as 1550 psig in this research. This results different penalty for pressure value as 

big as 0.03. Thus, the F&EI and other value will be different. 

 

6.2.3.3 Sensitivity Analysis 

The sensitivity analysis is also done to the case study. Manual calculation of 

F&EI calculation is performed at several different values of material inventory and 

operating pressure. Based on these values, the graph of F&EI versus material inventory 
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and of F&EI versus operating pressure will be generated using least squared method by 

MS Excel thus the expression represent the graph will be presented.  

Random sample of material inventory are taken and then submitted manually as 

an input into the F&EI program. The results compared to the one calculated by F&EI 

program through its sensitivity analysis features are shown in Tables 6.4 and 6.5. The 

red-colored on the table shows the sample used in the manual calculation.  

 

Table 6.4 F&EI value, inventory = 24,000 lbs, pressure relief = 1550 psig, 400 psig < operating 
pressure < 1500 psig 

Pressure 
(psig) FEI  Inventory = 24,000 lbs 

1500 169.5  PR = 1550 psig 

1450 169.5  
Operating 

pressure (psig) 
F&EI by Manual 

Calculation 
1400 169.5    
1350 169.5  1500 169.5 
1300 169.5  1200 169.5 
1250 169.5  900 169.5 
1200 169.5  800 167.7 
1150 169.5  600 160.9 
1100 169.5  500 157.9 
1050 169.5  400 154.5 
1000 169.5 
950 168.8 
900 167.7 
850 166.7 
800 165.7 
750 164.6 
700 163.4 
650 162.2 
600 160.9 
550 159.4 
500 157.9 
450 156.3 
400 154.5 
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Table 6.5 F&EI value, 14,000 lbs < inventory < 58,000 lbs, pressure relief = 1550 psig, operating 
pressure = 1469 psig 

Inventory FEI  
Po = 1469 psig 

 

1.40E+04 158.5  
PR =1550 psig 

 

1.60E+04 161.4  Inventory (lbs) F&EI by Manual 
Calculation 

1.80E+04 163.9    
2.00E+04 166.0  14000 158.5 
2.20E+04 167.9  16000 161.4 
2.40E+04 169.5  24000 169.5 
2.60E+04 171.0  34000 175.5 
2.80E+04 172.3  40000 177.8 
3.00E+04 173.5  46000 179.9 
3.20E+04 174.5  50000 181 
3.40E+04 175.5 
3.60E+04 176.4 
3.80E+04 177.2 
4.00E+04 178.0 
4.20E+04 178.7 
4.40E+04 179.3 
4.60E+04 179.9 
4.80E+04 180.5 
5.00E+04 181.0 
5.20E+04 181.5 
5.40E+04 182.0 
5.60E+04 182.4 
5.80E+04 182.8 

 

Figure 6.3 shows the graph represent the sensitivity analysis and expression for 

both F&EI as a function of material inventory and operating pressure which are:  

F&EI value = 16.776 ln (material inventory) – 0.1696 

F&EI value = 2E-5 (operating pressure)2 + 0.0538 (operating pressure) + 136.41 
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Fig. 6.3. Sensitivity analysis for operating pressure and material inventory. 

 
 

6.2.4 Case Study 3: The Installation of a New Railcar Tank Unloading Facility 

6.2.4.1 Problem Statement  

This case study is adapted from Crowl & Louvar (2002). The data are:  

• A new railcar tank unloading facility will unload 25,000 gal of either 

butadiene or cyclohexane.  

• The system is prepared with an emergency shutdown system with 

remotely operated block valves.  

• Inert gas is provided at the pressure of 40 psig and the pressure relief 

system is prepared to handle pressure of 75 psig.  

• The unloading procedure instruction and reactive chemical review are 

available and has been reviewed by corporate technical staff.  

• Combustible gas detector and a deluge system with excellent water 

supply are installed at unloading site.  
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• Diking is surrounding three sides of the facility and directs the spill to a 

covered impounding area.  

Crowl & Louvar (2002) has performed the F&EI calculation for this system. 

F&EI program will calculate the F&EI value which will then be compared to the results 

by Crowl & Louvar (2002). 

 

6.2.4.2 F&EI Program Calculation and Results 

Based on the data above, the F&EI value is calculated by F&EI program. The 

results are shown in Table 6.4.  

 
 

Table 6.6 The results given by Crowl & Louvar (2002) and by F&EI program 

Data By Crowl & Louvar (2002) 
By F&EI 
Program 

F1 1.5 1.5 

F2 2.94 (+ 1 %) 2.91  

F3 4.41 (+1.1 %) 4.36 
F&EI 106 (+ 1.3 %) 104.6 
      
Degree of Hazards Intermediate Intermediate 
      
Radius of Exposure (ft) 90 (+2.3 %) 87.89 

 

 

6.3 VERIFICATION OF F&EI PROGRAM 

After performing four F&EI calculation, one loss control credit factor and 

process unit risk analysis, and comparing them to the published F&EI results, the 

argument whether the F&EI program is reliable are going to be presented in the 

following. 
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• From the first case study, several differences occurred. Considering the cause of 

the differences and by comparing the results, the F&EI program has done a 

good job in estimating F&EI value. 

• From the second case study by Sinnot (1996), the F&EI program is able to 

calculate the F&EI value according to the methodology presented by AIChE 

(1994). 

• As shown in Table 6.3, the F&EI value, radius of exposure, MPDO and 

business interruption calculated by F&EI program are different but not more 

than 0.5 % than one calculated by Gupta, Khemani, & Mannan (2003). Since 

F&EI calculation is performed as estimation this error can be negligible. 

Therefore, F&EI program performs a good result for this case study.  

• From the three published case study, only Gupta, Khemani, & Mannan (2003) 

present the loss control credit factor and business calculation. However, the 

comparison shows that the errors are not more than 0.6 %. This small error 

shows that the F&EI program perform the loss control credit factor and business 

calculation according to AIChE (1994). 

• From the fourth case study by Crowl & Louvar (2002), all data are presented 

explicitly thus the calculation is much easier to do. However, Crowl & Louvar 

(2002) only presented F&EI value and radius of exposure calculations. The 

errors occur are not more than 2.5 %.  Considering the cause of the errors, F&EI 

once again able to calculate F&EI value. 
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• Sensitivity analysis validation shows that the F&EI program is able to calculate 

the F&EI for a certain range of material inventory and operating pressure when 

the other process conditions are held the same. Thus, the expressions generated 

are also valid.  

In conclusion, the F&EI program is able to perform Dow’s Fire and Explosion 

Index methodology according to AIChE (1994). In addition, the F&EI program is ready 

to be applied to the next case study, the reactor and distillation column system, to 

examine the proposed procedures of integrating safety parameter into process design and 

optimization. This topic will be discussed on the next section.  

 

6.4 CASE STUDY: REACTOR-DISTILLATION COLUMN SYSTEM 

As mentioned on the overview, the integration of Dow Fire and Explosion Index 

as a safety parameter follows the procedures proposed in this research. This procedure 

will be examined in order to support the argument that integrating safety into process 

design and optimization give benefits without necessarily violating the economic and 

technical parameter. Hence, the final design is optimum economic and the inherently 

safer design for the distillation column system. 

The reader might use more or less simple system but that will not affect the 

concept offered by the proposed procedures. The next section describes the case study of 

reactor and distillation column. In addition, it is very important to notice that the data 

presented in this problem statement are adapted from several sources without 

specifically representing a certain process. The reason is that this research in 



116 

 

concentrating in the concept of integrating F&EI value, not in the deep calculation of 

F&EI where expert judgment is really needed and in optimization process which 

includes a lot of variables. 

 

6.4.1 Problem Statement 

The case study used is the production of A according the reaction: 

A � B (gas phase) 

The reactor is to produce 645 million pounds of chemical B per year from chemical A. 

The reaction properties allow only a portion of the chemical A to be converted into 

chemical B. Then the output of the reactor in the form of mixture of A and B will be fed 

to the distillation column. Distillation column separates the chemical A and B in order to 

have product A in a certain number purity.  

The data for the process are: 

• Product is 645 million pounds of B per year. 

• Pressure range is 2 - 8 atm (reactor) and 10 – 16 (Distillation column) 

• Temperature is 120 F 

• Reactor is isothermal and plug flow Reactor 

• Feasible optimum conversion is between 40 % and 70 %. 
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6.4.2 Objective Functions and Optimization Model 

6.4.2.1 Reactor 

 The objective function of this cases study is to minimize the total cost for reactor 

and distillation column subject to the operating pressure and the conversion.  

 

Table 6.7 Reactor Optimization 

Objective function: Minimize Total reactor cost (Cv + Cpl) 

Technical Constraints Volume = fn (X, FAo, CAo) 

Economic Constraints 

 

Cv = fn (W) 

W = fn (D, ts, L, Di) 

ts = fn (Pd, Di) 

Cpl= fn (Di) 

Pd = fn (Po) 

 

 

The F&EI expressions as a function of material inventory and operating pressure 

generated by least squared methods on F&EI program are: 

( ) ( ) 46.880012.0103& 28 ++×= − InventoryInventoryEIF  

( ) 8.1091176.0& +×= pressureEIF  

 

6.4.2.2 Distillation Column 

 The expressions given by F&EI program are : 

( ) ( ) 16.1010018.0101& 28 ++×−= − InventoryInventoryEIF  

( ) ( ) 83.1061072.0105& 25 +×+×−= − pressurepressureEIF  
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Table 6.8 Objective function and economic constraints 

Objective function Minimize Total reactor cost (Cv + Cpl + Ct) 

Economic Constraints 

  

Cv = fn (W) 

W = fn (D, ts, L, Di) 

ts = fn (Pd, Di) 

Cpl= fn (Di) 

Pd = fn (Po) 

 

 

The equations above will be the safety constraint for the optimization. The result of the 

optimization for reactor-distillation column system is given in Figure 6.5. 
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Fig. 6.4. Rector-distillation column optimization without safety constraint 
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Fig. 6.5. Reactor-distillation column system with F&EI value as the safety constraint 

 

 

For reactor-distillation column system, the total cost of the system is the total of 

the reactor cost and the distillation cost. The vertical line shows the conversion which 

gives the F&EI value of 128. If the safety parameter is not considered, the total cost will 

be available for the conversion in the range of 40 % and 70 %, as shown in Figure 6.4.  

However, safety parameter will not allow the process to apply those conversions since at 

this point the process is not inherently safer according to Dow’s F&EI methodology. The 
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feasible range of conversion after safety parameter has been included is in the range of 

49 % and 70 %, as shown in Figure 6.5. 

Figure 6.5 also shows that safety parameter is employed as only one of the 

constraint for the optimization. It will not change any of the design value such as the 

cost, the reactor volume, the number of trays, etc. As a constraint, safety will only limit 

the feasible area for the optimization solution. Thus, if the optimization with constraint is 

performed, the result will be unacceptable and the designer has to adjust the constraint or 

the other design variables. 

 

6.5 SUMMARY 

The integration of safety parameter into process design and optimization is 

essential. However, there is no previous work in integrating F&EI into design and 

optimization. This research recommends integrating safety into design and optimization 

framework by using safety parameter as optimization constraint. The method used in this 

research is Dow’s Fire and Explosion Index which is usually calculated manually.  

This research automates the calculation of F&EI. The ability to calculate the 

F&EI, to determine loss control credit factors and business interruption, and to perform 

process unit risk analysis are the unique features of this F&EI program. In addition to 

F&EI calculation, F&EI program provides the descriptions of each item of the penalties, 

chemicals/materials databases, the flexibility to submit known chemical/material data to 

databases, and material factor calculations. Moreover, the sensitivity analyses are 

automated by generating charts and expressions of F&EI as a function of material 
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inventory and pressure. The expression will be the focal point in the process of 

integrating F&EI into process design and optimization framework.   

The proposed procedure of integrating F&EI into process design and 

optimization framework is verified by applying it into process design and optimization 

of reactor-distillation column system. The final result is the optimum economic and 

inherently safer design for the reactor and distillation column system. 

At F&EI value equal to 128, F&EI method will limit the amount of inventory and 

the operating pressure that can be used. The safety as constraint will not change the 

value of the variable that calculated without safety as constraint. However, it is very 

reasonable that in optimization process, the non-feasible area will occur. This is the 

reason that in the proposed procedures, when the result is not at acceptable level, the 

constraint (including safety parameter) must be re-arranged to get the final results. 

 

 

 

 

 

 

 

 



123 

 

 

CHAPTER VII 

CONCLUSION AND FUTURE WORK 
 
 
 
7.1 CONCLUSION 

A complete fire and explosion index (F&EI) program that runs a Dow’s Fire and 

Explosion Index has been developed and tested against four case studies. Testing against  

four case studies prove that the F&EI program is able to calculate the fire and explosion 

index, determine the loss control credit factor to reduce the F&EI value, and predict the 

business interruption on the process in the event of incidents, all according to Dow’s fire 

and explosion index method presented by AIChE (1994). In addition, the F&EI program 

is also able to perform sensitivity analysis to generate mathematical expression of fire 

and explosion index as a function of material inventory and operating pressure. 

The case study on reactor-distillation column system proves that the proposed 

procedures of integrating safety parameter (Dow’s F&EI in this research) into process 

design and optimization framework quantitatively and systematically are really useful. 

The safety parameter will act more like a constraint rather than as the process variable. It 

will only limit the feasible area for optimization solution. 

There are several contributions presented by this research: 

• Developing Fire and explosion index, the most widely used and known hazard 

index. Texas A&M University and maybe some other school are using Dow’s 

Fire and Explosion Index as safety parameter in their process design class. 
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Having the method computerized will help the student to calculate the F&EI 

value, loss control credit factor, business interruption, and sensitivity analysis.   

• Getting safety parameter as a mathematical expression has been a problem in 

safety thus inhibits the integration of safety parameter into process design 

systematically. This research presents a simple way to generating expression 

from available hazard analysis which can be useful in modeling and predicting 

the hazard of the specific process. 

• Proving that there is possibility for Dow’s Fire and Explosion Index method to 

be integrated into process design and optimization framework while still obeys 

the specified technical and economic parameter.  

 

7.2 FUTURE WORK 

This work is a preliminary attempt to integrate safety parameter, not only Dow’s 

Fire and Explosion Index, into process design and optimization framework. Therefore, 

there are several possibilities to extend this work: 

• This research has applied the concept into reactor-distillation column system. 

This concept should be applied to a more complex process system to see how it 

works.  

• This work presents F&EI program with VBA that need a host application. The 

F&EI program could be improved to handle more complex process and should be 

converted into an executed program. 
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• Dow’s Fire and Explosion Index is not sensitive to temperature changes. Other 

proven safety hazards analysis with the ability to generate expression for the 

safety parameter, can be used and be integrated into process design and 

optimization. This offers wider range of application of this concept. 

• Process optimization requires optimization model in the form of mathematical 

expression. Currently, hazards analysis methodologies quantify safety parameter 

without generating expression represents the safety parameter. Developing or 

modifying method in order to generate the safety expression give better safety 

parameter representation. Thus, the optimum final design can be achieved. 
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APPENDIX A 

ALGORITHMS FOR MICROSOFT VISUAL BASIC APPLICATION 

 

1. General Process Hazard 

A. Penalty for Exothermic Chemical Reactions 

Function PenaltyExotherm(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyExotherm = 0.3 

  ElseIf dtype = 2 Then 

    PenaltyExotherm = 0.5 

  ElseIf dtype = 3 Then 

    PenaltyExotherm = 0.75 

  ElseIf dtype = 4 Then 

    PenaltyExotherm = 1 

  ElseIf dtype = 5 Then 

    PenaltyExotherm = 1 

  ElseIf dtype = 6 Then 

    PenaltyExotherm = 1.25 

  End If 

End Function 

 

Decription for Exothermic Chemical Reactions 

Function DetailExotherm(ByVal dtype As String) As String 

  If dtype = 1 Then 

    DetailExotherm = "Hydrogenation, Hydrolysis, Isomerization, Sulfonation, 
Neutralization" 

  ElseIf dtype = 2 Then 

    DetailExotherm = "Alkylation, Esterification, Addition reactions, Oxidation, 
Polymerization, Condensation" 
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  ElseIf dtype = 3 Then 

    DetailExotherm = " Reaction occuring between an strong reactive organic acid and an 
alcohol" 

  ElseIf dtype = 4 Then 

    DetailExotherm = "Vigorous oxidizing agents such as chlorates, nitric acids, 
hypochlorous acids and salts" 

  ElseIf dtype = 5 Then 

    DetailExotherm = "Reaction at which a significant fire and expoliosn potential would 
exist when control was lost, example: Halogenation" 

  ElseIf dtype = 6 Then 

    DetailExotherm = " Quite hazardous exothermic reactions such as Nitration" 

  End If 

End Function 

 

B. Penalty for Endothermic Processes 

Function PenaltyEndotherm(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyEndotherm = 0.2 

  ElseIf dtype = 2 Then 

    PenaltyEndotherm = 0.4 

  ElseIf dtype = 3 Then 

    PenaltyEndotherm = 0.4 

  ElseIf dtype = 4 Then 

    PenaltyEndotherm = 0.2 

  ElseIf dtype = 5 Then 

    PenaltyEndotherm = 0.2 

  ElseIf dtype = 6 Then 

    PenaltyEndotherm = 0.4 

   End If 

End Function 
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Description for Endothermic Processes 

Function DetailEndotherm(ByVal dtype As String) As String 

  If dtype = 1 Then 

    DetailEndotherm = "This applies only to reactors" 

   ElseIf dtype = 2 Then 

    DetailEndotherm = "Energy provided by combustion of a solids, liquids or gaseous 
fuel" 

   ElseIf dtype = 3 Then 

    DetailEndotherm = "Heating material to remove chemically bonded water or other 
volatile material" 

  ElseIf dtype = 4 Then 

    DetailEndotherm = "Separations of ions by means of electric current" 

  ElseIf dtype = 5 Then 

    DetailEndotherm = "Thermal decompisition of molecules to smaller ones by use of 
high P, T and/or catalyst FOR ELECTRIC OR REMOTE HOT GAS HEAT" 

  ElseIf dtype = 6 Then 

    DetailEndotherm = "Thermal decompisition of molecules to smaller ones by use of 
high P, T and/or catalyst FOR DIRECT FIRED HEAT" 

  End If 

End Function 

 

C. Penalty to Material Handling and Transfer 

Function PenaltyInrack(ByVal IndexCombo As Byte, ByVal bChecked As Boolean) As 
Double 

Select Case IndexCombo 

   Case 1: 

     PenaltyInrack = 0.5 

   Case 2: 

     PenaltyInrack = 0.5 

   Case 3: 

     PenaltyInrack = 0.85 

   Case 4: 
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     PenaltyInrack = 0.65 

   Case 5: 

     PenaltyInrack = 0.4 

   Case 6: 

     PenaltyInrack = 0.25 

   Case 7: 

     PenaltyInrack = 0 

End Select 

 

If PenaltyInrack = 0 Then 

   PenaltyInrack = 0 

ElseIf bChecked = True Then 

   PenaltyInrack = PenaltyInrack + 0.2 

 

End If 

End Function 

 

Description to Material Handling and Transfer 

Function DetailMaterial(ByVal dtype As String) 

  If dtype = 1 Then 

    DetailMaterial = "Transfer line are connected and disconnected" 

  ElseIf dtype = 2 Then 

    DetailMaterial = "Add air into centrifuge, batch reactors or batch mixer, whether 
inerted or not" 

  ElseIf dtype = 3 Then 

    DetailMaterial = "Drums, cylinders, portable flexible containers and aerosol cans as 
storage" 

  ElseIf dtype = 4 Then 

    DetailMaterial = "Foam, fiber, powder, rubber goods, styrofoam, Methocel cellulose 
in dust/leak-free package" 

  ElseIf dtype = 5 Then 
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    DetailMaterial = "Open<40 mm thick, coarse granular materials such as plastics 
pellets, rack storage, wood pallets and ground materials such as polystyrene" 

  ElseIf dtype = 6 Then 

    DetailMaterial = "100 < Close cup flash point < 140" 

  End If 

End Function 

 

D. Penalty to Enclosed or Indoor Unit 

Function Penaltyenclose(ByVal IndexCombo As Byte, ByVal bChecked As Boolean) 
As Double 

Select Case IndexCombo 

   Case 1: 

     Penaltyenclose = 0.5 

   Case 2: 

     Penaltyenclose = 0.3 

   Case 3: 

     Penaltyenclose = 0.45 

   Case 4: 

     Penaltyenclose = 0.6 

   Case 5: 

     Penaltyenclose = 0.9 

   Case 6: 

     Penaltyenclose = 0 

End Select 

 

If Penaltyenclose = 0 Then 

   Penaltyenclose = 0 

ElseIf bChecked = True Then 

   Penaltyenclose = Penaltyenclose * 0.5 

End If 

End Function 
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Description to Enclosed or Indoor Unit 

Function DetailEnclosed(ByVal dtype As String) 

  If dtype = 4 Then 

    DetailEnclosed = "Can be applied to LPG" 

   ElseIf dtype = 5 Then 

    DetailEnclosed = "Can be applied to LPG" 

   Else 

    DetailEnclosed = "" 

  End If 

End Function 

 

E. Penalty to Access 

Function PenaltyAccess(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyAccess = 0.35 

  ElseIf dtype = 2 Then 

    PenaltyAccess = 0.35 

  ElseIf dtype = 3 Then 

    PenaltyAccess = 0.2 

  End If 

End Function 

 

F. Penalty to Drainage and Spills Control  

Function PenaltyDrainage(ByVal dtype As Double) As Double 

  If dtype = 1 Then 

    PenaltyDrainage = 0.5 

  ElseIf dtype = 2 Then 

   PenaltyDrainage = 0.5 

  ElseIf dtype = 3 Then 

   PenaltyDrainage = 0 



135 

 

  End If 

End Function 

2. SPECIAL PROCESS HAZARDS 

Special Process Hazards Data 

Amount 1 

Function Material(ByVal dtype As String) As String 

  If (0 <= dtype And dtype < 1000000000) Then 

    Material = "The amount of material in process units" 

  Else 

    Material = "" 

  End If 

End Function 

 

Amount 2 

Function Materialconnected(ByVal dtype As String) As String 

  If (0 <= dtype And dtype < 1000000000) Then 

    Materialconnected = "The amount of material in the largest connected units. If the 
connected unit can be isolated by closure valves operable from remote location in times 
of emergency is removed from consideration" 

  ElseIf dtype = "" Then 

    Materialconnected = "" 

  End If 

End Function 

 

A. Penalty to Toxic Material 

Function PenaltyToxic(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyToxic = 0 

  ElseIf dtype = 2 Then 

    PenaltyToxic = 0 

  ElseIf dtype = 3 Then 
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    PenaltyToxic = 1 

  ElseIf dtype = 4 Then 

    PenaltyToxic = 2 

  ElseIf dtype = 5 Then 

    PenaltyToxic = 3 

  ElseIf dtype = 6 Then 

    PenaltyToxic = 4 

  End If 

  PenaltyToxic = PenaltyToxic * 0.2 

End Function 

 

B. Penalty to Sub-Atmospheric Pressure 

Function PenaltySubPressure(ByVal bChecked As Boolean) As Double 

If bChecked = True Then 

   PenaltySubPressure = 0.5 

ElseIf PenaltySubPressure = False Then 

   PenaltySubPressure = 0 

End If 

End Function 

 

C.1. Tanks Farms Storage Flammable Liquids (for storage) 

Function PenaltyTanks(ByVal IndexCombo As Double, ByVal bChecked As Boolean) 
As Double 

 Select Case IndexCombo 

   Case 1: 

     PenaltyTanks = 0 

   Case 2: 

     PenaltyTanks = 0.5 

   Case 3: 

     PenaltyTanks = 0.5 

   End Select 
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 If bChecked = True Then 

 PenaltyTanks = 0 

 End If 

End Function 

 

Description to C.1 

Function DetailTanks(ByVal dtype As Double) 

If dtype = 2 Then 

   DetailTanks = "Air can be breathed during pump-out or sudden cooling of the tank." 

ElseIf dtype = 3 Then 

   DetailTanks = "OPRS = Operating pressure-vacuum relief system" 

Else 

   DetailTanks = "" 

End If 

End Function 

 

C.2. Process Upset of Purge Failure (for process equipment) 

Function PenaltyUpset(ByVal Upset As Double) As Double 

 Select Case Upset 

   Case 1: 

     PenaltyUpset = 0 

   Case 2: 

     PenaltyUpset = 0.3 

   Case 3: 

     PenaltyUpset = 0.3 

   Case 4: 

     PenaltyUpset = 0.3 

   Case 5: 

     PenaltyUpset = 0.3 

   End Select 

 End Function 
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Description to C.2 

Function DetailUpset(ByVal dtype As Double) 

If dtype = 2 Then 

   DetailUpset = "PE is Process Equipment and PST is Process Storage Tanks" 

ElseIf dtype = 3 Then 

   DetailUpset = "PU is Process Units" 

Else 

   DetailUpset = "" 

End If 

End Function 

 

C.3. Always in Flammable Range 

Function PenaltyAlways(ByVal bChecked As String) As Double 

If bChecked = True Then 

 PenaltyAlways = 0 

Else 

 PenaltyAlways = 0.8 

 End If 

End Function 

 

D. Dust Explosion 

Function PenaltyDust(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyDust = 0 

  ElseIf dtype = 2 Then 

    PenaltyDust = 0.25 

  ElseIf dtype = 3 Then 

    PenaltyDust = 0.5 

  ElseIf dtype = 4 Then 

    PenaltyDust = 0.75 
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  ElseIf dtype = 5 Then 

    PenaltyDust = 1.25 

  ElseIf dtype = 6 Then 

    PenaltyDust = 2 

  End If 

End Function 

 

 

 

E. Pressure 

Function PenaltyPressure(ByVal dtype As Double) As Double 

  If (0 < dtype And dtype < 0.66) Then 

    PenaltyPressure = 0 

  ElseIf (0.66 <= dtype And dtype < 1000) Then 

    PenaltyPressure = 0.16109 + 1.61503 * (dtype / 1000) - 1.42879 * (dtype / 1000) ^ 2 
+ 0.5172 * (dtype / 1000) ^ 3 

  ElseIf (1000 <= dtype And dtype <= 1500) Then 

    PenaltyPressure = 0.86 

  ElseIf (1500 <= dtype And dtype <= 2000) Then 

    PenaltyPressure = 0.92 

  ElseIf (2000 < dtype And dtype <= 2500) Then 

    PenaltyPressure = 0.96 

  ElseIf (2500 < dtype And dtype <= 3000) Then 

    PenaltyPressure = 0.98 

  ElseIf (3000 < dtype And dtype <= 10000) Then 

    PenaltyPressure = 1.25 

  ElseIf (dtype > 10000) Then 

    PenaltyPressure = 1.5 

  End If 

  End Function 
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Penalty to Pressure adjustment 

Function adjusment(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    adjusment = 0.7 

  ElseIf dtype = 2 Then 

    adjusment = 1.2 

  ElseIf dtype = 3 Then 

    adjusment = 1.2 

  ElseIf dtype = 4 Then 

    adjusment = 1.3 

  ElseIf dtype = 5 Then 

    adjusment = 1# 

  End If 

End Function 

 

F. Penalty to Low Temperature 

Function PenaltyLow(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyLow = 0.3 

  ElseIf dtype = 2 Then 

    PenaltyLow = 0.2 

  ElseIf dtype = 3 Then 

    PenaltyLow = 0 

  ElseIf dtype = 4 Then 

    PenaltyLow = 0 

  End If 

End Function 

 

G.1 Penalty to Liquids or Gases in Process 

Function PenG1(ByVal dtype As Double, ByVal W1 As Double, ByVal W2 As Double, 
HC1 As Double, HC2 As Double) As Double 
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'Liquids or Gases in Storage (Outside The Process Area) 

W = W1 

HC = HC1 

If W2 > W Then 

   W = W2 

   HC = HC2 

End If 

HC = HC / 10 ^ 6 

P = W * HC 

  If (dtype <= 5) And (dtype >= 1) Then 

    PenG1 = 10 ^ (0.17179 + 0.42988 * Application.Log(P) - 0.37244 * 
(Application.Log(P)) ^ 2 + 0.177121 * (Application.Log(P)) ^ 3 - 0.029984 * 
(Application.Log(P)) ^ 4) 

  ElseIf dtype = 6 Then 

    PenG1 = 0 

  End If 

End Function 

 

G.2. Penalty to Liquid or Gases in Storage (Outside the Process Area) 

Function PenaltyG2(ByVal dtype As Double, ByVal P As Double) As Double 

'Liquids or Gases in Storage (Outside The Process Area) 

  If dtype = 1 Then 

    PenaltyG2 = 10 ^ (-0.289069 + 0.472171 * Application.Log(P) - 0.074585 * 
(Application.Log(P)) ^ 2 - 0.018641 * (Application.Log(P) ^ 3)) 

  ElseIf dtype = 2 Then 

    PenaltyG2 = 10 ^ (-0.403115 + 0.378703 * Application.Log(P) - 0.046402 * 
(Application.Log(P)) ^ 2 - 0.015379 * (Application.Log(P) ^ 3)) 

  ElseIf dtype = 3 Then 

    PenaltyG2 = 10 ^ (-0.558394 + 0.363321 * Application.Log(P) - 0.057296 * 
(Application.Log(P)) ^ 2 - 0.010759 * (Application.Log(P) ^ 3)) 

  ElseIf dtype = 4 Then 

    PenaltyG2 = 0 
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  End If 

End Function 

 

G.3. Penalty to Combustible Solids in Storage/Dust in Process 

Function PenaltyG3(ByVal dtype As Double, ByVal P As Double) As Double 

'Liquids or Gases in Storage (Outside The Process Area) 

  On Error GoTo err 

  PenaltyG3 = 0 

  If dtype = 1 Then 

    PenaltyG3 = 10 ^ (0.280423 + 0.464559 * Application.Log(P) - 0.28291 * 
(Application.Log(P)) ^ 2 + 0.066218 * (Application.Log(P) ^ 3)) 

  ElseIf dtype = 2 Then 

    PenaltyG3 = 10 ^ (-0.358311 + 0.453326 * Application.Log(P) - 0.141022 * 
(Application.Log(P)) ^ 2 + 0.02276 * (Application.Log(P) ^ 3)) 

  ElseIf dtype = 3 Then 

    PenaltyG3 = 10 ^ (0.280423 + 0.464559 * Application.Log(6 * P) - 0.28291 * 
(Application.Log(6 * P)) ^ 2 + 0.066218 * (Application.Log(6 * P) ^ 3)) 

  ElseIf dtype = 4 Then 

    PenaltyG3 = 0 

  End If 

err: 

End Function 

 

H. Penalty to Corrosion and Erosion 

Function PenaltyCorrosion(ByVal dtype As String) As Variant 

  If dtype = 1 Then 

    PenaltyCorrosion = 0.1 

  ElseIf dtype = 2 Then 

    PenaltyCorrosion = 0.2 

  ElseIf dtype = 3 Then 

    PenaltyCorrosion = 0.5 

  ElseIf dtype = 4 Then 
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    PenaltyCorrosion = 0.75 

  ElseIf dtype = 5 Then 

    PenaltyCorrosion = 0.2 

  ElseIf dtype = 6 Then 

    PenaltyCorrosion = 0 

  End If 

End Function 

 

I. Penalty to Leakage-Joints and Packing 

Function PenaltyLeakage(ByVal dtype As String) As Variant 

  If dtype = 1 Then 

    PenaltyLeakage = 0.1 

  ElseIf dtype = 2 Then 

    PenaltyLeakage = 0.3 

  ElseIf dtype = 3 Then 

    PenaltyLeakage = 0.3 

  ElseIf dtype = 4 Then 

    PenaltyLeakage = 0.4 

  ElseIf dtype = 5 Then 

    PenaltyLeakage = 1.5 

  ElseIf dtype = 6 Then 

 

J. Penalty to the Use of Fired Equipment 

Function PenaltyFired(ByVal dtype As Double, ByVal distance As Double, ByVal 
Checked As Boolean) As Double 

  If (distance > 210) Then 

    PenaltyFired = 0.1 

   ElseIf bChecked = True Then 

    PenaltyFired = 0.5 * PenaltyFired 

  ElseIf dtype = 1 Then 
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    PenaltyFired = 10 ^ (-3.3243 * (distance / 210) + 3.75127 * (distance / 210) ^ 2 - 
1.42523 * (distance / 210) ^ 3) 

  ElseIf dtype = 2 Then 

    PenaltyFired = 10 ^ (-3.3243 * (distance / 210) + 3.75127 * (distance / 210) ^ 2 - 
1.42523 * (distance / 210) ^ 3) 

  ElseIf dtype = 3 Then 

    PenaltyFired = 10 ^ (-0.3745 * (distance / 210) - 2.70212 * (distance / 210) ^ 2 + 
2.09171 * (distance / 210) ^ 3) 

  ElseIf dtype = 4 Then 

    PenaltyFired = 0 

  ElseIf dtype = 5 Then 

    PenaltyFired = 1 

  ElseIf dtype = 6 Then 

    PenaltyFired = 0 

  

  End If 

End Function 

 

Description to the Use of Fired Equipment 

Function DetailFired(ByVal dtype As String, ByVal distance As Double) As String 

  If (0 <= dtype And dtype < 1000) Then 

    DetailFired = "if the fired equipment is the process unit being evaluated itself, the 
distance is zero" 

  End If 

End Function 

 

K. Penalty Hot Oil Exchange System 

Function PenaltyHotOil(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyHotOil = 0 

  ElseIf dtype = 2 Then 

    PenaltyHotOil = 0 
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  ElseIf dtype = 3 Then 

    PenaltyHotOil = 0 

      ElseIf dtype = 4 Then 

    PenaltyHotOil = 0.15 

  ElseIf dtype = 5 Then 

    PenaltyHotOil = 0.3 

      ElseIf dtype = 6 Then 

    PenaltyHotOil = 0.5 

  ElseIf dtype = 7 Then 

    PenaltyHotOil = 0.75 

      ElseIf dtype = 8 Then 

    PenaltyHotOil = 0.25 

  ElseIf dtype = 9 Then 

    PenaltyHotOil = 0.45 

      ElseIf dtype = 10 Then 

    PenaltyHotOil = 0.75 

  ElseIf dtype = 11 Then 

    PenaltyHotOil = 1.05 

  End If 

End Function 

 

L. Penalty to Rotating Equipment 

Function PenaltyRotating(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyRotating = 0.5 

  ElseIf dtype = 2 Then 

    PenaltyRotating = 0.5 

  ElseIf dtype = 3 Then 

    PenaltyRotating = 0.5 

  ElseIf dtype = 4 Then 

      PenaltyRotating = 0.5 
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  ElseIf dtype = 5 Then 

      PenaltyRotating = 0 

       End If 

End Function 

 

Description to Rotating Equipment 

Function Detailrotating(ByVal dtype As String) As String 

  If dtype = 3 Then 

     Detailrotating = "In which failure could create a process exotherm due to lack of 
cooling from interupted mixing or circulation of coolant or due to interupted nad 
resumed mixing" 

  ElseIf dtype = 4 Then 

     Detailrotating = "Ex: centrifuges" 

  End If 

End Function 

 

3. LOSS CONTROL CREDIT FACTOR 

Process Control Credit Factor (C1) 

A. Credit to Emergency Power 

Function PenaltyEmergency(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyEmergency = 0.98 

  ElseIf dtype = 2 Then 

    PenaltyEmergency = 1 

  ElseIf dtype = 3 Then 

    PenaltyEmergency = 1 

  End If 

End Function 

 

Description to Emergency Power 

Function DetailEmergency(ByVal dtype As String) As String 
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  If dtype = 1 Then 

    DetailEmergency = "For provision of emergency power for essential services 
(instrument air control instrumentation, agitators, pumps, etc) with automatic changover 
from normal to emergency. It is needed to prevent or control a possible fire/explosion 
incident" 

  ElseIf dtype = 2 Then 

    DetailEmergency = "" 

  End If 

End Function 

 

B. Credit to Cooling System 

Function PenaltyCooling(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyCooling = 0.99 

  ElseIf dtype = 2 Then 

    PenaltyCooling = 0.97 

      ElseIf dtype = 3 Then 

    PenaltyCooling = 1 

  End If 

End Function 

 

C. Credit to Explosion Control 

Function PenaltyExplosion(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyExplosion = 0.84 

  ElseIf dtype = 2 Then 

    PenaltyExplosion = 0.98 

      ElseIf dtype = 3 Then 

    PenaltyExplosion = 1 

  End If 

End Function 
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Description to Explosion Control 

Function DetailExplosion(ByVal dtype As String) As String 

  If dtype = 1 Then 

    DetailExplosion = "ESS is Explosion Suppression System" 

  ElseIf dtype = 2 Then 

    DetailExplosion = "ORS is Overpressure Relief System" 

  End If 

End Function 

Function PenaltyShutdown(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyShutdown = 0.98 

  ElseIf dtype = 2 Then 

    PenaltyShutdown = 0.99 

  ElseIf dtype = 3 Then 

    PenaltyShutdown = 0.96 

      ElseIf dtype = 4 Then 

    PenaltyShutdown = 1 

  End If 

End Function 

 

D. Credit to Emergency Shutdown 

Function DetailShutdown(ByVal dtype As String) As String 

  If dtype = 2 Then 

    DetailShutdown = "CRE is Critical Rotating Equipment such as compressors, 
turbines, fans, etc, that are provided with vibration detection equipment" 

  ElseIf dtype = 3 Then 

    DetailShutdown = "CRE is Critical Rotating Equipment such as compressors, 
turbines, fans, etc, that are provided with vibration detection equipment" 

  End If 

End Function 
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E. Credit to Computer Control 

Function PenaltyComputer(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyComputer = 0.99 

  ElseIf dtype = 2 Then 

    PenaltyComputer = 0.99 

  ElseIf dtype = 3 Then 

    PenaltyComputer = 0.97 

  ElseIf dtype = 4 Then 

    PenaltyComputer = 0.93 

  ElseIf dtype = 5 Then 

    PenaltyComputer = 0.93 

  ElseIf dtype = 6 Then 

    PenaltyComputer = 0.93 

      ElseIf dtype = 7 Then 

    PenaltyComputer = 1 

    End If 

End Function 

 

F. Credit to Inert Gas 

Function PenaltyInert(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyInert = 0.96 

  ElseIf dtype = 2 Then 

    PenaltyInert = 0.94 

  ElseIf dtype = 3 Then 

    PenaltyInert = 1 

      ElseIf dtype = 4 Then 

    PenaltyInert = 1 

  End If 

End Function 
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Description to Inert Gas 

Function DetailInert(ByVal dtype As String) As String 

  If dtype = 2 Then 

    DetailInert = "IGS is Inert Gas System" 

  ElseIf dtype = 3 Then 

    DetailInert = "IGS is Inert Gas System" 

  End If 

End Function 

 

 

Credit to Operation Instruction/Procedure - Credit 

Function PenaltyOp1(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp1 = 0.5 

  Else 

     PenaltyOp1 = 0 

  End If 

End Function 

 

Function PenaltyOp2(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp2 = 0.5 

  Else 

     PenaltyOp2 = 0 

  End If 

End Function 

 

Function PenaltyOp3(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp3 = 0.5 
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  Else 

     PenaltyOp3 = 0 

  End If 

End Function 

 

Function PenaltyOp4(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp4 = 0.5 

  Else 

     PenaltyOp4 = 0 

  End If 

End Function 

 

Function PenaltyOp5(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp5 = 0.5 

  Else 

     PenaltyOp5 = 0 

  End If 

End Function 

 

Function PenaltyOp6(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp6 = 1 

  Else 

     PenaltyOp6 = 0 

  End If 

End Function 

 

Function PenaltyOp7(ByVal dtype As String) As Double 

  If dtype = True Then 
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     PenaltyOp7 = 1 

  Else 

     PenaltyOp7 = 0 

  End If 

End Function 

 

Function PenaltyOp8(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp8 = 1 

  Else 

     PenaltyOp8 = 0 

  End If 

End Function 

 

Function PenaltyOp9(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp9 = 1.5 

  Else 

     PenaltyOp9 = 0 

  End If 

End Function 

 

Function PenaltyOp10(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp10 = 1.5 

  Else 

     PenaltyOp10 = 0 

  End If 

End Function 

 

Function PenaltyOp11(ByVal dtype As String) As Double 
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  If dtype = True Then 

     PenaltyOp11 = 2 

  Else 

     PenaltyOp11 = 0 

  End If 

End Function 

 

Function PenaltyOp12(ByVal dtype As String) As Double 

  If dtype = True Then 

     PenaltyOp12 = 3 

  Else 

     PenaltyOp12 = 0 

  End If 

End Function 

 

Point for Operation Instruction/Procedure - Points 

Function Point(ByVal dtype As String, ByVal IndexCombo As Byte, ByVal bChecked 
As Boolean) As Double 

  If dtype = True Then 

    a = 0.5 

    b = 0.5 

    c = 0.5 

    d = 0.5 

  Else 

    Pointa = 0 

  End If 

End Function 

 

H. Credit to Reactive Chemical Review 

Function PenaltyReactive(ByVal dtype As String) As Double 

  If dtype = 1 Then 
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    PenaltyReactive = 0.91 

  ElseIf dtype = 2 Then 

    PenaltyReactive = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyReactive = 1 

  End If 

End Function 

 

I. Credit to Other Process Hazards Analysis 

Function PenaltyAnalysis(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyAnalysis = 0.91 

  ElseIf dtype = 2 Then 

    PenaltyAnalysis = 0.93 

  ElseIf dtype = 3 Then 

    PenaltyAnalysis = 0.93 

  ElseIf dtype = 4 Then 

    PenaltyAnalysis = 0.94 

  ElseIf dtype = 5 Then 

    PenaltyAnalysis = 0.94 

  ElseIf dtype = 6 Then 

    PenaltyAnalysis = 0.96 

  ElseIf dtype = 7 Then 

    PenaltyAnalysis = 0.96 

  ElseIf dtype = 8 Then 

    PenaltyAnalysis = 0.98 

  ElseIf dtype = 9 Then 

    PenaltyAnalysis = 0.98 

  End If 

End Function 
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4. PROCESS UNIT RISK ANALYSIS 

5. Determination of Damage Factor 

Function DamageFactor(ByVal dtype As Double, ByVal P As Double) As Double 

'P = process unit hazards factor, dtype = material factor 

  If P > 8 Then 

    P = 8 

  ElseIf P < 8 And P = 8 Then 

    P = P 

  End If 

   

  If dtype = 1 Then 

    DamageFactor = 0.003907 + 0.002957 * P + 0.004031 * P ^ 2 - 0.00029 * P ^ 3 

  ElseIf dtype = 4 Then 

    DamageFactor = 0.025817 + 0.019071 * P - 0.00081 * P ^ 2 - 0.000108 * P ^ 3 

  ElseIf dtype = 10 Then 

    DamageFactor = 0.098582 + 0.017596 * P + 0.000809 * P ^ 2 - 0.000013 * P ^ 3 

  ElseIf dtype = 14 Then 

    DamageFactor = 0.20592 + 0.018938 * P + 0.007628 * P ^ 2 - 0.00057 * P ^ 3 

  ElseIf dtype = 16 Then 

    DamageFactor = 0.256741 + 0.019886 * P + 0.011055 * P ^ 2 - 0.00088 * P ^ 3 

  ElseIf dtype = 21 Then 

    DamageFactor = 0.340314 + 0.076531 * P + 0.003912 * P ^ 2 - 0.00073 * P ^ 3 

  ElseIf dtype = 24 Then 

    DamageFactor = 0.395755 + 0.096443 * P - 0.001351 * P ^ 2 - 0.00038 * P ^ 3 

  ElseIf dtype = 29 Then 

    DamageFactor = 0.484766 + 0.094288 * P - 0.00216 * P ^ 2 - 0.00031 * P ^ 3 

  ElseIf dtype = 40 Then 

    DamageFactor = 0.554175 + 0.080772 * P + 0.000332 * P ^ 2 - 0.00044 * P ^ 3 

  End If 
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End Function 

 

9. Calculation of MPDO 

Function MPDO(ByVal dtype As Byte, ByVal MPPD As Double, ByVal factor As 
Double) As Double 

  If dtype = 1 Then 

      MPDO = 10 ^ (1.550233 + 0.598416 * Application.Log(MPPD / 10 ^ 6)) 

  ElseIf dtype = 2 Then 

      MPDO = 10 ^ (1.325132 + 0.592471 * Application.Log(MPPD / 10 ^ 6)) 

  ElseIf dtype = 3 Then 

      MPDO = 10 ^ (1.045515 + 0.610426 * Application.Log(MPPD / 10 ^ 6)) 

  End If 

  MPDO = factor * MPDO 

End Function 

 

 

Material Isolation Credit Factor (C2) 

 

A. Penalty to Remote Control Valves 

Function PenaltyControl(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyControl = 1 

  ElseIf dtype = 2 Then 

    PenaltyControl = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyControl = 0.96 

  End If 

End Function 

 

Description to Remote Control Valves 

Function DetailValves(ByVal dtype As Double) As String 
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  If dtype = 1 Then 

    DetailValves = "" 

  ElseIf dtype = 2 Then 

    DetailValves = "ROIV = Remotely Operated Isolation Valves available to such 
storage tanks, process vessles or major sections of transfer lines used in an emergency 
use" 

  ElseIf dtype = 3 Then 

    DetailValves = "ROIV = Remotely Operated Isolation Valves available to such 
storage tanks, process vessles or major sections of transfer lines used in an emergency 
use" 

  End If 

End Function 

 

B. Penalty to Dump/Blowdown 

Function PenaltyDump(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyDump = 1 

  ElseIf dtype = 2 Then 

    PenaltyDump = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyDump = 0.96 

  ElseIf dtype = 4 Then 

    PenaltyDump = 0.96 

  ElseIf dtype = 5 Then 

    PenaltyDump = 0.98 

  End If 

End Function 

 

Description to Dump/Blowdown 

Function DetailDump(ByVal dtype As Double) As String 

  If dtype = 1 Then 

    DetailDump = "" 
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  ElseIf dtype = 2 Then 

    DetailDump = "Emergency dump tank can be used directly to receive the contents of 
the process unit safely with adequate quenching and venting" 

  ElseIf dtype = 3 Then 

    DetailDump = "Emergency dump tank can be used directly to receive the contents of 
the process unit safely with adequate quenching and venting" 

  ElseIf dtype = 4 Then 

    DetailDump = "For Emergency venting, gas/vapor material is piped to a flare system 
or to a close vent receiver" 

  ElseIf dtype = 5 Then 

    DetailDump = "For normal venting that reduces the exposure of surrounding 
equipment to released gases or liquids. Ex: Blowdown from polystyrene reactor to a tank 
or receiver" 

  End If 

End Function 

 

Description to Drainage 

Function DetailDrainage(ByVal dtype As Double) As String 

  If dtype = 1 Then 

    DetailDrainage = "" 

  ElseIf dtype = 2 Then 

    DetailDrainage = "Provide slope of at least 2% (1% on a hards surface) leading to 
drainage trench of adquate size. Assume 100% the content of the largest tank + 10 % of 
the next largest tank could be released plus 1 hr of deluge/sprinkler fire water" 

  ElseIf dtype = 3 Then 

    DetailDrainage = "Drainage could drain the contents away from under or near tanks 
and equipment" 

  ElseIf dtype = 4 Then 

    DetailDrainage = "" 

  ElseIf dtype = 5 Then 

    DetailDrainage = "" 

  ElseIf dtype = 6 Then 



159 

 

    DetailDrainage = "The slope is doubtful or if the impounding basin < 50 ft (15 m) 
away" 

  ElseIf dtype = 7 Then 

    DetailDrainage = "Diking design directs spill to an impounding basin min 50 ft (15 m) 
away and capable of receiving 100% the content of the largest tank + 10 % of the next 
largest tank could be released plus 1 hr of deluge/sprinkler fire water" 

  End If 

End Function 

 

D. Penalty to Interlock 

Function PenaltyInterlock(ByVal dtype As String) As Double 

  If dtype = 1 Then 

    PenaltyInterlock = 1 

  ElseIf dtype = 2 Then 

    PenaltyInterlock = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyInterlock = 0.98 

  End If 

End Function 

 

 

Fire Protection Credit Factor (C3) 

 

A. Credit to Leak Detection 

Function PenaltyLeak(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyLeak = 1 

  ElseIf dtype = 2 Then 

    PenaltyLeak = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyLeak = 0.94 

  End If 
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End Function 

 

B. Credit to Structure Steel 

Function PenaltySteel(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltySteel = 1 

  ElseIf dtype = 2 Then 

    PenaltySteel = 0.98 

  ElseIf dtype = 3 Then 

    PenaltySteel = 0.97 

  ElseIf dtype = 4 Then 

    PenaltySteel = 0.95 

  ElseIf dtype = 5 Then 

    PenaltySteel = 0.98 

  ElseIf dtype = 6 Then 

    PenaltySteel = 0.98 

  End If 

End Function 

 

C. Credit to Fire Water Supply 

Function PenaltyWater(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyWater = 1 

  ElseIf dtype = 2 Then 

    PenaltyWater = 0.94 

  ElseIf dtype = 3 Then 

    PenaltyWater = 0.97 

  ElseIf dtype = 4 Then 

    PenaltyWater = 0.97 

    End If 

End Function 



161 

 

 

Description to Fire Water Supply 

Function DetailWater(ByVal dtype As Double) As String 

  If dtype = 2 Then 

    DetailWater = "Applicable to fire water supply provided by alternative power source, 
independent of normal electric service and deliver maximum demand" 

  ElseIf dtype = 3 Then 

    DetailWater = "Applicable to fire water supply provided by alternative power source, 
independent of normal electric service and deliver maximum demand" 

  ElseIf dtype = 4 Then 

    DetailWater = "Applicable to fire water supply provided by alternative power source, 
independent of normal electric service and deliver maximum demand" 

  End If 

End Function 

 

D. Credit to Special Systems 

Function PenaltySpecial(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltySpecial = 1 

  ElseIf dtype = 2 Then 

    PenaltySpecial = 0.91 

  End If 

End Function 

 

Description to Special System 

Function DetailSpecial(ByVal dtype As Double) As String 

  If dtype = 1 Then 

    DetailSpecial = "" 

  ElseIf dtype = 2 Then 

    DetailSpecial = "Special system include CO2, Halon, smoke, and flame detectors and 
blast walls or cubicle, double wall for outer tank and buried tank (discouraged)" 

  End If 
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End Function 

 

E. Credit to Sprinkler System - Design 

Function PenaltyDesign(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyDesign = 1 

  ElseIf dtype = 2 Then 

    PenaltyDesign = 0.87 

  ElseIf dtype = 3 Then 

    PenaltyDesign = 0.87 

  ElseIf dtype = 4 Then 

    PenaltyDesign = 0.81 

  ElseIf dtype = 5 Then 

    PenaltyDesign = 0.84 

  ElseIf dtype = 6 Then 

    PenaltyDesign = 0.74 

  ElseIf dtype = 7 Then 

    PenaltyDesign = 0.81 

  End If 

End Function 

 

E. Penalty to Sprinkler System - Area 

Function PenaltyArea(ByVal Credit As Double, ByVal Area As Double) As Double 

Select Case Credit 

   Case 1: 

     PenaltyArea = 1 

   Case 2: 

     PenaltyArea = 0.87 

   Case 3: 

     PenaltyArea = 0.87 

   Case 4: 
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     PenaltyArea = 0.81 

   Case 5: 

     PenaltyArea = 0.84 

   Case 6: 

     PenaltyArea = 0.74 

   Case 7: 

     PenaltyArea = 0.81 

End Select 

 

 If Area = 2 Then 

   PenaltyArea = PenaltyArea * 1.06 

 ElseIf Area = 3 Then 

   PenaltyArea = PenaltyArea * 1.09 

 ElseIf Area = 4 Then 

   PenaltyArea = PenaltyArea * 1.12 

 End If 

End Function 

 

F. Penalty to Water Curtain 

Function PenaltyCurtain(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyCurtain = 1 

  ElseIf dtype = 2 Then 

    PenaltyCurtain = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyCurtain = 0.97 

   End If 

End Function 

 

Description to Water Curtain 

Function DetailCurtain(ByVal dtype As Double) As String 
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  If dtype = 2 Then 

    DetailCurtain = "Appicable to Automatic water spray between source of ignition and a 
potential vapor release area and located at least 75 ft (23 m) from the vapor release 
point""" 

  ElseIf dtype = 3 Then 

    DetailCurtain = "Appicable to Automatic water spray between source of ignition and a 
potential vapor release area and located at least 75 ft (23 m) from the vapor release 
point""" 

  End If 

End Function 

 

G. Penalty to Foam 

Function PenaltyFoam(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyFoam = 1 

  ElseIf dtype = 2 Then 

    PenaltyFoam = 0.94 

  ElseIf dtype = 3 Then 

    PenaltyFoam = 0.92 

  ElseIf dtype = 4 Then 

    PenaltyFoam = 0.97 

  ElseIf dtype = 5 Then 

    PenaltyFoam = 0.94 

  ElseIf dtype = 6 Then 

    PenaltyFoam = 0.95 

  ElseIf dtype = 7 Then 

    PenaltyFoam = 0.97 

  ElseIf dtype = 7 Then 

    PenaltyFoam = 0.94 

  End If 

End Function 
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Description to Foam 

Function DetailFoam(ByVal dtype As Double) As String 

  If dtype = 3 Then 

    DetailFoam = "Automatically means the foam valve is automatically actuated when 
fire is detected" 

  ElseIf dtype = 5 Then 

    DetailFoam = "Automatic means fire detection systems are used to actuating the foam 
system" 

  End If 

End Function 

 

H. Penalty to Hand Extinguisher/Monitors 

Function PenaltyHand(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyHand = 1 

  ElseIf dtype = 2 Then 

    PenaltyHand = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyHand = 1 

  ElseIf dtype = 4 Then 

    PenaltyHand = 1 

  ElseIf dtype = 5 Then 

    PenaltyHand = 0.97 

  ElseIf dtype = 6 Then 

    PenaltyHand = 0.95 

  ElseIf dtype = 7 Then 

    PenaltyHand = 0.93 

  End If 

End Function 
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I. Penalty to Cable Protection 

Function PenaltyCable(ByVal dtype As Variant) As Variant 

  If dtype = 1 Then 

    PenaltyCable = 1 

  ElseIf dtype = 2 Then 

    PenaltyCable = 0.98 

  ElseIf dtype = 3 Then 

    PenaltyCable = 0.98 

  ElseIf dtype = 4 Then 

    PenaltyCable = 0.94 

   End If 

End Function 

 

Description to Cable Protection 

Function DetailCable(ByVal dtype As Double) As String 

  If dtype = 2 Then 

    DetailCable = "Completed with water spray directed onto the top side" 

  ElseIf dtype = 4 Then 

    DetailCable = "Applicable for both flooded or dry" 

  End If 

End Function 

 

MATERIAL FACTOR DETERMINATION FOR UNLISTED SUBSTANCES  

 

Material Factor for Liquids and Gases Flammability or Combustibility and 
Volatile Solids 

Option Base 1 

 

Function Reactivity(ByVal NR As Integer, ByVal NF As Integer) 

Dim NF0 As Variant, NF1 As Variant, NF2 As Variant, NF3 As Variant, NF4 As 
Variant 
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NF0 = Array(1, 14, 24, 29, 40) 

 

NF1 = NF0 

NF1(1) = 4 

 

NF2 = NF0 

NF2(1) = 10 

 

NF3 = NF0 

NF3(1) = 16: NF3(2) = 16 

 

NF4 = NF0 

NF4(1) = 21: NF3(2) = 21 

 

Select Case NF 

  Case 0: Reactivity = NF0(NR + 1) 

  Case 1: Reactivity = NF1(NR + 1) 

  Case 2: Reactivity = NF2(NR + 1) 

  Case 3: Reactivity = NF3(NR + 1) 

  Case 4: Reactivity = NF4(NR + 1) 

End Select 

End Function 

 

NF determination for Liquids and Gases Flammability or Combustibility and 
Volatile Solids 

Function Nflam(ByVal InputCombo As String) As Double 

  Select Case InputCombo 

   Case 1: 

     Nflam = 0 

   Case 2: 

     Nflam = 0 
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   Case 3: 

     Nflam = 1 

   Case 4: 

     Nflam = 2 

   Case 5: 

     Nflam = 3 

   Case 6: 

     Nflam = 3 

   Case 7: 

     Nflam = 4 

 

  End Select 

End Function 

 

 

Material Factor for Combustible Dust or Mists 

Function Dust(ByVal NR As Integer, ByVal NF As Integer) 

Dim NF0 As Variant, NF1 As Variant, NF2 As Variant, NF3 As Variant, NF4 As 
Variant 

NF0 = Array(16, 16, 24, 29, 40) 

 

NF1 = NF0 

 

NF2 = NF0 

NF2(1) = 21: NF2(2) = 21 

 

NF3 = NF0 

NF3(1) = 24: NF3(2) = 24 

 

Select Case NF 

  Case 0: Dust = NF0(NR + 1) 
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  Case 1: Dust = NF1(NR + 1) 

  Case 2: Dust = NF2(NR + 1) 

  Case 3: Dust = NF3(NR + 1) 

  Case 4: Dust = NF4(NR + 1) 

End Select 

End Function 

 

Dust Class Determination 

Function Stvalue(ByVal InputCombo As String, ByVal user As Double) As Double 

  Select Case InputCombo 

   Case 1: 

     Stvalue = 1 

   Case 2: 

     Stvalue = 2 

   Case 3: 

     Stvalue = 3 

   Case 4: 

     Stvalue = user 

  End Select 

End Function 

 

Material Factor for Combustible Solids 

Function Solids(ByVal NR As Integer, ByVal NF As Integer) 

Dim NF0 As Variant, NF1 As Variant, NF2 As Variant, NF3 As Variant, NF4 As 
Variant 

NF0 = Array(4, 14, 24, 29, 40) 

 

NF1 = NF0 

 

NF2 = NF0 

NF2(1) = 10 
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NF3 = NF0 

NF3(1) = 10: NF3(2) = 14 

 

NF4 = NF0 

NF4(1) = 16: NF3(2) = 16 

 

Select Case NF 

  Case 0: Solids = NF0(NR + 1) 

  Case 1: Solids = NF1(NR + 1) 

  Case 2: Solids = NF2(NR + 1) 

  Case 3: Solids = NF3(NR + 1) 

  Case 4: Solids = NF4(NR + 1) 

End Select 

End Function 

 

NF for Combustible Solids 

Function SolidsVal(ByVal InputCombo As String, ByVal user As Double) As Double 

  Select Case InputCombo 

   Case 1: 

     SolidsVal = 1 

   Case 2: 

     SolidsVal = 2 

   Case 3: 

     SolidsVal = 3 

   Case 4: 

     SolidsVal = user 

   Case 5: 

     SolidsVal = 1 

   Case 6: 

     SolidsVal = 1 
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   Case 7: 

     SolidsVal = 1 

   Case 8: 

     SolidsVal = 1 

   Case 9: 

     SolidsVal = 2 

   Case 10: 

     SolidsVal = 2 

   Case 11: 

     SolidsVal = 2 

   Case 12: 

     SolidsVal = 1 

   Case 13: 

     SolidsVal = 3 

   Case 14: 

     SolidsVal = 3 

   Case 15: 

     SolidsVal = 3 

    Case 16: 

     SolidsVal = 3 

  End Select 

End Function 

 

 

    PenaltyLeakage = 0 

  End If 

End Function 

 

NR Determination 

Function UnlistedSubs(ByVal IndexCombo As String, ByVal bChecked As Boolean) As 
Double 



172 

 

  Select Case IndexCombo 

   Case 1: 

     UnlistedSubs = 0 

   Case 2: 

      UnlistedSubs = 0 

   Case 3: 

      UnlistedSubs = 0 

   Case 4: 

      UnlistedSubs = 1 

   Case 5: 

      UnlistedSubs = 1 

   Case 6: 

      UnlistedSubs = 2 

   Case 7: 

      UnlistedSubs = 2 

   Case 8: 

      UnlistedSubs = 2 

   Case 9: 

      UnlistedSubs = 3 

   Case 10: 

      UnlistedSubs = 3 

   Case 11: 

      UnlistedSubs = 3 

   Case 12: 

      UnlistedSubs = 4 

   Case 13: 

      UnlistedSubs = 4 

   Case 14: 

      UnlistedSubs = 4 

 

End Select 
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   If UnlistedSubs = 4 Then 

      UnlistedSubs = 4 

   ElseIf bChecked = True Then 

      UnlistedSubs = UnlistedSubs + 1 

   End If 

End Function 

 

 

F&EI Severity Determination on the F&EI Table 

Function FEI(ByVal dtype As Double) As String 

  If (1 < dtype And dtype <= 60) Then 

    FEI = "Light" 

  ElseIf (61 <= dtype And dtype <= 96) Then 

    FEI = "Moderate" 

  ElseIf (96 < dtype And dtype <= 127) Then 

    FEI = "Intermediate" 

  ElseIf (127 < dtype And dtype <= 158) Then 

    FEI = "HEAVY" 

  ElseIf (dtype > 158) Then 

    FEI = "SEVERE" 

  End If 

End Function 

 

STORING KNOWN DATA AS DATABASES 

Sub StoreIntoBlankRow() 

Dim i As Long 

Dim BlankRow  As Long 

 

Dim NewData As Range 

Set NewData = Range("NewData") 
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With Sheets("Chemicals") 

For i = 12 To 64000 

   If Len(.Range("A" & i)) = 0 And Len(.Range("B" & i)) = 0 Then 

      BlankRow = i 

      Exit For 

   End If 

Next 

 

For i = 2 To NewData.Rows.Count 

   .Cells(BlankRow, i - 1) = NewData.Cells(i, 1) 

Next 

End With 

 

Call AdjustInputRange(BlankRow) 

End Sub 

 

 

THE AMOUNT OF MATERIAL (LB) AND PRESSURE (PSIG) VERSUS F&EI 
VALUE 

Sub SensMaterialWeight() 

Dim matValOr As Double 

matValOr = Range("materialval") 

With Sheets("F&EI Table") 

For i = 9 To 20000 

  If .Range("G" & i) = 0 Or .Range("G" & i) = "" Then Exit For 

     Range("materialval") = .Range("G" & i) 

     .Range("H" & i).Select 

     .Range("H" & i) = Range("ControlVar") 

Next 

Range("ControlVar").Select 
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Range("materialval") = matValOr 

End With 

 

 

matValOr = Range("pressval") 

With Sheets("F&EI Table") 

For i = 9 To 20000 

  If .Range("I" & i) = 0 Or .Range("I" & i) = "" Then Exit For 

     Range("pressval") = .Range("I" & i) 

     .Range("J" & i).Select 

     .Range("J" & i) = Range("ControlVar") 

Next 

Range("ControlVar").Select 

Range("pressval") = matValOr 

End With 

 

 

 

matValOr = Range("tempval") 

With Sheets("F&EI Table") 

For i = 9 To 20000 

  If .Range("K" & i) = 0 Or .Range("K" & i) = "" Then Exit For 

     Range("tempval") = .Range("K" & i) 

     .Range("L" & i).Select 

     .Range("L" & i) = Range("ControlVar") 

Next 

Range("ControlVar").Select 

Range("tempval") = matValOr 

End With 

 

End Sub 
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APPENDIX B 

ALGORITHMS FOR LINGO: REACTOR-DISTILLATION COLUMN SYSTEM 

 
1. REACTOR 
 
Min=TotalCapitalInvestment; 
 
TotalCapitalInvestment=11.68*Cp; 
 
Cp=Cv+Cpl; 
Cv=-2E-07*W^2+1.0346*W+45564; 
 
Cpl=285.1*(Di)^0.73960*(L)^0.70684; 
W=0.25326*(Di*12+tp)*(L*12+9.6*Di)*tp; !for Carbon steel, 0.284 
lb/inch3; 
tp=(Pd*Di*12)/(25500-1.2*Pd); !(inches); 
Pd=-9E-05*Po^2+1.1751*Po+12.872; 
 
!CONSTRAINT (economic); 
tp>0; 
!tp<0.25; 
 
Di>3; ![=]ft; 
Di<21; ![=]ft; 
L<40; ![=]ft; 
W<920000; ![=]lb; 
 
 
!Volume of Reactor vs Conversion of A ----> B, Plug Flow Reactor, gas 
phase, Constant temperature; 
 
Cao*1445=P; !p[=]atm; 
Po=(P*14.7)-14.7; !po[=]psig; 
P>2; 
P<8; 
Cao*2.355*L*Di^2=Fao*(2*@LOG(1/(1-X))-X); 
Volume=Cao*2.355*L*Di^2; 
 
Fao=Fb/X; ![=] lb mol/s; 
Fb=0.40; 
 
X=0.4; 
 
FEI1=3*10^-8*(Wr)^2+0.0012*(Wr)+88.46; !Wr[=]lb; 
Wr=Fao*26400; !Wr[=]lb, Fao[=]lb/10 minute; 
FEI2=0.1176*Po+109.8; !Po[=]psig; 
 
FEI1>0; 
FEI1<128; 
FEI2>0; 
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FEI2<128; 
 
 
2. DISTILLATION COLUMN 
 
Min=TotalCost; 
 
 
Vm=1080*((44-rhogt)/rhogt)^0.5; !ft/hr; 
Did=((56.051*600)/(rhogt*Vm))^0.5; !Didt[=]ft; 
rhogt*1445=P; !P[=]atm, ; 
Pod=(P*14.7)-14.7; !po[=]psig; 
 
P>10; 
P<16; 
 
FEI3=-1E-08*Wr3^2+ 0.0018*Wr3+101.16; 
Wr3=7.33*Fao*Xf; !Wr[=]lb, Fao[=]lb for 10 minute; 
FEI4=5E-05*Po^2+0.1072*Po+106.83; !Po[=]psig; 
 
!CONSTRAINT (safety parameters); 
FEI3>0; 
FEI3<128; 
FEI4>0; 
FEI4<128; 
 
 
 
TotalCost=6.68*DistillationCost+OperatingCost; 
OperatingCost=780*V; 
Distillationcost=Ct+Cpd; 
 
Cpd=Cvd+Cpld; 
Wd=0.25326*(Did*12+tpd)*(hd*12+9.6*Did)*tpd; 
tpd=(Pdd*Did*12)/(25500-1.2*Pdd); 
Pdd=1.1038*(Pod)+21.903; !Pdd[=] psig; 
Cvd=0.9295*(Wd) + 174525; 
Cpld=237.1*((Did)^0.63316)*(hd^0.8061); 
 
Ct=N*Cbt; !Ftm=1; !Carbon steel, FTT=1, Sieve tray); 
Cbt=4.1192*Did^3 - 91.738*Did^2 + 876.76*Did - 1598.2; 
 
Fao=1440;  
B>0; 
Xd=0.95; 
 
Xb=0.05; 
Xf=0.2; 
 
R=18.77; 
N=95; 
 
1440=D+B; 
1440*Xf=Xd*D+Xb*B; 
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R*D=L; 
V=(R+1)*D; 
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