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Introduction

Many studies have been carried out during the last decade to study the effect of cli-
mate change on crop yields and other key crop characteristics. In these studies, one or
several crop models were used to simulate crop growth and development for differ-
ent climate scenarios that correspond to different projections of atmospheric CO,
concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello
and Ewert, 2002; White ez al., 2011). The Agricultural Model Intercomparison and
Improvement Project (AgMIP; Rosenzweig ef al., 2013) builds on these studies with
the goal of using an ensemble of muitiple crop models in order to assess effects of
climate change scenarios for several crops in contrasting environments.

These studies generate large datasets, including thousands of simulated crop
yield data. They include series of yield values obtained by combining several crop
models with different climate scenarios that are defined by several climatic variables
(temperature, CO,, rainfali, etc.). Such datasets potentially provide useful informa-
tion on the possible effects of different climate change scenarios on crop yields.
However, it is sometimes difficult to analyze these datasets and to summarize them
in a vseful way due to their structural complexity; simulated yield data can differ
among contrasting climate scenarios, sites, and crop models. Another issue is that
it is not straightforward to extrapolate the results obtained for the scenarios to alter-
native climate change scenarios not initially included in the simulation protocols.
Additional dynamic crop model simulations for new climate change scenarios are
an option but this approach is costly, especially when a large number of crop models
are used to generate the simulated data, as in AgMIP.

Statistical models have been used to analyze responses of measured yield data
to climate variables in past studies (Lobell et al., 2011), but the use of a statistical
model to analyze yields simulated by complex process-based crop models is a rather
new idea. We demonstrate herewith that statistical methods can play an important
role in analyzing simulated yield data sets obtained from the ensembles of process-
based crop models. Formal statistical analysis is helpful to estimate the effects of
different climatic variables on yield, and to describe the between-model variability
of these effects. |

These statistical methods can also be used to develop meta-models, i.e., statistical
models that summarize process-based crop models, enabling scientists to explore
the effects of new climate change scenarios. This approach is illustrated with two
simulated yield datasets obtained by AgMIP for maize and wheat that were generated
by using ensembles of process-based crop models. The yield datasets were used
to develop a meta-model that provides a simplified representation of the original
ensemble of crop models. The proposed meta-model is a statistical regression with
random coefficients that describe the variability of the simulated yield data across the
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original crop models, Once the statistical regression has been fitted to the simulateq
yield datasets, the meta-model can predict the effects of climate changes among the
crop models and can thus be used to study alternative climate change scenarios that
were not initially simulated. Finally, the results obtained with the meta-model were
used to assess the risk of yield loss for maize and wheat as functions of temperatyre
and CO, concentration change.

Materials and Methods

Simulated yield data

Yield data were simulated with 19 maize crop models and 26 wheat crop models in
four contrasting sites for each species located in France (Lusignan), USA (Ames),
Brazil (Rio Verde), and Tanzania (Morogoro) for maize, and in the Netherlands
(Wageningen), Argentina (Balcarce), India (New Delhi), and Australia (Wongan
Hills) for wheat.

Several climate scenarios were considered. For both species, four temperature
changes (40, 43, +6, +-9°C) and five atmospheric CO;, concentration changes (40,
+90, +180, +270, +360 ppm; where the baseline CO; concentration was set at 360
ppm) were considered over the 19802010 time-period. In addition, two precipita-
tion changes (0% and —30%) were considered for maize and three rates of nitrogen
fertilization (50%, 100%, and 150% of reference rates) were considered for wheat
The other scenarios were defined by combining temperature, CO, concentration,
and precipitation changes. Thirty years of yield data were generated with each crop
model for each of the climate scenarios (Figs. 1 and 2) and the simulated yield values
were averaged over the years. Details of the maize and wheat protocols can be found
in Bassu et al. (2014) and Asseng et al. (2013), respectively.

Statistical model

Simulated maize and wheat yield data were analyzed using two-level statistical
random-effect models (Pinheiro and Bates, 2000). The following statistical model
was used to analyze the maize yield data for each site separately:

Level 1, within crop model
Yy = oo + o ATy + AT + e3ACy
+0t4iAC,-zj + a5, AC;AT; + ag ARy + & (1)

where Y;; is the 30-year mean yield simulated for the ith crop model (where i =
1, ..., P)andforthe jthscenario(where j = 1, ..., Q;). The variables AT, ACG,

i
;
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Fig. 1. Maize yields simulated by 15 crop models in Lusignan, France for different levels of tem-
perature change (each letter corresponds to one crop model). The reported yield data were obtained
for a change of COy concentration equal to +180 ppm and for the baseline (1981-2010) level of
precipitation. Only 15 out of the 19 available crop models simulated this level of [CO;] and were thus
included in the figure.

and AR;; are the respective changes from the 1980-2010 baseline of temperature,
atmospheric CO, concentration, and precipitation for model i and scenario j. The
value of ¢;; is assumed to be independently and identically distributed such that
g; ~ N(O, 72) where 2 is the variance describing the residual error. The coefficients,
oy (where k = 0,...,6), are seven random regression coefficients distributed
according to independent Gaussian probability distributions.

Level 2, between crop models

oy ~ N(ug, 02), k=0,....6 )

The distribution parameters, ix (Wherek =0, . .. , 6), are the seven mean regression
coefficient values that represent the mean yield baseline (xo) and mean effects of
temperature, CO,, temperature—CO, interaction, and rainfall (11, ... , i) over the
P cropmodels. The seven variances, o2 (wherek = 0, ... , 6), describe the between-
model variability of the randorn regression coefficients.
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Fig. 2. Wheat yields simulated by the 26 crop models in Wageningen, the Netherlands, for different
levels of temperature change (each letter corresponds to one crop model). The reported yield data were

obtained for a change of CO, concentration equal to +180 ppm and for the baseline (1981-2010y
level of fertilization.

This statistical model assumes that the ensemble of P crop models is a sample
taken within a population that includes all possible crop models for a given crop while
flexibly allowing for the incorporation of additional crop models in the future, The
probability distributions defined by Equation (2) describe the between-crop-model
variability of the yield response to climate change within the whole population of
crop models. These probability distributions cover the ranges of climate effects
considered in different crop models. The relationship defined by Equation (1) is
assumed to be valid for all crop models, but its parameters, c;, are assumed to vary
among crop models. However, this statistical model only describes 30-year mean
yield responses and is not intended to describe the year-to-year variability of crop
yields. Creating a statistical model that captured year-to-year variability would have
required extra random terms and additional parameters, which would have overly
complicated the calculated model and thus was not considered here.

The same form of model was used for wheat as was used for maize, but replaced
the rainfall variable, A R;;, with a variable that describes the level of N fertilization
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in Equation (1). For the wheat pilot studies, precipitation was held constant in the
wheat simulation protocol.

The population parameters of the statistical model p14, cr,f, and 72 were estimated
by restricted maximum likelihood. The model-specific regression coefficients, o;
(wherek =0,...,6andi = 1,..., P), were estimated by using the best linear
unbiased predictor using the R software package “nlme” (Pinheiro and Bates, 2000)
and the estimated values will be henceforth referred to as a,;;. The model was fitted
for each crop and each site separately, but was calculated for all crop models together.
Results were analyzed site by site.

Assessment of the statistical model

The statistical model was compared to other statistical models, including models
with fewer explanatory variables, models with fewer random coefficients, and a
model that includes no random coefficients (i.e., classical linear regression). All the
models were compared by using the Akaike information criterion (AIC; Pinheiro
and Bates, 2000), where a lower AIC value corresponds with the better model, and
we found that the model defined by Equations (1) and (2) led to lower AICs than
the simpler models. The assumption that the residual errors, ¢;;, were independent
was assessed by developing another statistical model that incorporated correlated
residual errors. The AIC value of this model was higher and the estimated cor-
relation coefficients were very low (7.6 x 107 and —4.7 x 103 for maize and
wheat, respectively). The statistical model’s quality of fit was also assessed by using
graphical analysis. Evaluating the residuals did not reveal any obvious biases due
to the assumptions made on the relationships between yields and input factors.

Estimation of the effect of climate change on yield

The statistical model described above was used to compute three different types of
-outputs:

o The average yield loss/gain due to climate change over the ensemble of crop

models.
» The yield gain/loss estimated for individual crop models due to changes in climate

variables.
o The probability that the yield loss/gain will exceed a given threshold.

For maize, the average yield difference obtained between a given climate change
scenario (characterized by AT, AC, and AR) and the baseline scenario was
expressed as:

AY = AT + pa AT? + u3AC + psAC? + psACAT + ugAR  (3)
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The yield difference described in Equation (3) is averaged over all crop models;
this difference corresponds to an average yield gain or to an average yield loss over
the 19 submitted crop models. Equation (3) defines a meta-model that simulates the
average output of the original ensemble of crop models. This meta-model enables
the computation of the yield differences for any changes in temperature, CO,, and
precipitation, AT, AC, and AR, at each of the four considered sites.

For a given crop model i, the yield difference was expressed as:

AY; = 0ot AT + i AT? + 23 AC + 2o AC + 05y ACAT + 2, AR (4)

Equation (4) defines a meta-model simulating the output of the ith crop model.
The yield difference (4) is crop model-specific. It corresponds to the climate change
effect on yield that would have been obtained with the ith crop model if this crop
model were run for a climate change scenario that were characterized by AT, AC,
and AR.

The statistical model defined by Equations (1) and (2) was also used to com-
pute the probability that the yield difference will exceed a threshold and, more

" specifically, the probability of yield gain or of yield loss that results from a change

in the temperature, CO, concentration, and/or precipitation. This probability was
computed from the following Gaussian probability distribution N(iay, 0% ) as:

Hay = ;,LIAT+u2AT2+u3AC+u4AC2 + usACAT + ugAR (5)
oy = 0L AT? + 0 AT* + 63AC + 02 AC + 62 ACPAT? + 62AR®  (6)

Similar relationships were derived for wheat by replacing precipitation change
with fertilization change in Equations (3) to (6). Note that the variance defined
by Equation (6) is not constant but varies as a function of the climate scenario
characteristics.

Results and Discussion

Increases in temperature

Figure 3 shows the statistical meta-models’ quality of fit calculated for maize and
wheat (one site per crop). The distributions of the residuals for both maize and
wheat are symmetric and do not display trends. The fitted values obtained with
the statistical meta-models are in most cases close to the yields simulated by the
processed-based crop models. The residual standard error of the fitted statistical
models is equal to 0.19 and 0.22 t/ha for maize and wheat, respectively, in the two
sites considered in Fig. 3. A similar quality of fit was obtained for the other sites.
Figure 4 shows the change in the mean yield from the baseline for one maize site
(Fig. 4a) and one wheat site (Fig. 4b) as affected by a CO, concentration increase
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Fig. 4. The effect of climate change on yield for 2 COy concentration increase of 180 ppm, and
for mean temperaiure increases ranging from 0 to 6°C. Results are reported for (a) maize, and (b)
wheat for one site per crop. Yield difference = yield obtained with a climate change scenario — yield
obtained with the baseline (1981-2010). Each black curve cormresponds to a given crop mode). Black
curves were obtained with the statistical mogel by using the ¢rop model-specific coefficients gk
(wherek =0,... ,6and i — 1,..., P). The continuous red curve indicates the mean yield response
as compared to the baseline scenario, Le., the effect averaged over all ¢rop models. The red dashed

curves indicate the first and third quartiles of elimate change effect computed over afl crop models.
The blue line indicates zero yield difference,
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for re-running the original, process-based crop model. The continuous red curve
indicates the mean yield response to the given climate scenario as compared to
the baseline, i.e., the effect averaged over all crop models. The red dashed curves
indicate the first (probability = 0.25) and third (probability = 0.75) quartiles of the
climate change effect.

According to Fig. 4, most of the crop models estimate that a temperature increase
negatively impacts yield projections of both maize and wheat in all locations. But
this effect is highly variable among crop models, with some models predicting little
response to temperature. For maize, Fig. 4a illustrates how, on average across the
ensemble of crop models, the statistical meta-model emulates a yield loss when tem-
peratures exceed +1.5°C with a CO, concentration increase of +180 ppm in Lusig-
nan, France. Contrastingly, the models suggest that wheat is more resilient to heat
stress and would require a temperature threshold equal to +3.6°C before experienc-
ing yield losses below the baseline in Wageningen, the Netherlands (Fig. 4b). Based
on the emulated projections seen in Fig, 4b, the models indicate that, should climate
change be limited to a +3°C change and include a CO; concentration increase of
+180 ppm, moderate temperature increases could, in fact, lead to gains in wheat
production in this location.

Figure 4 also demonstrates the large variability between crop models and dis-
plays how this variability increases as a function of temperature. The differences
between the first and third quartiles are much larger for higher temperature changes,
at the given CO; concentration. This result indicates that the differences between
crop models are much larger for high-temperature changes than for low-temperature
changes. The level of divergence between the predictions of the crop models thus
tends to increase with the temperature value considered in the climate change
scenarios.

Increases in atmospheric CO; concentration

Figure 5 shows the effect of climate change at one site for both maize and wheat
yields under increasing levels of CO; concentration, ranging from  to +360 ppm
from the simulated baseline concentration (i.e., 360 to 720 ppm) at a constant temper-
ature increase of +2°C. Figure 5a illustrates how all crop model simulations predict
a positive effect on maize yields in Lusignan, France when exposed to increased
CO, concentrations, but this effect is small and varies among crop models. The
mean curve suggests that the effect of a temperature increase of 42°C is negative
for the range of CQ; concentration increases, thus the benefit of the increased CO;
concentration does not outweigh the negative effect of the temperature increase. On
average, the crop models predict a yield loss for maize, even at high CO, concen-
trations, due to this +2°C temperature change.
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(a) Maize in France (Lusignan) (b) Wheat in the Netherlands (Wageningeu)
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Fig. 5. The effect of climate change on yield for a temperature increase of +2°C, and for levelsof :

CO;3 concentration increase ranging from 0 to +350 Ppm. Results are reported for (a) maize and (b) i
wheat for one site per crop. Yield difference = yield obtained with a climate change scenario — yield -~ -
obtained with the baseline (1981-2010). Each black curve corresponds to a given crop model The *, =

black curves were obtained with the statistical model by using the crop model-specific coefficients
ek (Wherek = 0,... ,6andi = 1,..., P). The continuous red curve indicates the yield response

as compared to the baseline scenario, i.¢., the effect averaged over all crop models. The red dashed : -~

curves indicate the first and third quartiles of climate change effect compuied over all crop models. -
The blue line indicates zero yield difference.

The fitted curves obtained for CO, response of wheat in Wageningen, the
Netherlands are displayed in Figure 5b, Compared to maize, the effect of a CO,
concentration increase is stronger for wheat, This effect is highly variable among
crop models; some models demonstrate positive slopes over the range of CO, con-
centrations, whereas others show slopes close to zero. When averaged across all of
the crop models, the effect of the +2°C temperature increase is positive (yield gain)
as soon as the CO; concentration increase reaches 100 ppm.

Probabilistic thresholds

An important advantage of the meta-model is that it handles the interpolation
between temperature levels and between CO, concentration levels. Our meta-model
can thus be used to calculate temperature and [CO5] thresholds that lead to yield loss
or yield gain. Table 1 shows the thresholds of [CO,] increase required to obtain a
probability of maize and wheat yield gain higher than 0.5 (i.e., 50% chance of yield
gain). These thresholds were computed for two values of temperature increase (+2
and +-4°C) and four sites per crop, It would have been very difficult to compute them
without a meta-model. Results show that, for wheat, climate change has 50% chance
of resulting in a yield gain if [CO,] increases by at least +-117 ppm (depending on
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Table 1. Levels of increased CQO, concentration (ppm)
required to obtain a probability of maize and wheat yield
gain higher than 0.5 (i.e., 50% chance of yield gain). Con-
centrations were computed for two values of temperature
increase (+2 and +4°C) and four sites per crop. Baseline
scenario corresponds to [CO;1 = 360 ppm.

Temperature change
Site +2°C +4°C
Maize [CO,] [COs]
Rio Verde, Brazil > =+360 > +360
Lusignan, France > 4360 > 4360
Morogoro, Tanzania > 4360 > +360
Ames, USA +269 > +360
Wheat [CO,] [CO3])
Balcarce, Argentina +117 +358
Wongan Hills, Australia 0 +59
New Delhi, India +112 +278
Wageningen, the Netherlands 483 +222

the site) and if temperature concurrently increases by +2°C (Table 1). Required
levels of [CO,] increases are much higher for maize (Table 1), Our meta-model has
another advantage, although not fully illustrated here; it can be used to quantify the
effects of temperature, [CO,], and precipitation on yields, their interactions, and
their variability between the four considered sites and between all the considered
crop models. It thus constitutes a powerful tool for exploring complex crop model
responses to climate factors.

Conclusions

Our study shows that yield data simulated by an ensemble of complex dynamic-
process crop models can be summarized by using statistical meta-models that
are based on random coefficient regressions. These statistical models describe
the between-crop model variability of the simulated yield data by using prob-
ability distributions. They can be used to compute key quantities such as mean
yield loss, percentiles of yield loss, and probabilities of yield loss as functions of
temperature change and CO; concentration change. These statistical meta-models
can thus be helpful for analyzing the risk of yield loss due to climate change at
the locations where the original simulations were conducted. The capabilities of
the meta-models were illustrated by using two yield datasets generated by the
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AgMIP pilot model intercomparison studies for maize and wheat. The resylts
showed that:

» High CO, concentrations are likely to outweigh the negative effect of increasing
temperature, leading to yield gains for wheat with climate change, but not for
maize.

o Thresholds of temperature increase and CO, concentrations that lead to a spe-
cific risk level of maize and wheat yield loss can be computed by using the
meta-model.

» The divergence between the maize and wheat crop models and therefore the
uncertainty in the simulated results increases as a function of temperature (the
higher the temperature change, the higher the between-crop model variability),

In the future, the proposed meta-model could be extended in two different ways.
First, it could be applied to a dataset that includes simulations obtained for a higher
number of sites. It will then be possible to include co-variables that describe site
characteristics (e.g., soil type, agricultural practices} in the meta-model in order to
explain the origin of the between-site variability, Second, our meta-model could be
extended in order to describe the between-year variability of yields and to analyze the
risk of extreme yield values for different climate scenarios, This could be achieved
by including one or several additional random effects in the meta-model and by
fitting this model to yearly yield data.
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