THE MOVING GROUP TARGETS OF THE SEEDS HIGH-CONTRAST IMAGING SURVEY OF EXOPLANETS AND DISKS: RESULTS AND OBSERVATIONS FROM THE FIRST THREE YEARS

Timothy D. Brandt 1, Masayuki Kuzuhara ${ }^{2}$, Michael W. McElwain ${ }^{3}$, Joshua E. Schlieder ${ }^{4}$, John P. Wisniewski ${ }^{5}$, Edwin L. Turner ${ }^{1,6}$, J. Carson ${ }^{4,7}$, T. Matsuo ${ }^{8}$, B. Biller ${ }^{4}$, M. Bonnefoy ${ }^{4}$, C. Dressing ${ }^{9}$, M. Janson ${ }^{1}$, G. R. Knapp ${ }^{1}$, A. Moro-Martín ${ }^{10}$, C. Thalmann ${ }^{11}$, T. Kudo 12, N. KusaKabe ${ }^{13}$, J. Hashimoto ${ }^{5,13}$, L. Abe ${ }^{14}$, W. Brandner ${ }^{4}$, T. Currie ${ }^{15}$, S. Egner ${ }^{12}$, M. Feldt ${ }^{4}$, T. Golota ${ }^{12}$, M. Goto ${ }^{16}$, C. A. Grady ${ }^{3,17}$, O. Guyon ${ }^{12}$, Y. Hayano ${ }^{12}$, M. Hayashi ${ }^{18}$, S. Hayashi ${ }^{12}$, T. Henning ${ }^{4}$, K. W. Hodapp ${ }^{19}$, M. Ishii ${ }^{12}$, M. Iye ${ }^{13}$, R. Kandori ${ }^{13}$, J. Kwon ${ }^{13,20}$, K. Mede ${ }^{18}$, S. Miyama ${ }^{21}$, J.-I. Morino ${ }^{13}$, T. Nishimura ${ }^{12}$, T.-S. Pyo ${ }^{12}$, E. Serabyn ${ }^{22}$, T. Suenaga ${ }^{20}$, H. Suto ${ }^{13}$, R. Suzuki ${ }^{13}$, M. Takami ${ }^{23}$, Y. Takahashi ${ }^{18}$, N. Takato ${ }^{12}$, H. Terada 12, D. Tomono ${ }^{12}$, M. Watanabe ${ }^{24}$, T. Yamada ${ }^{25}$, H. Takami ${ }^{12}$, T. Usuda ${ }^{12}$, and M. Tamura ${ }^{13,18}$
${ }^{1}$ Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA
${ }^{2}$ Tokyo Institute of Technology, Tokyo, Japan
${ }^{3}$ Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
${ }^{4}$ Max Planck Institute for Astronomy, Heidelberg, Germany
${ }^{5}$ HL Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
${ }^{6}$ Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Japan
${ }^{7}$ College of Charleston, Charleston, SC, USA
${ }^{8}$ Department of Astronomy, Kyoto University, Kyoto, Japan
${ }^{9}$ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
${ }^{10}$ Department of Astrophysics, CAB-CSIC/INTA, Madrid, Spain
${ }^{11}$ Astronomical Institute Anton Pannekoek, University of Amsterdam, Amsterdam, The Netherlands
${ }^{12}$ Subaru Telescope, Hilo, HI, USA
${ }^{13}$ National Astronomical Observatory of Japan, Tokyo, Japan
${ }^{14}$ Laboratoire Hippolyte Fizeau, Nice, France
${ }^{15}$ University of Toronto, Toronto, Canada
${ }^{16}$ Universitäts-Sternwarte München, Munich, Germany
${ }^{17}$ Eureka Scientific, Oakland, CA, USA
${ }^{18}$ University of Tokyo, Tokyo, Japan
${ }^{19}$ Institute for Astronomy, University of Hawaii, Hilo, HI, USA
${ }^{20}$ Department of Astronomical Science, Graduate University for Advanced Studies, Tokyo, Japan
${ }^{21}$ Hiroshima University, Higashi-Hiroshima, Japan
${ }^{22}$ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
${ }^{23}$ Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan
${ }^{24}$ Department of Cosmosciences, Hokkaido University, Sapporo, Japan
${ }^{25}$ Astronomical Institute, Tohoku University, Sendai, Japan
Received 2013 May 30; accepted 2014 February 15; published 2014 April 8

Abstract

We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of $\sim 10^{5}$ at $1^{\prime \prime}$ and $\sim 10^{6}$ beyond $2^{\prime \prime}$ around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, β Pictoris ($\sim 20 \mathrm{Myr}$), AB Doradus ($\sim 100 \mathrm{Myr}$), Columba ($\sim 30 \mathrm{Myr}$), Tucana-Horogium ($\sim 30 \mathrm{Myr}$), and TW Hydrae ($\sim 10 \mathrm{Myr}$), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca II HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, κ And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper.

Key words: binaries: close - brown dwarfs - open clusters and associations: general - stars: activity -
stars: imaging - stars: low-mass - stars: planetary systems
Online-only material: color figures

1. INTRODUCTION

More than 850 exoplanets are now known to orbit other stars. Most were identified with indirect detection techniques, but exoplanets have now been imaged around several young, nearby stars. Direct imaging (DI) is the primary technique used to probe the frequency of giant exoplanets at separations similar to the outer solar system ($\sim 4-40 \mathrm{AU}$). DI is already providing
important constraints on planetary formation mechanisms, complementing the well-characterized distribution and frequency of planets at separations similar to the inner solar system (e.g., Cumming et al. 2008; Howard et al. 2010). By measuring its emission spectrum, DI constrains an exoplanetary atmosphere's temperature, composition, and dynamics. DI of exoplanets of known age can also break the mass-age-luminosity degeneracy in exoplanet cooling models.

Several surveys have set out to directly image exoplanets around nearby stars. The DI of exoplanets is challenging observationally, due to their high contrast $\left(\gtrsim 10^{4}\right)$ and small separations from the host star $\left(\lesssim 1^{\prime \prime}\right)$. These observational requirements are mitigated by targeting young, nearby systems (see Oppenheimer \& Hinkley 2009). Young exoplanets cool rapidly as they radiate away their residual heat of formation, quickly falling below the detectability limits of even the largest groundbased telescopes equipped with high-contrast instrumentation. This sub-stellar evolution is similar to that of brown dwarfs, but is distinct from stellar evolution (e.g., Burrows et al. 1997; Chabrier et al. 2000). Nearby stars are important because the angular resolution is set by Earth's atmosphere and the optical system; nearer stars can therefore probe smaller physical separations. Unfortunately, the vast majority of observations remain null detections: massive exoplanets and brown dwarfs at large separations appear to be rare (cf. McCarthy \& Zuckerman 2004; Masciadri et al. 2005; Carson et al. 2006; Lafrenière et al. 2007a; Biller et al. 2007; Metchev \& Hillenbrand 2009; Janson et al. 2011a; Vigan et al. 2012). In order to properly interpret these results, however, uncertainties in stellar ages must be taken into account.

We report the strategy and results from the first three years of the "moving groups" (MGs) subcategory of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey (Tamura 2009). An MG is a collection of stars that share a common age, metallicity, and space motion due to formation in the same event. Nearby MG stars are particularly promising targets for DI planet searches due to their proximity and well defined youthful ages. The SEEDS survey itself is briefly described in Section 2. The architecture and target selection strategy of the SEEDS MGs sub-category is discussed in Section 3. This section also includes a review of each of the MGs that were drawn upon for the target sample, as well as the age indicators used for the targets. In Section 4, individual stellar age indicators are described in the context of how they were implemented to constrain the ages of the target sample. Section 5 describes the Bayesian approach to assign statistically significant stellar ages for the target sample. The observations and details regarding individual stars are discussed in Section 7. The data reduction details are summarized in Section 6, and a discussion of the MG sample sensitivity is presented in Section 8. The concluding remarks are presented in Section 9.

2. THE SEEDS SURVEY

The SEEDS survey is the most ambitious high-contrast imaging survey to date. This survey is being carried out with a suite of high-contrast instrumentation at the Subaru telescope, including a second generation adaptive optics (AO) system with 188 actuators (AO188; Hayano et al. 2008) and a dedicated differential imaging instrument called HiCIAO (Suzuki et al. 2010). SEEDS is now $\sim 2 / 3$ complete, and will ultimately observe ~ 500 stars to search for exoplanets and disks with DI.

The SEEDS survey is organized into two separate classes: planets and disks. Each of SEEDS' target classes, planets and disks, is further subdivided into categories, including nearby stars, MGs (this work), debris disks (Janson et al. 2013), young stellar objects (containing the protoplanetary and transitional disks), and open clusters (Yamamoto et al. 2013). The nearby stars category is further separated into sub-categories that include high mass stars (J. Carson et al. 2013, in preparation), M dwarfs, white dwarfs, chromospherically active stars, stars
with kinematic properties suggestive of youth, and stars with known radial velocity planets (e.g., Narita et al. 2010, 2012).

HiCIAO offers several observing modes, including polarized differential imaging (PDI), simultaneous imaging at different wavelengths (spectral differential imaging, or SDI), and simple DI (or angular differential imaging (ADI) when used with the image rotator off and the pupil rotation angle fixed on the detector). Young disks, with plentiful scattering by small grains, are typically observed in polarized light (PDI mode). PDI obtains simultaneous measurements of perpendicular polarization states; the two images are later subtracted to remove unpolarized light (Kuhn et al. 2001). SEEDS implements the double difference technique that subtracts a similar polarization scene modulated by 90°, effectively removing the non common path errors between the channels (e.g., Hinkley et al. 2009). Older debris disks have much weaker polarized scattering; only their total scattered intensity is typically observed. All stars without disks predicted from infrared excesses are observed only in total intensity (DI), and the data are processed using ADI.

Early survey highlights include three directly detected substellar companions, GJ 758 B (Thalmann et al. 2009; Janson et al. 2011b), κ Andromedae b (Carson et al. 2013), and GJ 504 b (Kuzuhara et al. 2013; Janson et al. 2013). In addition, there has been a plethora of papers that investigate circumstellar disk properties in the protoplanetary (Hashimoto et al. 2011; Kusakabe et al. 2012), transitional (Thalmann et al. 2010; Muto et al. 2012; Hashimoto et al. 2012; Dong et al. 2012; Mayama et al. 2012; Tanii et al. 2012; Grady et al. 2013; Follette et al. 2013), and debris (Thalmann et al. 2011, 2013) phases of evolution. These include some of the first near-IR images of protoplanetary and transitional disks, including hints of substellar companions from disk structure, and characterizations of debris disks believed to be generated by the destruction of planetesimals.

The goal of the SEEDS survey is to provide observational constraints on all stages of exoplanet formation and evolution, from protoplanetary and transitional disks to older, disk-free systems. The survey therefore targets a wide range of host stars. Unfortunately, many of the SEEDS targets, while they do show indicators of youth, lack well-determined ages. This leads to large uncertainties when converting exoplanet luminosities into masses using theoretical cooling models (e.g., Burrows et al. 1997; Baraffe et al. 2003; Marley et al. 2007; Spiegel \& Burrows 2012). The MG category is designed to overcome this problem by observing nearby stars reliably associated with kinematic MGs $\sim 10-500$ Myr old.

Because of their distances and ages, the SEEDS MG sample includes some of the most promising targets in the sky for the direct detection of exoplanets. Many of these targets have been observed by other previous and ongoing surveys, and we make use of the publicly available data in our analysis, primarily as a means of identifying background stars in the field of view by confirming they do not share common proper motion with the target star (see Section 7).

3. SEEDS MOVING GROUPS

Many of the youngest stars near the Sun are members of MGs, loose associations of stars defined by their common Galactic kinematics and ages (see reviews by Zuckerman \& Song 2004; Torres et al. 2008). Some MGs have been kinematically and chemically associated with nearby clusters, linking them to recent episodes of star formation near the Sun (Mamajek \& Feigelson 2001; Ortega et al. 2002; Fernández
et al. 2008; Barenfeld et al. 2013; De Silva et al. 2013). MGs have members within the solar neighborhood ($\lesssim 100 \mathrm{pc}$) and ages $\sim 10-500 \mathrm{Myr}$. If a proposed MG is real, and not a dynamical stream (see the following subsections), the true members are coeval. Group ages are determined using many methods based on both individual proposed members and the group as an aggregate. These include: H-R diagrams, isochrone fitting, lithium depletion, chromospheric and coronal emission, rotation, and the kinematic trace back of the group members to the most compact volume in space where they were formed coevally. The likelihood that a star is a true MG member depends on both its kinematics and youth indicators. The targets for the SEEDS MGs category are proposed members of the nearby, young kinematic MGs AB Doradus, β Pictoris, Castor, Columba, Hercules-Lyra, the IC 2391 supercluster, the Local Association, Tucana-Horologium, TW Hydrae, and Ursa Major/Sirius. We briefly summarize each of these associations in the following subsections.

3.1. The AB Doradus Moving Group

Torres et al. (2003) and Zuckerman et al. (2004) independently proposed the AB Doradus MG via searches for stars with common kinematics and ages in publicly available catalogs. AB Dor has one of the largest proposed membership samples of any MG-Torres et al. (2008) list 89 members identified in their SACY survey. Newly proposed members push the total number to more than 100 stars (Schlieder et al. 2010, 2012a; Zuckerman et al. 2011; Shkolnik et al. 2012; Bowler et al. 2012). The AB Dor group also covers the entire celestial sphere, with many proposed members in the north.

The age of AB Dor has been revisited and revised many times in the literature. Ages between 50 and 150 Myr have been derived using H-R diagram studies, lithium depletion, activity, and detailed observations of the AB Doradus quadruple system (Zuckerman et al. 2004; Torres et al. 2008; Mentuch et al. 2008; Janson et al. 2007; Close et al. 2007). Several studies argue for a common origin of the AB Dor group and Pleiades open cluster (Luhman et al. 2005; Ortega et al. 2007).

Barenfeld et al. (2013) performed a chemical and kinematic analysis of proposed members and found strong evidence for a kinematic nucleus and associated stream. They caution, however, that their traceback studies and observed chemical inhomogeneity of the proposed members suggest a significant fraction of impostors. Barenfeld et al. also place a lower limit of 110 Myr on the group's age by using pre-mainsequence contraction times of reliable K-type members. We combine this well constrained age limit with the previous results showing similarities to the Pleiades to adopt the Pleiades age of $130 \pm 20 \mathrm{Myr}$ (Barrado y Navascués et al. 2004) for the AB Doradus MG.

3.2. The β Pictoris Moving Group

Barrado y Navascués et al. (1999) identified two young M dwarfs having proper motions consistent with the prototypical debris disk, and now-known planet host, β Pictoris (Lagrange et al. 2009, 2010); they estimated a system age of $20 \pm 10 \mathrm{Myr}$ via comparisons to theoretical isochrones. This led to a search for more stars with similar age and kinematics near β Pic by Zuckerman et al. (2001a). They identified 18 systems and coined the name the β Pictoris MG. Torres et al. $(2006,2008)$ proposed many β Pic members in their SACY survey, while other searches have since proposed the first isolated brown-dwarf member and
several additional low-mass members (Lépine \& Simon 2009; Rice et al. 2010; Schlieder et al. 2010, 2012a, 2012b; Kiss et al. 2011; Malo et al. 2013).

Torres et al. (2008) list 48 high probability members of β Pic; newer additions bring the total to more than 60 stars. β Pic members are spread over the sky with the majority at southern declinations. The galactic kinematics and age of the group are similar to those of the TW Hydrae association (see Section 3.9), and both groups may be related to star formation in Sco-Cen OB association subgroups (Mamajek \& Feigelson 2001; Ortega et al. 2002).

The age of the β Pic group has been estimated at $10-20 \mathrm{Myr}$ from H-R diagrams, comparison to evolution models, lithium depletion, and kinematics (Barrado y Navascués et al. 1999; Zuckerman et al. 2001a; Ortega et al. 2002; Mentuch et al. 2008). Two more recent evaluations of the group age include a study of the lithium depletion boundary by Binks \& Jeffries (2014) and a reanalysis of the kinematic age in Soderblom et al. (2014). Binks \& Jeffries constrain the age to $21 \pm 4 \mathrm{Myr}$ by comparing the minimum luminosity (i.e., minimum mass) of M-dwarf members that have fully burned their primordial lithium to predictions from evolutionary models. Soderblom et al. provide a new analysis of proposed member kinematics using revised Hipparcos astrometry and find that the group was not appreciably smaller any time in the past, excluding traceback as a useful dating method in this case. A detailed analysis by Jenkins et al. (2012) also provides an age of ~ 20 Myr for the substellar host (Biller et al. 2010) and β Pic member, PZ Tel. We thus adopt the lithium depletion boundary age of $21 \pm 4 \mathrm{Myr}$ for our analyses.

3.3. The Castor Moving Group

The Castor MG was originally proposed by Anosova \& Orlov (1991) in their study of the dynamical evolution of several multiple systems in the solar neighborhood. They searched the Catalog of Nearby Stars (Gliese 1969) for all systems inside a velocity cube $6 \mathrm{~km} \mathrm{~s}^{-1}$ on a side, centered on the Castor sextuple system. They found 13 additional stars in 9 systems, and proposed that these stars, together with the Castor system, constitute an MG.

Barrado y Navascues (1998) revisited the proposed members of the Castor MG and performed a more rigorous analysis using new kinematic measurements and age indicators. They began with a sample of 26 candidate members and found that only 16 met their kinematic and age criteria, which were based on isochrones, activity, and lithium depletion. Barrado y Navascues assigned an age of $200 \pm 100 \mathrm{Myr}$ to the group using the age of proposed member Fomalhaut and its companion TW PsA. The work of Montes et al. (2001b) led to the identification of eight possible late-type members of Castor, while Caballero (2010) and Shkolnik et al. (2012) present additional candidates.

The ages of several original Castor members have been recently reassessed using modern techniques. Yoon et al. (2010) redetermined the age of Vega to be $455 \pm 13 \mathrm{Myr}$ using spectroscopic, photometric, and interferometric data together with isochrones. A full interferometric analysis by Monnier et al. (2012) increased this age to ~ 700 Myr. Mamajek (2012) revisited the age of Fomalhaut and its wide stellar companion and used modern isochrones, lithium depletion measurements, and age/rotation/activity diagnostics to assign them an age of 440 ± 40 Myr. These new results are incompatible with the proposed age of the Castor MG, and cast doubt on its physical reality as a coeval association.

In phase space, the Castor MG lacks a discernible core or tight nucleus of members (velocity dispersion $\sim 1 \mathrm{~km} \mathrm{~s}^{-1}$). Although this may be due to its older age, it may also indicate that the Castor MG is really a complex of kinematically similar stars with a spread of ages. Zuckerman et al. (2013) and Mamajek et al. (2013) reach the latter conclusion and reject a common age for Castor. Thus, we do not assign the proposed group age to the candidate members in the SEEDS sample, relying instead on single-star age indicators such as activity and lithium depletion.

3.4. The Columba Association

Torres et al. (2008) discovered the Columba association in their SACY survey. Its kinematics and age are very similar to the Tucana-Horologium association (see Section 3.8), but it is considered to be kinematically distinct due to its significantly different W velocity. Torres et al. proposed 53 members of this association, including some stars originally proposed as members of Tucana-Horologium.

An additional 14 Columba members were proposed by Zuckerman et al. (2011). Their list included many high-mass stars including HR 8799 and κ Andromedae, two stars hosting substellar companions (Marois et al. 2008, 2010; Carson et al. 2013). Malo et al. (2013) performed a Bayesian analysis on the full sample of proposed candidates, finding 21 high-probability members on the basis of complete kinematic data.

The Columba association received some scrutiny in a kinematic study, which questioned HR 8799's membership due to its distance from the bulk of the association throughout an epicyclic orbit simulation (Hinz et al. 2010). Hinz et al. also suggest that since the proposed members of Columba cover such a large volume of space ($>100 \mathrm{pc}$; Torres et al. 2008), it is more likely to be a complex of young stars with a range of ages. Torres et al. also noted the Columba association's large spatial extent, as a result of which membership probabilities for this group were significantly lower than for the more compact Tucana-Horologium association.

While the physical reality of the association may not yet be well-established, the stars proposed as members are still excellent targets for DI due to their relative proximity and young ages. We carefully investigate the age of each target member to verify that it is comparable to the $30_{-10}^{+20} \mathrm{Myr}$ age (Marois et al. 2010) of the group.

3.5. The Hercules-Lyra Association

The first indication of this young kinematic group was found by Gaidos (1998) in their study of young solar analogs. Gaidos identified five nearly comoving young stars with a radiant in the constellation Hercules, calling them the Hercules Association.

Fuhrmann (2004) studied nearby stars of the galactic disk and halo to identify more stars with kinematics and ages similar to those identified by Gaidos. The resulting updated sample of 15 stars had a radiant point at the border between the constellations Hercules and Lyra, and the Hercules association was renamed the Hercules-Lyra association. The stars in the Fuhrmann (2004) sample exhibit rotations, activities, and lithium depletions that suggest generally young ages. Some stars appeared to be coeval with proposed Ursa Majoris MG members ($\sim 200 \mathrm{Myr}$, at the time), while others appeared younger or older, suggesting that the Hercules-Lyra association may not be coeval.
López-Santiago et al. (2006) revisited the proposed Hercules-Lyra association, searching their list of late-type members of kinematic groups (Montes et al. 2001b) for new candidates. They required Galactic $U V$ velocities within $6 \mathrm{~km} \mathrm{~s}^{-1}$
of the mean values from Fuhrmann (2004) but imposed no restriction on the W component of the velocity. From their initial sample of 27 candidates, López-Santiago et al. found only 10 meeting their kinematic, lithium, and photometric criteria. They assigned an age of $150-300 \mathrm{Myr}$ to the association due to consistent results from both lithium abundances and color-magnitude diagrams. Shkolnik et al. (2012) proposed an additional lowmass candidate.

Eisenbeiss et al. (2013) revisit the membership, age, and multiplicity of the previously proposed members and find only seven systems that meet all of their membership criteria. These stars exhibit Galactic velocity dispersions $>3.5 \mathrm{~km} \mathrm{~s}^{-1}$ and have ages of $\sim 260 \pm 50 \mathrm{Myr}$ estimated from gyrochronology. As for the Castor MG (see Section 3.3), the small number and large velocity dispersion of reliably proposed members cast doubt on Hercules-Lyra as a true young stellar association. We therefore rely on youth indicators such as lithium and chromospheric activity to derive ages for each individual star.

3.6. The IC 2391 Supercluster

Eggen (1991) noted that more than 60 field stars and members of the IC 2391 open cluster all have motions directed toward a single convergent point. Color-magnitude diagrams and comparisons to available isochrones suggested a bimodal age distribution, with one subgroup at $\sim 80 \mathrm{Myr}$ and the other at ~ 250 Myr. Further comments on this kinematic group can be found in Eggen $(1992,1995)$.

Montes et al. (2001b) reassessed previously proposed members of the IC 2391 supercluster and searched for new late-type candidates using updated astrometry, photometry, and spectroscopy. After adopting a cluster age of 35-55 Myr from Eggen (1995), only 15 stars met their kinematic criteria. Maldonado et al. (2010) used similar techniques to search for new members of several proposed kinematic groups, including the IC 2391 supercluster. In addition to compiling literature data, they performed follow-up spectroscopy to measure radial velocities and stellar age indicators. They found that when strict kinematic and age criteria were employed, only 5 of 19 candidates remained as probable members. Furthermore, they caution that the supercluster may have two subgroups mixed in the $U V$ velocity plane, one with an age of $\sim 200-300 \mathrm{Myr}$, and an older, $\sim 700 \mathrm{Myr}$ component (López-Santiago et al. 2010).

Unfortunately, much of the existing literature disputes the physical reality of a coeval IC 2391 supercluster. Strict kinematic and age requirements give a sample with as few as five members, while the proposed ages for members vary by up to a factor of ~ 20. We therefore consider claimed IC 2391 supercluster membership as a poor determinant of age and defer to each individual star's age indicators.

3.7. The Local Association

Eggen first noticed that several open clusters had galactic kinematics similar to the Pleiades (the Pleiades group). Eggen later identified more stars with similar kinematics, and proposed the Local Association (Eggen 1975, 1983a, 1983b). This kinematic stream included classical clusters such as the Pleiades, α Persei, and Scorpius-Centaurus, along with more than 100 other stars in a large volume of space around the Sun. The age of the stream was not well-defined, and subsequently spanned the estimated age ranges of its constituent clusters (~ 20 to $\sim 150 \mathrm{Myr}$).

Jeffries \& Jewell (1993) studied the kinematics of X-ray and EUV selected late-type stars within 25 pc to identify more than

10 candidate members of the Local Association. A follow-up survey measured lithium abundances and rotational velocities (Jeffries 1995). Seventeen of their late-type candidates had age indicators and kinematics consistent with the Local Association. Montes et al. (2001a, 2001b) used similar techniques to search for new members, identifying seven stars with spectroscopic youth indicators out of 45 previously proposed candidates.

Although the proposed members of the Local Association do have similar galactic motions, the dispersion in $U V W$ velocities is quite large $\left(\sim 20 \mathrm{~km} \mathrm{~s}^{-1}\right)$, the ages of constituent stars vary by $\sim 100 \mathrm{Myr}$, and the members are spread out over $\sim 150 \mathrm{pc}$. These features disfavor a common origin of the association, and in fact, many of the younger (and much better-defined) MGs have ages and kinematics placing them within the bounds of the Local Association. We therefore do not use Local Association membership to infer a star's age, relying instead on individual members' other age indicators.

3.8. The Tucana-Horologium Association

Zuckerman \& Webb (2000) searched the Hipparcos catalog in the neighborhoods of a few dozen stars with $60 \mu \mathrm{~m}$ IRAS excesses, selecting targets with distances and proper motions similar to those of the infrared sample. Follow-up spectroscopy of these candidates led to the discovery of the Tucanae association, a well-defined kinematic group of stars $\sim 45 \mathrm{pc}$ from the Sun with an age of about 40 Myr . Nearly simultaneously, Torres et al. (2000) searched for kinematically similar, X-ray bright stars near the active star EP Eri. Spectroscopic follow-up of active candidates revealed about 10 stars with very similar kinematics and spectroscopic youth indicators. These stars, comprising the Horologium association, had an isochronal age of $\sim 30 \mathrm{Myr}$ and distances of $\sim 60 \mathrm{pc}$. Since the Tucanae and Horologium associations have similar kinematics and the same estimated age, they were later merged to form the Tucana-Horologium association (Zuckerman et al. 2001).

Zuckerman \& Song (2004) listed 31 proposed members of Tucana-Horologium. Torres et al. (2008) identified 13 additional members in their SACY survey, bringing the total to 44 . In the same review, Torres et al. associated Tucana-Horologium with two more recently discovered associations of similar age-Columba (see Section 3.4) and Carina-and suggested that these three groups together form a large complex of young stars (the Great Austral Young Association). Zuckerman et al. (2011) proposed several new members, including the first at northern declinations. Malo et al. (2013) have also presented a list of high-probability, low-mass candidate members. The value of these new candidates is exemplified by the recent imaging discovery of a very novel triple system comprised of two late M-dwarf Tucana-Horologium candidates and a 12-14 M_{J} substellar companion (Delorme et al. 2013).

The Tucana-Horologium association is one of the beststudied nearby young groups. Most of its proposed members are spatially and kinematically well-defined with little scatter in velocity space. An age of $\sim 30 \mathrm{Myr}$ is consistently derived for its members; we adopt $30_{-20}^{+10} \mathrm{Myr}$ (Zuckerman et al. 2001) as the age of the group.

3.9. The TW Hydrae Association

The TW Hydrae association, proposed by Kastner et al. (1997), was the first very young MG to be discovered. Early work by Rucinski \& Krautter (1983) demonstrated that the nearby star TW Hya exhibited classical T-Tauri properties. The
release of the IRAS point source catalog (Helou \& Walker 1988) led to spectroscopic surveys of field stars with mid-IR excesses (de la Reza et al. 1989; Gregorio-Hetem et al. 1992). These surveys identified four additional T-Tauri stars near TW Hya, and suggested that they may be members of a nearby T-Tauri association. Kastner et al. (1997) later confirmed the five stars' common age by their strong X-ray emission and lithium absorption.

Webb et al. (1999) surveyed X-ray bright targets near TW Hydrae to identify additional members of the group. Subsequent surveys and analyses have since brought the number of proposed members to about 30 (Zuckerman et al. 2001b; Gizis 2002; Reid 2003; Torres et al. 2003, 2008; Zuckerman \& Song 2004; Mamajek 2005; Barrado y Navascués 2006). One notable member is 2 M 1207 , a young brown dwarf with a directly imaged planetary mass companion (Chauvin et al. 2004). The age of the association has been determined using many different methods, including H-R diagram placement, $\mathrm{H} \alpha$ diagnostics, lithium depletion, and kinematics; the most commonly cited age is ~ 8 Myr.
More recent work on the TW Hydrae association has focused on identifying new, low-mass members. Looper et al. (2007, 2010a, 2010b) identified three late M type members, two of which host accretion disks. Rodriguez et al. (2011) and Shkolnik et al. (2011) used UV excesses as observed by the GALEX satellite to select low-mass candidate members, while Schneider et al. (2012) used IR excesses measured by the WISE satellite. Parallaxes for many proposed members were measured by Weinberger et al. (2013), who found that the association resembles an extended filament with an average member distance of 56 pc . These distance measurements enable precise $\mathrm{H}-\mathrm{R}$ diagram placement and comparison to model isochrones. A Gaussian fit to the isochrone-based age distribution provides a mean age of $9.5 \pm 5.7 \mathrm{Myr}$.

Despite the extensive study of the classical young association, TW Hydrae's evolution and membership are still being refined. Searches for new members continue (e.g., Malo et al. 2013), and may eventually lead to a complete census of this youngest and closest association. For our analyses, we adopt an age of $10 \pm 5 \mathrm{Myr}$ for the group.

3.10. The Ursa Major or Sirius Supercluster

The literature is rich with references to a kinematic association of stars related to the constellation Ursa Major, first introduced in the 19th century by Proctor (1869). A complete history of these stars is beyond the scope of this paper; however, we do mention prominent studies and refer the reader to references found therein for a complete review. We aim to establish in this subsection a distinction between the coeval Ursa Majoris MG and a dynamical stream of stars with generally consistent kinematics but heterogeneous ages known as the Ursa Major or Sirius supercluster.
The most modern and comprehensive study of the Ursa Majoris MG is King et al. (2003), which reevaluated previously proposed members using new astrometry, photometry, and spectroscopy. From an input list of ~ 220 proposed Ursa Majoris candidates compiled from various sources, King et al. identified 57 probable and possible members that are well defined in kinematic and color-magnitude space. Comparison of evolution models to the color-magnitude diagram of their refined membership list suggests an age of $500 \pm 100 \mathrm{Myr}$ for the group. Shkolnik et al. (2012) later identified four additional candidate M-dwarf members. Since the Ursa Majoris MG

Figure 1. Distances, spectral types, and host moving group for our target sample. One star, HIP 78557 (spectral type G0), has a trigonometric distance of $82 \pm 10 \mathrm{pc}$, placing it outside of the plot. Fifty-one of our 63 targets are within 50 pc , and all but 3 are within 60 pc , while their spectral types range from late B to early M.
(A color version of this figure is available in the online journal.)
contains a well defined nucleus with small velocity dispersions and is well characterized in a color-magnitude diagram, the estimated age of the group can be reliably applied to stars that meet membership criteria.

The Sirius supercluster was originally proposed as a remnant kinematic stream associated with the Ursa Majoris MG nucleus by Eggen (1958). Further members were proposed by Palous \& Hauck (1986), who estimated an isochronal age of $\sim 490 \mathrm{Myr}$ and proposed that the stars are chemically homogeneous. Famaey et al. $(2005,2008)$ present modern analyses of the proposed Sirius supercluster and other superclusters associated to well defined, coeval associations (Hyades, Pleiades) using new Hipparcos and Tycho-2 astrometry and radial velocity data from the CORAVEL spectrometer. Their analyses find that kinematically consistent members of the proposed superclusters do not have consistent isochronal ages. They propose that these structures in kinematic space are stellar streams likely generated by dynamical perturbations and are comprised of stars with heterogeneous ages that were not products of the same star formation event. Thus, kinematic membership to the Ursa Major or Sirius supercluster, in contrast to the well defined Ursa Majoris MG, is not useful as a stellar age indicator. We therefore do not assign the proposed supercluster age to the possible member we observed (HIP 73996) but rather rely on an individually assigned age from our own and literature measurements.

3.11. Target List and Selection Criteria

Table 1 lists the SEEDS MGs targets in order of right ascension. Figure 1 shows the targets' distances and spectral types. Fifty-one out of 63 targets are within 50 pc , and all but 3 are within 60 pc . The spectral types of the main MG sample vary from late F to early M , equivalent to a range of roughly $0.4-1.3 M_{\odot}$. We also list five stars, HIP 23362, HIP 32104, HIP 83494, HIP 93580, and HIP 116805 ($=\kappa$ And), which are more massive A and early B stars selected for the high-
mass star sample, but which have been suggested to belong to young MGs.

The main SEEDS MG targets were selected according to the following criteria, in order of priority:

1. identification with a young MG $(\lesssim 500 \mathrm{Myr}$, with younger targets preferred),
2. proximity to Earth,
3. mass $\left(\sim 1 M_{\odot}\right.$ preferred),
4. lack of a close binary companion,
5. lack of archival high-contrast observations,
6. R-magnitude <12 (for AO performance),
7. declination $>-25^{\circ}$,
8. field rotation in one hour of observing time,
9. H-magnitude $\gtrsim 5$ (to limit saturation),
10. high Galactic latitude (to limit chance alignments).

Targets were proposed before each observing run and observed as permitted by conditions and priorities for other SEEDS categories.

4. OTHER AGE INDICATORS

The most reliable age dating methods rely on coeval associations of stars, such as kinematic MGs or globular clusters. The members of such a coeval association may be placed on a color-magnitude diagram where isochrones of single stellar populations offer extremely reliable age estimates. Unfortunately, many stars in our sample (and a much larger fraction of other high-contrast imaging surveys) are not reliable members of a coeval association. For the sample presented here, we consider AB Dor, β Pic, Columba, Tuc-Hor, TW Hydrae, and Ursa Majoris as coeval associations (see Section 3). We rely on the age indicators described below to assign ages to the stars in Castor, Hercules-Lyra, IC 2391, and the Local Association.

All of these single star age indicators rely to some degree on stellar convection and rotation. Late F-type and later stars have large convective zones, where stellar dynamos generate substantial magnetic fields from differential rotation (Parker 1955; Glatzmaier 1985) and power vigorous chromospheric and coronal activity. As a star ages, its magnetized wind carries away angular momentum, and the stellar rotation and magnetically powered activity gradually decrease. Convection also carries material from the stellar surface down into the hotter interior, where fragile elements and isotopes like ${ }^{7} \mathrm{Li}$ are destroyed.

We discuss five individual age indicators in the following sections: chromospheric activity traced by Ca II HK emission, coronal activity traced by X-rays, stellar rotation, photospheric lithium abundance, and isochrone fitting. These indicators have been studied extensively and calibrated using coeval stellar clusters and associations.

4.1. Chromospheric Activity

The stellar chromosphere is a low-density region above the photosphere containing a strong temperature inversion. Magnetic reconnection is believed to be responsible for heating the chromosphere, which is visible as an emission line spectrum superimposed on the photosphere's continuum and absorption lines (Wilson 1963). The chromospheric emission lines are much narrower and fainter than the corresponding photospheric absorption lines. Two of the stronger lines are $\mathrm{CaII}_{\mathrm{H}} \mathrm{H}$ and K at $3968 \AA$ and $3934 \AA$, with the chromospheric emission line strengths often parameterized by R_{HK}^{\prime}, which is the ratio of

Table 1
The SEEDS Moving Group Target List: Basic Stellar Properties

Designations			Other	$\begin{gathered} \alpha(\mathrm{J} 2000)^{\mathrm{a}} \\ (\mathrm{~h} \mathrm{~m} \mathrm{~s}) \end{gathered}$	$\begin{gathered} \hline(\mathrm{J} 2000)^{\mathrm{a}} \\ \left({ }^{\circ},{ }^{\prime} \prime \prime\right) \end{gathered}$	Distance ${ }^{\text {a }}$ (pc)	Spectral Type ${ }^{\text {b }}$	$\begin{gathered} \hline V^{\mathrm{c}} \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} H^{\mathrm{d}} \\ (\mathrm{mag}) \end{gathered}$	Moving Group
HIP	HD	GJ								
544	166	5	V439 And	000636.8	+29 0117	13.7 ± 0.1	G8V (1)	6.06	4.63	Her Lya
1134	984			001410.3	-071157	47.1 ± 1.1	F7V (2)	7.32	6.17	Columba
			FK Psc	002334.7	+20 1429	$59.7 \pm 1.6^{\text {e }}$	K7.5V (3)	10.84	7.50	β Pic
3589	4277		BD+54 144	004550.9	+545840	52.5 ± 2.5	F8V ${ }^{\text {f }}$	7.81	6.40	AB Dor
4979	6288A		26 Cet	010349.0	+012201	60.1 ± 1.5	A8IV (2)	6.07	5.51	IC 2391
6869	8941	\ldots		012824.4	+170445	53.8 ± 1.6	F8IV-V (4)	6.60	5.40	IC 2391
			HS Psc	013723.2	+265712	$38.5{ }^{\text {e }}$	K5Ve (5)	10.72	7.78	AB Dor
10679	14082B		BD+28 382B	021724.7	+284430	27.3 ± 4.4	G2V ${ }^{\text {f }}$	7.76	6.36	β Pic
			BD+30 397B	022728.0	+305841	40.0 ± 3.6	M0 (6)	12.44	8.14	β Pic
11437	\ldots		AG Tri	022729.3	+305825	40.0 ± 3.6	K7V (7)	10.08	7.24	β Pic
12545			BD+05 378	024125.9	+05 5918	42.0 ± 2.7	K6Ve (8)	10.20	7.23	β Pic
12638	16760			024221.3	+383707	45.5 ± 4.9	G2 ${ }^{\text {f }}$	8.77	7.10	AB Dor
12925	17250		BD+04 439	024614.6	+053533	54.3 ± 3.1	F8 ${ }^{\text {f }}$	7.88	6.63	Tuc-Hor
17248	...			034137.3	+551307	35.2 ± 2.7	M0.5 (9)	11.20	7.65	Columba
23362	32309		HR 1621	050125.6	-20 0307	60.7 ± 0.9	B9V (10)	4.88	5.02	Columba
25486	35850		AF Lep	052704.8	-115403	27.0 ± 0.4	F8V (11)	6.30	5.09	β Pic
	36869		AH Lep	053409.2	-151703	$35.0 \pm 8.7^{\mathrm{g}}$	G2V (10)	8.45	6.98	Columba
29067	...	9198		060755.3	+675837	24.5 ± 1.1	K6V (1)	9.74	6.81	Castor
30030	43989	...	V1358 Ori	061908.1	-032620	49.2 ± 2.0	G0V (2)	7.95	6.59	Columba
32104	48097	...	26 Gem	064224.3	+173843	43.6 ± 1.3	A2V (12)	5.22	5.07	Columba
			V429 Gem	072343.6	+202459	$25.8 \pm 4.0^{\text {h }}$	K5V (13)	10.03	7.03	AB Dor
37288	...	281		073923.0	+02 1101	14.6 ± 0.3	K7 (14)	9.66	6.09	Her Lya
39896	\ldots	1108A	FP Cnc	080856.4	+324911	20.7 ± 1.4	K7 (14)	9.99	6.58	Columba
40774			V397 Hya	081919.1	+012020	22.9 ± 0.7	G5V ${ }^{\text {f }}$	8.35	6.22	IC 2391
44526	77825		V405 Hya	090420.7	-155451	28.3 ± 0.6	K3V (11)	8.78	6.54	Castor
45383	79555	339		091453.7	+04 2634	18.0 ± 0.5	K3V (1)	7.96	5.40	Castor
46843	82443	354.1	DX Leo	093243.8	+265919	17.8 ± 0.2	K1V (11)	7.06	5.24	Columba
50156	...	2079	DK Leo	101419.2	+210430	23.1 ± 1.0	M0.7V (15)	10.13	6.45	Columba
		388	AD Leo	101936.3	+195212	4.7 ± 0.1	M3 (14)	9.46	4.84	Castor
50660			NLTT 24062	102045.9	+322354	47.1 ± 2.9	K0V ${ }^{\text {f }}$	9.18	7.38	IC 2391
51317		393	LHS 2272	102855.6	+005028	7.1 ± 0.1	M2.5V (16)	9.59	5.61	AB Dor
53020		402	EE Leo	105052.0	+064829	6.8 ± 0.2	M5.0V (16)	11.68	6.71	Her Lya
53486	94765	3633	GY Leo	105630.8	+072319	17.3 ± 0.3	K2.5V (1)	7.37	5.35	Castor
	95174			105938.3	+25 2615	$22.6 \pm 2.0^{\text {e }}$	K2 (17)	8.46	5.96	β Pic
54155	96064		HH Leo	110441.5	-041316	26.3 ± 0.7	G8V (1)	7.60	5.90	Loc. Ass.
			TWA 2	110913.8	-30 0140	$46.5 \pm 2.8^{\text {i }}$	M2Ve (8)	11.12	6.93	TW Hya
			TYC 3825-716-1	112050.5	+541009	$57.9 \pm 5.5^{\text {e }}$	K7 (18)	12.14	8.69	AB Dor
59280	105631	3706	G 123-7	120937.3	+40 1507	24.5 ± 0.4	G9V (1)	7.46	5.70	IC 2391
			TYC 4943-192-1	121518.4	-023728	$30.2 \pm 2.6^{\text {h }}$	M0Ve (5)	11.34	8.00	AB Dor
60661	...	466		122558.6	+08 0344	37.4 ± 3.2	M0V (19)	10.29	7.31	Loc. Ass.
63317	112733	...		125832.0	+381644	44.2 ± 2.7	K0V (19)	8.64	6.95	Loc. Ass.
			FH CVn	132712.1	+45 5826	$46.0 \pm 4.3{ }^{\text {e }}$	K7 (18)	11.16	8.20	AB Dor
66252	118100	517	EQ Vir	133443.2	-08 2031	20.2 ± 0.3	K4.5V (1)	9.25	6.31	IC 2391
67412	120352	...		134858.2	-013535	37.7 ± 1.8	G8V (2)	8.51	6.89	IC 2391
73996	134083	578	c Boo	150718.1	+245209	19.6 ± 0.1	F5V (1)	4.93	4.01	UMa
78557	143809		BD+04 3100	160222.4	+03 3907	82 ± 10	G0V (2)	8.77	7.52	Loc. Ass.
82688	152555			165408.1	-042025	46.7 ± 2.0	F8/G0V (2)	7.82	6.48	AB Dor
83494	154431		HR 6351	170353.6	+34 4725	55.0 ± 0.9	A5V (12)	6.08	5.68	Tuc-Hor
87579	\ldots	697	\ldots	175329.9	+211931	24.4 ± 0.6	K2.5V (1)	8.50	6.30	Castor
87768	...	698	\ldots	175544.9	+183001	25.0 ± 1.3	K5V (1)	9.24	6.42	Loc. Ass.
91043	171488		V889 Her	183420.1	+184124	38.0 ± 0.9	G0V (4)	7.40	5.90	Loc. Ass.
93580	177178		HR 7214	190332.3	+014908	54.9 ± 0.9	A4IV/V (2)	5.82	5.36	AB Dor
	\ldots		BD+05 4576	203954.6	+0620 12	$38.5{ }^{\text {e }}$	K7Ve (5)	10.52	7.35	AB Dor
102409	197481	803	AU Mic	204509.5	-312027	9.9 ± 0.1	M1Ve (8)	8.76	4.83	β Pic
...	201919			211305.3	-172913	$39^{\text {e }}$	K6Ve (8)	10.43	7.75	AB Dor
107350	206860	9751	HN Peg	214431.3	+144619	17.9 ± 0.1	G0V (11)	5.95	4.60	Her Lya
	...		TYC 2211-1309-1	220041.6	+271514	$45.6 \pm 1.6^{\text {e }}$	M0Ve (3)	11.37	7.95	β Pic
111449	213845	863.2	LTT 9081	223441.6	-20 4230	22.7 ± 0.1	F5V (11)	5.21	4.27	Her Lya
114066	\ldots	9809		230604.8	+635534	24.5 ± 1.0	M0.3V (15)	10.92	7.17	AB Dor
115162	\ldots	...	BD+41 4749	231939.6	+421510	50.2 ± 2.9	G8V (20) ${ }^{\text {j }}$	8.93	7.28	AB Dor
			BD-13 6424	233230.9	-12 1551	$27.3 \pm 0.4^{\text {e }}$	M0Ve (8)	10.69	6.77	β Pic
116805	222439	\ldots	κ And	234024.5	+442002	51.6 ± 0.5	B9IVn (21)	4.13	4.60	Columba

Table 1
(Continued)

Notes.

${ }^{\text {a }}$ Position and parallax from the Hipparcos catalog (van Leeuwen 2007) unless otherwise noted.
${ }^{\text {b }}$ References: (1) Gray et al. 2003; (2) Houk \& Swift 1999; (3) Lépine \& Simon 2009; (4) White et al. 2007; (5) Schlieder et al. 2010; (6) Zuckerman \& Song 2004; (7) Torres et al. 2008; (8) Torres et al. 2006; (9) Zuckerman et al. 2011; (10) Houk \& Smith-Moore 1988; (11) Gray et al. 2006; (12) Abt \& Morrell 1995; (13) Reid et al. 2004; (14) Reid et al. 1995, Hawley et al. 1996; (15) Shkolnik et al. 2009; (16) Jenkins et al. 2009; (17) Scholz et al. 2005; (18) Schlieder et al. 2012b; (19) López-Santiago et al. 2010; (20) Ofek 2008; (21) Wu et al. 2011.
${ }^{c}$ Values taken from the Tycho-2 catalog (Høg et al. 2000) and converted to Johnson V, with the following exceptions: BD + 30 397B (Weis 1993); HIP 53020 (Landolt 1992).
${ }^{\text {d }}$ Values taken from the 2MASS catalog (Cutri et al. 2003).
${ }^{\mathrm{e}}$ Kinematic distance assuming group membership. References: FK Psc, TYC 2211-1309-1, BD-13 6424 (Lépine \& Simon 2009); HS Psc, BD+05 4576 (Schlieder et al. 2010); HD 95174, TYC 3825-716-1, FH CVn (Schlieder et al. 2012b); HD 201919 (Torres et al. 2008).
${ }^{\mathrm{f}}$ Spectral type listed (but unsourced, or sourced as SIMBAD) in the Hipparcos catalog.
${ }^{\mathrm{g}}$ This Tycho parallax (Høg et al. 2000) is far below the distance inferred from spectroscopy (59 pc , Zuckerman et al. 2011), and may be unreliable.
${ }^{\mathrm{h}}$ Spectroscopic parallax. References: V429 Gem (Reid et al. 2004); TYC 4943-192-1 (Agüeros et al. 2009).
${ }^{\text {i }}$ Trigonometric parallax from Weinberger et al. (2013).
${ }^{\mathrm{j}}$ Spectral type also discussed in this work.
the flux in the emission line cores to that in the underlying photospheric continuum (Noyes et al. 1984).

Chromospheric activity has long been known to correlate with stellar age on the main sequence; it is dramatically stronger in young clusters than in the Sun and local field stars (Wilson 1963). Multi-decade observations (Baliunas et al. 1996) have provided activity measurements for hundreds of stars in welldated young clusters and (presumably coeval) binaries, enabling the calibration of R_{HK}^{\prime} as an age indicator for young stars. Mamajek \& Hillenbrand (2008), hereafter MH08, have recently re-calibrated R_{HK}^{\prime} as an age indicator. They find the tightest correlation by first using chromospheric activity to estimate the Rossby number Ro, the ratio of the rotational period to the convective overturn timescale, and then using the Rossby number and $B-V$ color to infer an age. Practically, this means that the estimated age is a function of both activity and color (i.e., mass). Omitting uncertainties in the fitted parameters and combining Equations (4) and (12)- (14) from MH08, we have

$$
\begin{equation*}
\frac{\tau}{\mathrm{Myr}} \approx\left(\frac{\tau_{C}\left[0.808-2.966\left(\log R_{\mathrm{HK}}^{\prime}+4.52\right)\right]}{0.407(B-V-0.495)^{0.325}}\right)^{1.767} \tag{1}
\end{equation*}
$$

where τ_{C} is the convective overturn timescale, and is related to $B-V$ color by Equation (4) in Noyes et al. (1984):

$$
\begin{equation*}
\log \tau_{C}=1.362-0.166 x+0.025 x^{2}-5.323 x^{3} \tag{2}
\end{equation*}
$$

with $x \equiv 1-(B-V)$ and $x>0$ (spectral type mid K or earlier). For $x<0$ (late K and M stars), the fit is

$$
\begin{equation*}
\log \tau_{C}=1.362-0.14 x \tag{3}
\end{equation*}
$$

Equation (1) applies to "active" stars with $-5.0<\log R_{\mathrm{HK}}^{\prime}<$ -4.3 . While nearly every star in the SEEDS MG sample with archival R_{HK}^{\prime} data satisfies this minimum activity level, many are too active for Equation (1) to provide an accurate age estimate. Further, this relation requires $B-V \geqslant 0.5$ (spectral type late F or later), and is poorly calibrated for $B-V \gtrsim 1$. For some SEEDS targets, chromospheric activity provides only an upper limit on the age, while for others that do not satisfy the color criterion, chromospheric activity is of little value as an age indicator.

MH08 estimate the scatter about Equation (1) using both field binaries and well-dated clusters with ages ranging from 5 Myr to 4 Gyr. For stars in the "active" regime with multi-decade R_{HK}^{\prime}
data, they estimate a scatter of 0.10 in Rossby number Ro, while for single-epoch chromospheric measurements, they estimate a scatter of 0.16 . We use multi-epoch data wherever possible. While only one of our targets (HIP 107350) has multi-decade Mt. Wilson data, many have several epochs from Isaacson \& Fischer (2010). For targets with more than one single-epoch HK value (but no multi-epoch data), we take the median of the literature values. In two cases, We expect our precision to be somewhat better than is reflected in a scatter of 0.16 in Ro; however, we provisionally adopt an uncertainty of 0.16 for all but the Mt. Wilson data. Very active stars with $R_{\mathrm{HK}}^{\prime}>-4.3$ have much larger uncertainties. We assign these targets only upper limits on age, using a uniform probability distribution between 0 and the minimum age accessible to chromospheric activity measurements.

We compile chromospheric activity measurements from a wide variety of sources, using the relations given in Noyes et al. (1984) to transform all onto the Mt. Wilson system. For two stars, HIP 40774 and HIP 50660, the original reference (Strassmeier et al. 2000) used different units, which were recently calibrated and transformed onto the Mt. Wilson system (Pace 2013). All of our literature R_{HK}^{\prime} values are listed in Table 2.

4.2. X-Ray Activity

X-ray activity presents a similar measure of magnetic activity, though this emission comes from the high-temperature stellar corona. While the coronal heating mechanism remains uncertain and presents formidable modeling challenges (Klimchuk 2006), it almost certainly involves the deposition of magnetic energy, either from reconnection events (e.g., Parker 1988; Masuda et al. 1994) or the dissipation of magento-acoustic and/or Alfvén waves (e.g., Heyvaerts \& Priest 1983; Davila 1987). As with chromospheric activity, X-ray activity declines as a star ages and loses angular momentum (Hempelmann et al. 1995).

X-ray activity is typically measured as the ratio of a star's X-ray flux (within the $0.1-2.4 \mathrm{keV}$ ROSAT bandpass; Voges et al. 1999, with a hardness correction) to its bolometric flux. We use the formula given in Schmitt et al. (1995):

$$
\begin{equation*}
F_{\mathrm{X}}=(5.30 \mathrm{HR}+8.31) \mathrm{CR} \times 10^{-12} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \tag{4}
\end{equation*}
$$

where the CR is the count rate and HR is the ratio of the difference in CR between the hard $(0.52-2.1 \mathrm{keV})$ and soft

Table 2
The SEEDS Moving Group Target List: Age Indicators

Name	Moving Group	Group References ${ }^{\text {a }}$	$\log R_{\mathrm{HK}}^{\prime}{ }^{\mathrm{b}}$	$\log R_{\mathrm{X}}{ }^{\text {c }}$	Li EW (mÅ)		$\begin{gathered} P_{\text {rot }} \\ \text { (days) } \end{gathered}$	Activity/Rotation References ${ }^{\text {a }}$
					Lit	APO		
HIP 544	Her Lya	1, 2	-4.38	-4.22	75	92	6.23	13, 15, 16
HIP 1134	Columba	3	-4.42	-4.18	99	128	...	3, 15, 17, 18
FK Psc	$\ldots{ }^{\text {d }}$	4/5	...	-3.35	7.7	19
HIP 3589	AB Dor	6	...	-3.87	199	11
HIP 4979	IC 2391	7	...	-5.46	. .	\ldots	\ldots	...
HIP 6869	IC 2391	7	-4.76	-4.89	5	18	\ldots	17, 18
HS Psc	AB Dor	8	...	-3.08	90	. .	1.09	20, 21
HIP 10679	β Pic	6	-4.37	$-3.84{ }^{\text {B }}$	160	168	...	11, 17
BD+30 397B	β Pic	9	...	$-2.55^{\text {B }}$	110	11
HIP 11437	β Pic	6	...	$-2.98{ }^{\text {B }}$	220	252	13.7	11, 21
HIP 12545	β Pic	6	...	$-2.98{ }^{\text {B }}$	450	436	1.25	11, 19
HIP 12638	AB Dor	6	-4.92	-3.90	158	11, 15
HIP 12925	Tuc-Hor	3	...	-4.26	145	144	...	3
HIP 17248	Columba	3	. . .	-3.36	\ldots	3
HIP 23362	Columba	3	...	<-6.28	\cdots	\cdots	...	\ldots
HIP 25486	β Pic	6, 9	-4.27	-3.46	191	154	\ldots	11, 15
HD 36869	Columba	3, 5	. . .	-3.47	204	210	1.31	3, 22
HIP 29067	Castor	7,10	-4.43	<-4.48	38	10, 15, 23, 24, 25
HIP 30030	.$^{\text {d }}$	5/9/11	-4.18	-3.61	170	164	1.15	11, 15, 22
HIP 32104	Columba	3	...	-5.57	1,
V429 Gem	AB Dor	6	-4.2	-3.37	105	122	2.80	11,19, 26
HIP 37288	Her Lya	2	-4.67	<-4.74	43	10, 23
HIP 39896	Columba	5/7	-4.05	-3.13	. .	25	3.37	13, 27
HIP 40774	IC 2391	7	-4.45	<-4.55	\ldots	17	...	28
HIP 44526	Castor	7	-4.36	-4.02	\cdots	58	8.64	29, 30
HIP 45383	Castor	10	-4.41	-3.97	9	10, 17, 23, 24, 25
HIP 46843	Columba ${ }^{\text {d }}$	5/7	-4.21	-3.84	176	188	5.38	10, 13, 31, 32
HIP 50156	Columba ${ }^{\text {d }}$	5/12	-3.96	-3.39	7.98	13, 33
GJ 388	Castor	13	-4.17	-3.10	\ldots	\ldots	2.23	15, 34, 35
HIP 50660	IC 2391	7	-4.60	<-4.35	28
HIP 51317	AB Dor	3, 5	-5.01	-5.18	15
HIP 53020	Her Lya	2	-5.29	<-4.36	...	\ldots	...	15
HIP 53486	Castor	7	-4.48	-4.50	\ldots	19	11.43	15, 30
HD 95174	β Pic	14	...	$<-4.54{ }^{\text {B }}$	\cdots	3	...	, ..
HIP 54155	Loc. Ass.	7	-4.35	-3.63	104	114	...	10, 24, 25, 36
TWA 2	TW Hya	6	...	$-3.26{ }^{\text {B }}$	535	...	4.86	11, 19
TYC 3825-716-1	AB Dor	14	...	-3.28	...	36
HIP 59280	IC 2391	7,10	-4.65	-5.13	26	18	...	10, 15, 17
TYC 4943-192-1	AB Dor	8	.	-3.45	8
HIP 60661	Loc. Ass.	7	-4.82	<-4.33	...	\ldots	\ldots	13
HIP 63317	Loc. Ass.	13	-4.19	-3.56	94	106	\ldots	2, 13
FH CVn	AB Dor	14	...	-3.15	.		2.17	14, 27
HIP 66252	IC 2391	7, 10	-3.89	-3.12	65	47	3.9	25, 33
HIP 67412	IC 2391	7	-4.64	-5.00	...	15	...	37
HIP 73996	UMa ${ }^{\text {d }}$	7/10	-4.38	-5.33	\ldots	20	\ldots	15
HIP 78557	Loc. Ass.	13	-4.20	-4.60	103	\ldots	\ldots	13
HIP 82688	AB Dor	5, 6	-4.29	-4.18	133	137	...	11, 15
HIP 83494	Tuc-Hor ${ }^{\text {d }}$	3/5	\ldots	<-6.01	...	\ldots	\cdots	, ..
HIP 87579	Castor	13	-4.44	-4.70	\ldots	\ldots	\ldots	13, 17, 24, 25, 38
HIP 87768	Loc. Ass.	7	-4.27	-4.72	7	13, 24, 39
HIP 91043	Loc. Ass.	7	-4.21	-3.30	208	\ldots	1.34	13, 18, 40
HIP 93580	AB Dor	3, 5	...	-5.21	...	\ldots
BD+05 4576	AB Dor	8	\ldots	-3.94	...	\ldots	\ldots	...
HIP 102409	β Pic	9	-4.11	-2.86	80	\ldots	4.85	11, 15, 19
HD 201919	AB Dor	6	.	-3.49	20	\ldots	4.92	11, 19
HIP 107350	Her Lya	1,2	$-4.42^{\text {MW }}$	-4.39	115	102	4.74	13, 31, 41
TYC 2211-1309-1	β Pic	4	.	-3.11	<40	...	0.476	19, 20
HIP 111449	Her Lya	2	-4.53	-5.03	36, 42
HIP 114066	AB Dor	6	...	-3.03	30	...	4.50	43, 44
HIP 115162	AB Dor	6	-4.22	-4.22	160	161	...	25, 43
BD-13 6424	β Pic	6	.	-3.05	185	184	5.68	11, 19
HIP 116805	Columba	3	\ldots	<-6.59	\cdots

Table 2
(Continued)

Notes.
${ }^{\text {a }}$ References: (1) Fuhrmann 2004; (2) López-Santiago et al. 2006; (3) Zuckerman et al. 2011; (4) Lépine \& Simon 2009; (5) Malo et al. 2013; (6) Torres et al. 2008; (7) Montes et al. 2001b; (8) Schlieder et al. 2010; (9) Zuckerman \& Song 2004; (10) Maldonado et al. 2010; (11) da Silva et al. 2009; (12) Schlieder et al. 2012a; (13) López-Santiago et al. 2010; (14) Schlieder et al. 2012b; (15) Isaacson \& Fischer 2010; (16) Gaidos et al. 2000; (17) Wright et al. 2004; (18) White et al. 2007; (19) Messina et al. 2010; (20) McCarthy \& White 2012; (21) Norton et al. 2007; (22) Messina et al. 2001; (23) Duncan et al. 1991; (24) Gray et al. 2003; (25) Martínez-Arnáiz et al. 2010; (26) Hernán-Obispo et al. 2010; (27) Hartman et al. 2011; (28) Pace 2013; (29) Arriagada 2011; (30) Strassmeier et al. 2000; (31) Baliunas et al. 1996; (32) Messina et al. 1999; (33) Torres et al. 1983; (34) Cincunegui et al. 2007; (35) Hunt-Walker et al. 2012; (36) Schröder et al. 2009; (37) Jenkins et al. 2011; (38) Soderblom 1985; (39) Favata et al. 1993; (40) Henry et al. 1995; (41) Frasca et al. 2000; (42) Gray et al. 2006; (43) Zuckerman et al. 2004; (44) Koen \& Eyer 2002.
b Values marked with "MW" are from multi-decade Mt. Wilson measurements.
${ }^{\text {c }}$ Values or approximate upper limits from the ROSAT All Sky Survey (Voges et al. 1999, 2000; Hünsch et al. 1999). See Section 4.2 for details.
${ }^{\mathrm{d}}$ References disagree on membership. See section on individual stars for details.
($0.1-0.41 \mathrm{keV}$) channels to the total CR. For targets not detected by ROSAT, we estimate upper limits on their X-ray fluxes using the exposure time of the nearest detected source (usually ~ 0.5) in the faint source catalog (Voges et al. 2000), requiring no more than nine expected photons, and assuming a hardness ratio of 0 (roughly the mean of our sample). A source with nine expected photons would have a $\sim 90 \%$ probability of producing at least six detected photons, the minimum required for inclusion in the ROSAT catalog. Combined with a small correction for background subtraction and some uncertainty in the hardness ratio, these F_{X} values should be considered approximate upper limits.
The indicator R_{X} is F_{X} normalized to a star's bolometric flux. For G and earlier stars, we convert the V magnitudes in Table 1 to bolometric fluxes using the relations derived in Flower (1996) -these were originally misprinted and have been corrected in, e.g., Torres (2010). These bolometric corrections are not valid for M stars; we therefore adopt the bolometric correction of Kenyon \& Hartmann (1995), which uses V, J, and K-band magnitudes, for K and M dwarfs, adjusting the zeropoint of the correction scale accordingly (Torres 2010).

As for chromospheric activity, MH08 have calibrated an X-ray/color/age relation, equivalent to

$$
\begin{equation*}
\frac{\tau}{\mathrm{Myr}} \approx\left(\frac{\tau_{C}\left[0.86-0.79\left(\log R_{\mathrm{X}}+4.83\right)\right]}{0.407(B-V-0.495)^{0.325}}\right)^{1.767} \tag{5}
\end{equation*}
$$

where τ_{C} is the convective overturn timescale as approximated by Equations (2) and (3). MH08 report that this relation holds, with a scatter of 0.25 in Rossby number, for X-ray activity levels $-7<\log R_{\mathrm{X}}<-4$. At higher levels of X-ray activity, there appears to be little correlation between X-ray activity and stellar rotation, and hence age (e.g., Pizzolato et al. 2003). As for chromospheric activity, this relation requires $B-V>0.5$, and is poorly calibrated for $B-V \gtrsim 1$. X-ray activity measurements thus provide only upper limits to the ages of many SEEDS MG targets. For these extremely active targets, we assign a uniform probability distribution in age up to the maximum age (dependent upon spectral type) accessible to these age indicators.

4.3. Gyrochronology

As F-type and later stars age, their rotation periods grow (Kraft 1967; Skumanich 1972). This is believed to be due to their convective zones, which generate stellar magnetic fields, extending to the surface and coupling to the stellar wind (Mestel

1968; Pinsonneault et al. 1989). Stars more massive than mid-F spectral type have radiative envelopes and weak stellar winds; they hardly spin down at all (Barnes 2003). Later-type stars with accurate cluster ages generally show one of two rotation patterns. At young ages, a large fraction of stars (especially lowmass stars) are extremely fast rotators, forming the so-called C-sequence (Barnes 2003). These fast rotators are believed to have their outer convective envelopes only weakly coupled to their inner radiative regions, resulting in inefficient angular momentum loss. Older clusters lack these rapid rotators, which are believed to have transitioned onto the I-sequence, in which the star approaches solid-body rotation (Barnes 2003).
Young stars spend a variable amount of time on the rapidly rotating C-sequence before transitioning to the I-sequence, the duration of rapid rotation decreasing with increasing stellar mass. This timescale varies from $\sim 300 \mathrm{Myr}$ for early M stars to 0 for F stars (Barnes 2003). Some stars appear to be on the I-sequence even at substantially younger ages, indicating that these timescales include substantial scatter. We treat them as the youngest ages accessible to gyrochronology, lower bounds on our age constraints using these secondary criteria. For simplicity, we use a parameterization linear in $B-V$ color, from 300 Myr at $B-V=1.5$ (early M) to 0 at $B-V=0.5$ (late F).

For older stars on the I-sequence, color-dependent gyrochronology relations have been derived by Barnes (2007) and re-calibrated by MH08. The relation is identical to Equation (1), except that the rotation period is measured directly rather than inferred from chromospheric activity. The gyrochronological age estimate becomes

$$
\begin{equation*}
\frac{\tau}{\mathrm{Myr}} \approx\left(\frac{\tau_{\text {rot }}}{0.407(B-V-0.495)^{0.325}}\right)^{1.767} \tag{6}
\end{equation*}
$$

The scatter about this relation is very large at young ages (~ 1 dex; Mamajek \& Hillenbrand 2008); in addition, it only applies to stars on the rotational I-sequence. Barnes (2007) only applies such a result to stars rotating more slowly than the 100 Myr "gyrochrone." We adopt a similar criterion by setting a floor on the gyrochronological age of $0-300 \mathrm{Myr}$ depending on color, as described above, together with an overall floor of 100 Myr . A star with a younger age according to Equation (6) will be assigned a uniform probability distribution of ages up to the floor appropriate to its color.
MH08 have measured a scatter about Equation (6) of 0.05 dex for stars on the I-sequence, and recommend adding an additional $\sim 15 \%$ (~ 0.06 dex) to account for systematic uncertainties in
the cluster ages used for calibration. We therefore adopt 0.8 dex as the age uncertainty for slow rotators.

4.4. Lithium Abundance

The strength of lithium absorption lines declines as a star ages and burns its initial supply of the fragile element. Stars with convective zones approaching the surface carry lithium down into the hotter interior where it is subsequently destroyed. Unfortunately, other mixing processes complicate this picture, and the details of convection depend strongly on stellar mass.

Lithium can be a problematic age indicator (Zuckerman \& Song 2004), as its abundance is extremely sensitive to the stellar accretion history (Baraffe \& Chabrier 2010), but abundant lithium is a reliable indicator of stellar youth (Bildsten et al. 1997). Extensive observations of open clusters do enable crude lithium age estimates for some stars (Sestito \& Randich 2005), though for much of the SEEDS MG sample, lithium provides only upper limits. There is a considerable scatter between coeval stars and a strong color dependence, and therefore, lithium is considered more reliable for dating young clusters (Soderblom 2010).

In general, lithium abundance is significantly more problematic as an age indicator for single stars than the activity and rotation measurements described above (Soderblom 2010). In the notes for each individual star, we comment briefly on the consistency of lithium abundances with these other indicators (Section 7).

4.5. Isochrone Dating

Isochrones in color-magnitude space are among the most reliable methods for dating coeval clusters and associations of stars (Song et al. 2003). Unfortunately, they are much less reliable for individual stars. Isochrone dating fails to produce a robust peak in the probability distribution in a large fraction of field stars, and typically has uncertainties of $\gtrsim 1 \mathrm{Gyr}$ even for those stars on which it is successful (Takeda et al. 2007). In order for isochrone placement to have any value as an age indicator, a main-sequence star must have completed at least $\sim 1 / 3$ of its life (Soderblom 2010). This excludes most of the SEEDS MG sample. In addition, any isochronebased age analysis should marginalize over uncertainties in convection, composition, rotation, and atmospheric modeling, among other numerical and theoretical considerations. We therefore do not attempt a full isochrone age analysis in this work. However, isochrone ages can still provide an important check on ages estimated from other methods, and in particular, on the likelihood of a star's membership in a young MG. We therefore use the PARSEC stellar models (Bressan et al. 2012) as a consistency check on the median ages we obtain by our full analysis (Section 5).

A model of stellar structure, combined with a model atmosphere, predicts absolute magnitudes M_{i} in a variety of bandpasses i. Given observed (apparent) magnitudes m_{i} in each band, we can write down the logarithmic likelihood of a model, together with a parallax ϖ (in milliarcseconds), as

$$
\begin{align*}
-2 \ln \mathcal{L}(\bmod , \varpi)=\sum_{\text {bands } i} & \frac{\left(M_{i}+5 \log _{10} 100 / \varpi-m_{\mathrm{obs}, i}\right)^{2}}{\sigma_{i}^{2}} \\
& +\frac{\left(\varpi-\varpi_{\mathrm{Hip}}\right)^{2}}{\sigma_{\varpi}^{2}} \tag{7}
\end{align*}
$$

We multiply Equation (7) by a prior in parallax prior equivalent to a uniform prior in space, $\varpi^{-4} d \varpi$, and marginalize
over ϖ. We adopt a Gaussian prior on $[\mathrm{Fe} / \mathrm{H}]$ centered on the solar value, with a standard deviation of 0.15 (40% in metallicity). This is nearly the same prior as that used by Nielsen et al. (2013), taken from the distribution of young FG dwarfs observed by Casagrande et al. (2011). While this metallicity distribution should be appropriate for young stars, it is likely to systematically overestimate the metallicity (and photospheric opacity) of older stars. Since stars brighten during their mainsequence lives, an overestimated metallicity would require an older age to compensate, and could produce large uncertainties in age determinations of several Gyr.

In an effort to be as uniform across the sample as possible, we restrict ourselves to the magnitudes measured by Tycho (Høg et al. 2000) and by Two Micron All Sky Survey (2MASS; Cutri et al. 2003). We do not attempt to marginalize over stellar mass and evolutionary rate in the color-magnitude diagram, both of which would be necessary for a full isochrone-based age analysis. Stellar rotation, which can have a significant effect on evolutionary tracks and produce colors and luminosities that vary with viewing angle (Ekström et al. 2012), becomes another major uncertainty for more massive stars.

Nordström et al. (2004) found that, for age probability distributions normalized over stellar mass, metallicity, and evolutionary rate in the color-magnitude diagram, 1σ confidence intervals corresponded roughly to a 60% of the marginalized peak likelihood. In our analysis, we adopt a more conservative threshold of $\Delta \ln \mathcal{L}=1$, a ratio of ~ 0.37. Table 2 includes the likelihood ratios; we comment on the stars with large discrepancies when we discuss the individual targets in Section 7. In two cases, the isochrone checks lead us to reduce our estimated probability of MG membership.

5. BAYESIAN STELLAR AGES

The SEEDS MG sample comes from many different associations; some of these are well-defined, while others are considered far less reliable. Likewise, the confidence with which each target is identified as an MG member varies considerably. Most of the targets also have other age indicators, described in the previous section, which should be combined with the age inferred from MG identification to produce the most reliable age estimate.

We adopt a Bayesian approach to stellar ages, using as our prior a flat age distribution out to 10 Gyr (appropriate to the local disk) or to the star's main sequence lifetime, and derive posterior probability distributions using age indicators and MG memberships. A slightly different star formation history, like the enhancement by a factor of 1.5 from 1 and 4 Gyr before the present (Girardi et al. 2005), would have little effect on our results. The resulting posterior probability distributions on age are suitable inputs to a statistical analysis of exoplanet frequencies and properties.

The likelihood function \mathcal{L} is difficult to write down. If MG membership and the stellar age indicators were all independent of one another, then \mathcal{L} would simply be the product of the probability of group membership and the probability distribution inferred for each indicator. However, MG membership is often assigned, at least partially, on the basis of stellar activity. Furthermore, indicators of stellar youth physically arise from the interplay of rotation and convection: chromospheric activity, rotation period, and coronal activity are not independent.

Many authors have performed detailed analyses of MGs, assigning membership probabilities to each proposed member. We generally defer to these probabilities and adopt the MG age
distribution $\mathcal{L}_{\mathrm{MG}}(\tau)$ weighted by the membership probability P_{MG}. We approximate the MG age likelihood function as a Gaussian with the confidence intervals described in Section 3 representing its median age $\pm 2 \sigma$. The other age indicators, described in Section 4 and listed in Table 2, complement the group age for stars with uncertain membership or which belong to less well-defined associations. We denote the likelihood function based solely on these single star indicators by $\mathcal{L}(\tau \mid$ indic $)$; the total likelihood function is simply

$$
\begin{equation*}
\mathcal{L}(\tau)=P_{\mathrm{MG}} \mathcal{L}_{\mathrm{MG}}(\tau)+\left(1-P_{\mathrm{MG}}\right) \mathcal{L}(\tau \mid \text { indic }) \tag{8}
\end{equation*}
$$

Equation (8) assumes the age derived from secondary indicators and proposed MG membership to be independent, which could be problematic. In this analysis, it is not a major problem, as most of our stars are either reliably associated with an MG or have no kinematic age that we trust.

As described in the previous section, MH08 find the best results for the activity-age by first using chromospheric and coronal activity to estimate the Rossby number, and then using gyrochronology to estimate stellar age. We therefore treat coronal and chromospheric activity as independent measurements of Rossby number Ro. In practice, the scatter in Ro as estimated by X-ray activity is ~ 1.5 times as large as that estimated by R_{HK}^{\prime} (MH08) over the applicable activity regimes, so this approximation has little practical effect. The situation is dramatically better for the (one) object with multi-decade Mt. Wilson chromospheric data.

It is more difficult to estimate the covariance between stellar age as estimated from activity via the Rossby number and that inferred directly from a rotation period. The latter estimator, being more direct, has a smaller scatter reported in MH08 (~ 0.05 dex) than the activity-rotation age $(\sim 0.1$ dex from binaries, ~ 0.2 dex from clusters) for stars on the I rotational sequence. As the SEEDS sample painfully illustrates, however, this does not include all variation in rotation at a common age. Our slowest rotator, HIP 11437, has a gyrochronological age of $\sim 500 \mathrm{Myr}$, but is reliably identified with the β Pic MG. The star might still be contracting onto the main sequence, or it could simply be an outlier. MH08 also omitted two anomalously slow rotators in the Pleiades from their analysis.

With the above caveat, we note that assuming the age indicators to be independent makes little difference; the scatter in the period-age relation is much smaller than in the activity-age relations. We therefore simply set 0.05 dex as the floor in the uncertainty and add 0.06 dex to the error estimated from activity and rotation to account for systematic uncertainties in the cluster ages used to calibrate the relations (MH08). MH08 only used the slow, I-sequence rotators to derive their gyrochronological ages; we therefore add the range of time spent on the rapidly rotating C-sequence, $\sim 100-300 \mathrm{Myr}$, to the age distributions (see Section 4.3).

All of the activity/period/age relations have a strong color dependency, with later spectral types spinning down more rapidly after reaching the I-sequence. Spectral types earlier than late F , with $B-V$ colors $\lesssim 0.5$, never reach the I-sequence. They never achieve the deep convective zone and strong dynamo necessary to drive a magnetized wind, and rotate rapidly throughout their main sequence lifetimes. For such stars in the SEEDS MG sample, we have little choice but to use a flat probability distribution out to the star's main sequence lifetime. We also note that the relations derived in MH08 were only tested for FGK stars, with $0.5 \lesssim B-V \lesssim 0.9$. Many of our targets are late K and M stars with colors as red as $B-V \sim 1.5$. The basic
rotation/activity/age relation should continue to hold for these stars, albeit with larger uncertainties. We therefore continue to apply the relationships, noting that the $\sim 300 \mathrm{Myr}$ timescale to reach the I-sequence adds a large spread to the derived ages.

Many of our targets are relatively faint and, as such, have poor Tycho measurements of $B-V$. We therefore combine the Tycho colors with a $B-V$ color estimated from $V-K$, with V measured from Tycho (transformed to Johnson) and K measured from 2MASS, using Table 5 of Pecaut \& Mamajek (2013). We find that, in order to reproduce the scatter of Tycho colors using converted $V-K$ magnitudes, we need to add an empirical error of $\sim 0.03 \mathrm{mag}$ to the interpolated result. We then combine the two estimates of $B-V$. This gives a median final uncertainty $\sigma_{B-V}=0.018 \mathrm{mag}$, and $\sigma_{B-V}<0.05 \mathrm{mag}$ for all but one star.
The very old and very young tails of the probability distribution are important (and extremely difficult) to model properly. Several stars in our sample make this all too evident, with disturbingly discrepant kinematic and activity-ages. This will become much more of a problem as high-contrast surveys begin to report larger numbers of detections, and the properties of individual exoplanet host stars are subjected to higher scrutiny. For now, we note that authors estimating ages from clusters routinely throw out a few percent of their stars as pathological cases (e.g., Mamajek \& Hillenbrand 2008). We therefore account for these long tails, at least qualitatively, by giving each target not definitively associated with an MG a 5\% probability of being pathological, with utterly uninformative age indicators. More work on large samples of young stars should help to constrain the intrinsic scatter in activity and rotation at a common age.

Table 3 summarizes the posterior probability distributions on age for all of the SEEDS MG targets. The third column lists the adopted membership probability in the indicated MG (see Section 7 for details on individual stars), with ". .." for those groups that we do not consider to be sufficiently well-defined to provide secure age estimates. The fourth and fifth columns list the 5% and 95% edges of the age probability distribution exclusively on the secondary age indicators, while the final three columns list the final 5\%,50\%, and 95% ages based on all available information. For those stars without any age constraints beyond their finite main sequence lifetimes, we list ". . ." in Columns 4-8.

Figure 2 demonstrates our age determination method for HIP 107350. This star lacks a secure MG age, but has an exceptional array of secondary age indicators, including a measured rotation period and multi-decade Mt. Wilson chromospheric activity measurements. As a G0 star, HIP 107350 represents the best possible case for the use of secondary age indicators.

6. OBSERVATIONS AND DATA REDUCTION

Table 4 lists all of the SEEDS MGs targets and observations through May of 2013. All observations were made using the HiCIAO instrument (Suzuki et al. 2010) and AO188 (Hayano et al. 2008) on the Subaru telescope, and nearly all were made in the H band. As with many other high-contrast imaging surveys (e.g., Lafrenière et al. 2007a; Vigan et al. 2012), the H band was chosen due to both the AO performance and the relative brightness of the expected companions. A typical observation sequence consisted of target acquisition, AO tuning, and acquisition of photometric reference frames, followed by the main, saturated science data taken in pupil-tracking ADI mode. Including all overheads, $\sim 1-1.5 \mathrm{hr}$ of telescope time were spent on a typical object.

Table 3
The SEEDS Targets' Ages

Name	Moving Group	Membership Prob. (\%) ${ }^{\mathrm{a}}$	No Group Data (Myr) ${ }^{\text {b }}$		All Data (Myr)			$\Delta \ln \mathcal{L}$
			5\%	95\%	5\%	50\%	95\%	
HIP 544	Her Lya	\ldots	190	370	190	270	370	0.1
HIP 1134	Columba	95+	24	940	20	30	54	0.38
FK Psc	β Pic	20	190	460	18	290	450	...
HIP 3589	AB Dor	$95+$	11	480	110	130	150	8.3
HIP 4979	IC 2391	6.4
HIP 6869	IC 2391	\ldots	790	3300	790	1400	3300	...
HS Psc	AB Dor	95+	5	180	110	130	150	\ldots
HIP 10679	β Pic	95+	620	8300	16	21	28	0.085
BD+30 397B	β Pic	$95+$	820	9200	16	21	28	...
HIP 11437	β Pic	95+	520	1100	16	21	29	\ldots
HIP 12545	β Pic	95+	5	3900	16	21	24	\ldots
HIP 12638	AB Dor	95+	1800	4500	110	130	170	0.27
HIP 12925	Tuc-Hor	95+	16	750	16	180	750	0.3
HIP 17248	Columba	95+	27	1100	20	30	54	...
HIP 23362	Columba	95+	20	30	54	1
HIP 25486	β Pic	$95+$	8	250	16	21	24	2.2
HD 36869	Columba	95+	26	120	20	30	50	0.17
HIP 29067	Castor	\ldots	1100	9200	1100	5100	9200	\ldots
HIP 30030	Columba	95+	27	120	20	30	50	0.072
HIP 32104	Columba	95+	\ldots	\ldots	20	30	57	0.023
V429 Gem	AB Dor	$95+$	45	240	110	130	150	...
HIP 37288	Her Lya	...	1500	9300	1500	5300	9300	\ldots
HIP 39896	Columba	50	57	290	22	49	280	\ldots
HIP 40774	IC 2391	\ldots	1200	9300	1200	5100	9300	\ldots
HIP 44526	Castor	\ldots	310	570	310	430	570	\ldots
HIP 45383	Castor	\ldots	460	2000	460	970	2000	\ldots
HIP 46843	Columba	\ldots	160	310	160	240	310	0.61
HIP 50156	Columba	80	200	480	21	33	410	\ldots
GJ 388	Castor	\ldots	40	330	40	190	330	...
HIP 50660	IC 2391	\ldots	980	9200	980	4900	9200	0.83
HIP 51317	AB Dor	95+	1800	9300	110	130	170	...
HIP 53020	Her Lya	...	1100	9200	1100	5000	9200	\ldots
HIP 53486	Castor	\ldots	540	990	540	720	990	\ldots
HD 95174	β Pic	10	1200	9200	20	4600	9200	\ldots
HIP 54155	Loc. Ass	\ldots	28	990	28	300	990	0.4
TWA 2	TW Hya	95+	810	9200	5	10	19	...
TYC 3825-716-1	AB Dor	...	27	1100	27	280	1100	
HIP 59280	IC 2391	\ldots	670	2500	670	1300	2500	0.48
TYC 4943-192-1	AB Dor	80	27	1100	110	130	450	...
HIP 60661	Loc. Ass	\ldots	980	9200	980	5000	9200	.
HIP 63317	Loc. Ass	\ldots	25	870	25	260	870	0.0075
FH CVn	AB Dor	40	32	230	40	130	220	...
HIP 66252	IC 2391	...	73	270	73	170	270	...
HIP 67412	IC 2391	\ldots	970	3100	970	1700	3100	0.46
HIP 73996	UMa	\ldots	\ldots	\ldots	280	2700	5100	2.6
HIP 78557	Loc. Ass		57	1400	57	400	1400	0.2
HIP 82688	AB Dor	95+	16	530	110	130	150	0.41
HIP 83494	Tuc-Hor	4.3
HIP 87579	Castor	\ldots	240	3200	240	1200	3200	...
HIP 87768	Loc. Ass	\ldots	270	3100	270	1200	3100	\ldots
HIP 91043	Loc. Ass	\ldots	12	330	12	130	330	11
HIP 93580	AB Dor	80	110	130	1800	2.8
BD+05 4576	AB Dor	40	27	1100	46	140	800	...
HIP 102409	β Pic	95+	92	360	16	21	28	\ldots
HD 201919	AB Dor	95+	110	290	110	130	150	...
HIP 107350	Her Lya	\ldots	250	440	250	340	440	0.49
TYC 2211-1309-1	β Pic	50	6	220	13	22	190	...
HIP 111449	Her Lya	\ldots	...	\ldots	\ldots	\ldots	\ldots	0.9
HIP 114066	AB Dor	95+	84	340	110	130	150	\ldots
HIP 115162	AB Dor	95+	26	1400	110	130	150	0.078
BD-13 6424	β Pic	95+	120	390	16	21	28	\ldots
HIP 116805	Columba	30	21	130	440	1.6

Notes.

${ }^{\text {a }}$ High-confidence classifications from, e.g., Torres et al. (2008) and Malo et al. (2013), including the corresponding web tool BANYAN. See notes on individual objects for more doubtful classifications.
${ }^{\text {b }}$ An entry of ". .." indicates that the star is too blue for the activity/rotation/age relations to apply, and that its age probability distribution is therefore uniform out to 10 Gyr or its main sequence lifespan.

Figure 2. Calculation of an age probability distribution for a target, HIP 107350, without a reliable moving group age. HIP 107350 has an exceptional array of secondary age indicators, which enable a good constraint on its age. Most other stars without kinematic ages have much broader posterior probability distributions.
(A color version of this figure is available in the online journal.)

All of our data were taken in ADI mode and reduced using the ACORNS-ADI software package. The software and data reduction process are described in detail in Brandt et al. (2013); we therefore give only a brief summary here. The source code is freely available for download at http://www.github.com/t-brandt/acorns-adi.

For each sequence of images, we calibrate the data, register the frames, subtract the stellar point-spread function (PSF) using the LOCI algorithm (Lafrenière et al. 2007b), and combine the image sequence using an adaptive trimmed mean. Calibration consists of the usual flat-fielding and bad pixel masking, together with an algorithm to suppress correlated read noise in HiCIAO's H2RG detector. We then correct for field distortion by comparing observations of globular clusters made with HiCIAO and with the Hubble Space Telescope (HST). We register the frames in each ADI sequence using templates of saturated PSFs built from thousands of images of dozens of stars. This registration technique is accurate to ~ 0.3 HiCIAO pixels, or 3 mas, under good observing conditions. We then set the absolute centroid of an image sequence by visual inspection.

ACORNS-ADI includes several algorithms to model and subtract the stellar PSF. In this work, we exclusively use the LOCI algorithm (Lafrenière et al. 2007b) due to its speed, simplicity, and Gaussian residuals. As our fiducial LOCI parameters, we use an angular protection zone of 0.7 times the PSF full width at half maximum (FWHM), and optimization zones 200 PSF footprints in area. Our subtraction regions vary in size from a few PSF footprints at small separations to a few tens of footprints several arcseconds from the central star. HiCIAO data is oversampled in the H band, with a typical FWHM of 6 pixels. We limit the number of LOCI comparison frames to avoid solving an under-constrained system and suppressing more companion flux than necessary-in the limit of an equal number of pixels and comparison frames, flux (and noise) suppression would be perfect. The final contrast of an ADI reduction with LOCI is a concave function of the number of comparison frames used for PSF modeling and subtraction, with a broad peak at ~ 80 frames. We therefore treat large data sets as a number of smaller data sets (with every nth frame), reduce each of these small data sets
separately using ACORNS-ADI, and then average the results to produce a map of residual intensity.

We calibrate the partial subtraction in LOCI using the procedure described in Brandt et al. (2013). We also include the much smaller effects of field rotation during each individual exposure and uncertainties in image registration, and approximate degradation in the AO performance with separation from the guide star by

$$
\begin{equation*}
\mathrm{SR} \propto \exp \left[-\left(\frac{\Delta \theta}{\theta_{0}}\right)^{5 / 3}\right] \tag{9}
\end{equation*}
$$

where SR is the Strehl ratio, proportional to a point source's peak intensity, and we use an isoplanatic angle $\theta_{0}=30^{\prime \prime}$ (Minowa et al. 2010). These are all small corrections for our data, generally a few percent within $\sim 5^{\prime \prime}$ of the central star. Finally, we convolve the map of residual intensity with a circular aperture, normalize by the azimuthal standard deviation in residual intensity, and search for 5.5σ outliers. We perform photometric calibrations using unsaturated reference frames taken before, after, and sometimes during an ADI sequence, and normalize to the central star's H-band magnitude in the 2MASS catalog (Cutri et al. 2003). ACORNS-ADI produces two-dimensional contrast maps. We azimuthally average these maps to obtain the contrasts reported in Table 5.

We follow up companion candidates (5.5σ detections), typically after $\sim 1 \mathrm{yr}$, to test for physical association. The SEEDS MGs targets are almost all within 50 pc , with proper motions of up to $1^{\prime \prime} \mathrm{yr}^{-1}$. A physically unrelated background object will thus move by an easily detectable amount, while a bound companion will remain in nearly the same position relative to its parent star. None of our faint, substellar companion candidates thus far have passed the "common proper motion test," though we have detected several low-mass stellar companions, and a few substellar candidates remain to be followed up. Table 6 summarizes the new stellar companions to the MG targets, one of which does not yet have a second epoch to confirm common proper motion (though very close chance alignments of such bright stars at the targets' Galactic coordinates are unlikely). Unsurprisingly, the frequency of background objects increases sharply toward the Galactic plane.

7. NOTES ON INDIVIDUAL STARS

In this section, where appropriate, we provide details on each individual target. This includes both stellar properties (particularly age indicators) and noteworthy aspects of the SEEDS observations. We order the objects by right ascension.

HIP 544 ($=$ HD $166=$ GJ 5). This K0 star is a proposed member of the Hercules-Lyra association. It does have extensive secondary indicators, enabling a reasonable age estimate. SEEDS images do not detect any companion candidates within 8.5 (~ 110 AU projected).

HIP 1134 (= HD 984). This late F star is considered to be a reliable member of the Columba MG, and its abundant lithium and strong activity are consistent with a young age. SEEDS images detect no companion candidates within 7".5 (~350 AU projected).

FK Psc (= TYC 1186-706-1). The MG membership of this K7 star is disputed. Lépine \& Simon (2009) propose membership in β Pic, while Malo et al. (2013) find it to be a field star with $\sim 55 \%$ confidence. SEEDS observations have resolved it as a binary with a separation of $1^{\prime \prime} .7$ and a flux ratio of ~ 2 in H. These results make the MG analyses much more difficult to interpret,

Table 4
The SEEDS Moving Group Observing Log

Name	$\begin{gathered} \alpha(\mathrm{J} 2000) \\ (\mathrm{h} \mathrm{~m} \mathrm{~s}) \end{gathered}$	$\begin{gathered} \delta(\mathrm{J} 2000) \\ \left({ }^{\circ} \prime^{\prime \prime \prime}\right) \end{gathered}$	$N_{\text {exp }}$	$\begin{gathered} t_{\mathrm{tot}} \\ (\mathrm{~min}) \end{gathered}$	Rot $\left(^{\circ}\right)$	Mean Airmass	$\begin{gathered} \text { Date } \\ (\mathrm{y} \mathrm{~m} \mathrm{~d}) \end{gathered}$
HIP 544	000636.8	+29 0117	325	16.3	76	1.02	2010 Dec 1
HIP 1134	001410.3	-071157	151	37.8	29	1.14	2011 Aug 2
FK Psc	002334.7	+20 1429	98	24.5	172	1.00	2011 Sep 3
HIP 3589	004550.9	+545840	120	30.0	22	1.24	2011 Dec 30
-	004550.9	+545840	138	46.0	25	1.25	2012 Sep 12
HIP 4979	010349.0	+012201	47	22.9	23	1.06	2009 Nov 2
-	010349.0	+012201	80	13.3	13	1.06	2012 Sep 13
HIP 6869	012824.4	+170445	59	13.7	103	1.00	2009 Nov 2
HS Psc	013723.2	+265712	258	43.0	87	1.01	2012 Sep 14
HIP 10679	021724.7	+284430	111	27.8	67	1.01	2011 Dec 24
BD+30 397B	022728.0	+305841	116	38.7	68	1.02	2011 Dec 31
HIP 11437	022729.3	+305825	116	38.7	68	1.02	2011 Dec 30
-	022729.3	+305825	129	32.3	60	1.03	2011 Dec 31
HIP 12545	024125.9	+05 5918	135	31.3	39	1.05	2009 Dec 24
HIP 12638	024221.3	+383707	120	40.0	30	1.10	2011 Sep 6
HIP 12925	024614.6	+053533	120	30.0	48	1.03	2012 Jan 1
HIP 17248	034137.3	+551307	81	40.5	24	1.25	2012 Nov 7
HIP 23362	050125.6	-200307	55	27.5	13	1.33	2012 Nov 7
HIP 25486	052704.8	-115403	120	11.1	12	1.18	2010 Jan 24
HD 36869	053409.2	-151703	81	40.5	26	1.24	2012 Nov 6
HIP 29067	060755.2	+675837	162	40.5	20	1.75	2012 Apr 11
HIP 30030	061908.1	-032620	87	29.0	15	1.18	2011 Mar 25
HIP 32104	064224.3	+173843	135	11.3	39	1.00	2011 Dec 25
V429 Gem	072343.6	+202459	117	27.2	168	1.00	2010 Jan 23
HIP 37288	073923.0	+02 1101	124	31.0	40	1.06	2011 Jan 30
HIP 39896	080856.4	+324911	95	23.8	48	1.04	2011 Dec 25
HIP 40774	081919.1	+012020	121	28.1	27	1.08	2009 Dec 25
-	081919.1	+012020	87	21.8	43	1.06	2011 Jan 28
HIP 44526	090420.7	-155451	37	12.3	7	1.35	2011 Jan 30
-	090420.7	-155451	92	30.7	19	1.27	2012 Jan 1
HIP 45383	091453.7	+04 2634	90	30.0	47	1.04	2011 Mar 26
HIP 46843	093243.8	+265919	106	35.3	99	1.01	2011 Jan 28
HIP 50156	101419.2	+210430	137	34.3	166	1.00	2011 Dec 24
GJ 388	101936.3	+195212	105	26.3	2	1.06	2012 May 16
HIP 50660	102045.9	+322354	104	24.1	48	1.03	2009 Dec 23
HIP 51317	102855.6	+005028	118	19.7	29	1.08	2011 Jan 28
HIP 53020	105052.0	+064829	155	51.7	32	1.08	2011 Jan 29
-	105052.0	+064829	95	23.8	36	1.03	2011 May 25
HIP 53486	105630.8	+072319	223	20.7	53	1.03	2010 Jan 25
HD 95174	105938.3	+25 2615	112	28.0	66	1.01	2012 May 11
HIP 54155	110441.5	-041316	136	34.0	25	1.13	2011 May 26
TYC 3825-716-1	112050.5	+541009	101	33.7	22	1.22	2012 Feb 27
-	112050.5	+541009	171	42.8	33	1.24	2011 Dec 26
HIP 59280	120937.3	+40 1507	208	33.8	43	1.08	2009 Dec 23
TYC 4943-192-1	121518.4	-023728	51	25.5	14	1.13	2011 Feb 1
HIP 60661	122558.6	+08 0344	66	15.3	29	1.02	2010 Jan 23
-	122558.6	+08 0344	71	23.7	30	1.03	2011 May 21
HIP 63317	125832.0	+381644	131	32.8	42	1.07	2012 May 14
FH CVn	132712.1	+455826	115	38.3	31	1.12	2012 Feb 26
HIP 66252	133443.2	-08 2031	112	37.3	26	1.14	2011 May 26
-	133443.2	-08 2031	95	31.7	24	1.14	2012 May 12
HIP 67412	134858.2	-013535	157	36.4	38	1.08	2010 Jan 24
HIP 73996	150718.1	+245209	174	14.5	103	1.01	2011 Mar 26
-	150718.1	+245209	300	25.0	106	1.01	2013 Feb 26
-	150718.1	+245209	233	38.8	106	1.01	2013 Feb 27
HIP 78557	160222.4	+03 3907	213	35.5	41	1.05	2012 Jul 8
-	160222.4	+03 3907	30	5.0	4	1.19	2013 May 20
HIP 82688	165408.1	-042025	140	35.0	33	1.10	2011 May 24
-	165408.1	-042025	161	53.7	39	1.14	2012 Apr 11
HIP 83494	170353.6	+344725	36	18.0	15	1.10	2012 Feb 26
HIP 87579	175329.9	+21 1931	142	35.5	139	1.01	2011 May 22
-	175329.9	+211931	210	52.5	166	1.01	2012 May 13
HIP 87768	175544.9	+183001	192	32.0	38	1.01	2012 Jul 7

Table 4
(Continued)

Name	$\begin{gathered} \alpha(\mathrm{J} 2000) \\ (\mathrm{h} \mathrm{~m} \mathrm{~s}) \end{gathered}$	$\begin{gathered} \delta(\mathrm{J} 2000) \\ \left({ }^{\circ} \prime^{\prime \prime}\right) \end{gathered}$	$N_{\text {exp }}$	$\begin{gathered} t_{\text {tot }} \\ (\mathrm{min}) \end{gathered}$	Rot $\left({ }^{\circ}\right)$	Mean Airmass	Date (y m d)
HIP 91043	183420.1	+184124	180	30.0	132	1.01	2012 Jul 10
-	183420.1	+184124	108	21.6	59	1.01	2013 May 18
HIP 93580	190332.3	+014908	150	25.0	22	1.06	2012 Jul 11
BD+05 4576	203954.6	+0620 12	102	34.0	32	1.05	2011 May 23
-	203954.6	+062012	24	6.0	15	1.04	2012 Sep 12
HIP 102409	204509.5	-312027	53	25.8	12	1.67	2009 Nov 1
HD 201919	211305.3	-172913	94	47.0	26	1.29	2012 Nov 7
HIP 107350	214431.3	+144619	137	17.1	72	1.01	2011 Aug 3
TYC 2211-1309-1	220041.6	+271514	138	34.5	82	1.01	2011 Sep 4
HIP 111449	223441.6	-20 4230	620	25.8	26	1.33	2012 Nov 6
HIP 114066	230604.8	+635534	105	52.5	22	1.40	2012 Nov 5
HIP 115162	231939.6	+421510	150	50.0	37	1.08	2012 Sep 13
BD-13 6424	233230.9	-121551	123	41.0	24	1.21	2011 Aug 3
HIP 116805	234024.5	+442002	246	20.5	14	1.18	2012 Jan 1
-	234024.5	+442002	201	26.8	26	1.10	2012 Jul 8

and we do not consider FK Psc to be reliably associated with any of the groups discussed in this paper. We follow Malo et al. (2013) in placing a $\sim 20 \%$ probability on β Pic membership. We also consider the kinematic distance given in Table 1 to be unreliable, making it difficult to interpret sensitivity limits. SEEDS observed FK Psc under poor conditions; due to this and its extremely uncertain age, FK Psc should probably be excluded from statistical analyses.

HIP 3589 (= HD 4277). This late F star has been classified as a member of AB Dor with high confidence by, e.g., Torres et al. (2008). The star does show a strong discrepancy between the MG age and the isochrone likelihood, with the isochrone analysis showing strong peaks at $\sim 20 \mathrm{Myr}$ and $\sim 5 \mathrm{Gyr}$. The old age, however, is extremely inconsistent with HIP 3589's youth indicators. HIP 3589 has a neighbor at a separation of 3.10 with an H-band flux $\sim 10 \%$ that of the primary; however, SEEDS observations indicate that this star is not bound to HIP 3589. SEEDS images did not detect any other companion candidates within $7^{\prime \prime} .5, \sim 400$ AU projected.

HIP 4979 (= HD 6288A). This early F star has been proposed to be a member of the IC 2391 supercluster. Unfortunately, its early spectral type renders secondary age indicators of little value, and the star is extremely difficult to date reliably. Our adopted age probability distribution is uniform out to HIP 4979's main sequence lifetime of ~ 5 Gyr. SEEDS images detect no companion candidates, apart from a marginal, 5.7σ source at a separation $(\mathrm{E}, \mathrm{N})=\left(-3^{\prime \prime} .94,6^{\prime \prime} 65\right)$, a projected distance of just under 500 AU . Follow-up observations with somewhat less integration time detected nothing at this position, but did detect an even more marginal source ($\sim 4 \sigma$) near the candidate's expected background position.

HIP 6869 ($=$ HD 8941). This F8 star has been proposed to be a member of the IC 2391 supercluster. Like HIP 4979, it is too blue to apply the age relations described in this paper, and we adopt a uniform probability distribution in age. HIP 6869 is a close binary, with an angular separation of $00^{\prime} 44$ and an H-band contrast of ~ 100. At HIP 6869's distance, its companion has an absolute H-band magnitude of ~ 7, consistent with a mid-M spectral type. No other companion candidates were detected in high-contrast imaging. We have not yet followed up the star to confirm its companion's common proper motion, though a close chance alignment of such a bright star at $(l, b)=\left(135^{\circ},-45^{\circ}\right)$ is unlikely.

HS Psc. This mid-K star was first proposed as a candidate member of AB Dor by Schlieder et al. (2010). Malo et al. (2013) confirmed this categorization, placing it in AB Dor with 98% confidence. SEEDS imaging detected a 5.9σ point source at a separation of $(E, N)=\left(2^{\prime \prime} .85,4^{\prime \prime} .04\right)$, a projected distance of just under 200 AU assuming the kinematic distance Schlieder et al. (2010) derived assuming membership in AB Dor. Followup images failed to detect any point source, making it a likely statistical fluctuation.

HIP 10679 (= BD 14082B). This early G star is in a binary system with the early F star HIP 10680, separated from its companion by $14^{\prime \prime}$. It is considered to be a well-established member of the β Pic MG (e.g., Torres et al. 2008; Malo et al. 2013). SEEDS did not detect any companion candidates within a projected separation of $7.5(\approx 210 \mathrm{AU})$.
$B D+30397 B$. This M0 star is the binary companion of the K7 star HIP 11437; both are reliably identified with the β Pic MG. SEEDS images detected no companion candidates within 8.5 (~ 425 AU projected).

HIP 11437. Together with its companion BD +30 397B, this K 6 star is reliably identified with the β Pic MG. It also represents a pathological case of exceptionally slow rotation (as measured from SuperWASP periodicity): HIP11437's gyrochronological age is ~ 500 Myr. Its 14 day period is the longest in the SEEDS MG sample. SEEDS did not detect any companion candidates within 7". 5 (~ 300 AU projected).

HIP 12545. This K6 star is considered a well-established member of the β Pic MG. Malo et al. (2013) found its photometry and radial velocity to be slightly more consistent with Columba, but due in large part to its exceptionally fast rotation and vigorous activity, they did not dispute the traditional association with β Pic (Zuckerman \& Song 2004; Torres et al. 2008). SEEDS images do not detect any companion candidates within 8 ". 5 (~ 350 AU projected).

HIP 12638 (= HD 16760). This G2 star is a well-established member of the AB Dor MG, and is known to host a companion, which was reported as a substellar object ($M \sin i \sim 14 M_{J}$) on a 1.3 yr orbit (Bouchy et al. 2009; Sato et al. 2009). This companion was directly imaged on an almost face-on orbit, probably indicating that the companion has a stellar mass (Evans et al. 2012). Despite its very modest contrast, the companion has an angular separation of just $\sim 0^{\prime} .026$, less than the width of the H -band Subaru PSF; it was imaged using aperture-masking

Table 5
SEEDS Moving Group 5.5 σ Contrast Limits

Name	$\begin{gathered} H \\ (\mathrm{mag}) \end{gathered}$	5.5σ Contrast (mag)							
		$0!25$	$0 \cdot 5$	0. 75	$1^{\prime \prime}$	1'. 5	$2^{\prime \prime}$	$3^{\prime \prime}$	$5^{\prime \prime}$
HIP 544	3.95 ± 0.02	...	9.1	11.2	12.6	14.1	14.6	14.8	14.8
HIP 1134	2.80 ± 0.05	\ldots	10.1	12.1	13.4	14.8	15.3	15.5	15.6
FK Psc	3.62 ± 0.06	5.9	7.8	9.0	9.8	8.7	10.1	11.7	12.0
HIP 3589	2.80 ± 0.10	...	9.0	11.1	12.5	13.5	12.8	14.1	14.7
HIP 4979	1.62 ± 0.05	...	10.3	11.8	13.7	14.9	15.5	15.8	15.8
HIP 6869	1.75 ± 0.06	...	8.2	11.7	13.2	14.5	14.8	14.8	14.5
HS Psc	4.85	7.0	9.0	10.6	11.6	12.4	12.6	12.7	12.6
HIP 10679	4.18 ± 0.35	...	8.8	10.6	11.9	13.2	13.7	13.9	13.8
BD+30 397B	5.13 ± 0.20	7.7	9.6	11.5	12.5	13.2	13.4	13.4	13.3
HIP 11437	4.23 ± 0.20	7.5	9.6	11.6	12.7	13.7	13.9	13.9	13.9
HIP 12545	4.11 ± 0.14	7.8	10.0	11.8	13.0	13.7	14.0	14.1	14.1
HIP 12638	3.81 ± 0.23	...	9.4	11.4	12.6	13.7	14.1	14.3	14.5
HIP 12925	2.96 ± 0.12	6.2	8.2	10.2	11.4	11.5	10.8	13.5	13.7
HIP 17248	4.92 ± 0.17	...	9.8	11.5	12.8	13.6	13.8	13.9	13.9
HIP 23362	1.10 ± 0.03	...	8.8	10.5	12.3	14.2	15.3	15.9	16.1
HIP 25486	2.93 ± 0.03	...	9.1	10.8	12.5	13.9	14.4	14.6	14.7
HD 36869	4.26 ± 0.54	\ldots	8.8	10.5	12.0	13.4	13.9	14.1	14.2
HIP 29067	4.86 ± 0.10	...	9.1	11.2	12.6	13.9	14.2	14.4	14.5
HIP 30030	3.13 ± 0.09	...	7.8	9.6	11.2	12.7	13.3	13.5	13.7
HIP 32104	1.87 ± 0.06		7.0	8.2	9.6	11.1	12.0	12.5	12.7
V429 Gem	4.97 ± 0.34	7.0	9.8	11.4	12.5	13.2	13.4	13.5	13.2
HIP 37288	5.27 ± 0.04	. .	9.0	10.7	12.2	13.8	14.7	15.0	15.1
HIP 39896	5.00 ± 0.15	4.2	8.0	9.6	10.9	12.0	12.5	12.6	12.6
HIP 40774	4.42 ± 0.07	...	9.9	11.9	13.4	14.6	15.1	15.2	15.2
HIP 44526	4.28 ± 0.05	...	8.1	10.2	11.7	13.2	13.9	14.2	14.3
HIP 45383	4.12 ± 0.06	\ldots	6.7	6.7	9.6	13.3	14.6	15.3	15.4
HIP 46843	3.99 ± 0.02	...	10.3	12.3	13.9	15.3	15.8	16.0	16.0
HIP 50156	4.63 ± 0.09	\ldots	9.3	10.9	12.1	13.5	13.9	14.1	13.9
GJ 388	6.48 ± 0.05		...			10.9	12.4	14.0	15.1
HIP 50660	4.01 ± 0.13		9.7	11.6	12.9	13.6	13.8	13.8	13.7
HIP 51317	6.35 ± 0.03	\ldots	8.7	10.7	12.6	14.0	14.6	14.9	14.9
HIP 53020	7.55 ± 0.06	\ldots	10.6	12.1	13.6	14.6	14.9	15.1	15.1
HIP 53486	4.16 ± 0.04	\ldots	9.6	11.6	13.1	14.4	15.0	15.2	15.2
HD 95174	4.19 ± 0.19	...	9.8	11.7	13.1	14.2	14.6	14.5	11.7
HIP 54155	3.80 ± 0.06	...	8.6	10.3	11.7	13.4	14.1	14.4	14.6
TYC 3825-716-1	4.88 ± 0.21	...	9.1	10.6	11.5	12.1	12.1	12.2	12.2
HIP 59280	3.75 ± 0.04	...	9.8	11.8	13.3	14.6	15.0	15.2	15.3
TYC 4943-192-1	5.60 ± 0.19	...	8.7	10.3	11.3	12.2	12.6	12.7	12.7
HIP 60661	4.45 ± 0.19		9.0	10.4	11.3	10.5	9.5	12.2	12.2
HIP 63317	3.72 ± 0.13	7.1	9.4	11.4	12.6	13.6	14.0	14.2	14.2
FH CVn	4.89 ± 0.20	...	9.7	11.1	12.2	12.8	13.0	13.1	13.1
HIP 66252	4.78 ± 0.03	. .	9.7	11.4	12.8	14.1	14.7	15.1	15.2
HIP 67412	4.01 ± 0.10	7.7	10.5	12.3	13.4	14.1	14.4	14.4	14.4
HIP 73996	2.55 ± 0.01	...	9.8	11.6	12.9	14.4	15.3	15.8	16.0
HIP 78557	2.95 ± 0.26	6.8	8.4	10.5	11.6	12.5	12.9	12.8	12.9
HIP 82688	3.13 ± 0.09	. .	11.1	12.6	13.9	14.9	15.2	15.0	15.3
HIP 83494	1.98 ± 0.04	\ldots	8.4	10.8	12.1	13.7	14.6	15.1	15.2
HIP 87579	4.36 ± 0.05	\ldots	10.5	12.1	13.5	14.5	14.9	15.0	15.1
HIP 87768	4.43 ± 0.11	6.3	8.0	9.8	11.1	12.5	13.3	13.7	14.0
HIP 91043	3.00 ± 0.05	...	9.1	10.7	12.0	13.5	14.0	14.0	15.1
HIP 93580	1.66 ± 0.04	\ldots	9.2	11.0	12.4	13.7	14.4	14.5	14.6
BD+05 4576	4.42	\ldots	10.0	11.5	12.8	13.8	14.0	14.2	14.2
HIP 102409	4.85 ± 0.02	\ldots	7.8	10.3	11.8	13.4	14.0	14.7	
HD 201919	4.79	\ldots	9.1	11.0	12.3	13.2	13.5	13.7	13.7
HIP 107350	3.34 ± 0.01	\ldots	10.0	11.9	13.5	14.8	15.4	15.5	15.5
TYC 2211-1309-1	4.66 ± 0.08	6.3	8.2	9.4	10.6	11.1	11.3	11.3	11.1
HIP 111449	2.49 ± 0.01	...	8.9	10.8	12.3	14.2	15.0	15.6	15.7
HIP 114066	5.22 ± 0.09	\ldots	9.8	11.6	12.9	14.0	14.4	14.6	14.6
HIP 115162	3.78 ± 0.13	7.1	9.1	10.9	12.0	13.1	13.6	13.8	13.9
BD-13 6424	4.59 ± 0.03	...	9.3	10.9	12.5	13.8	14.3	14.6	14.7
HIP 116805	1.04 ± 0.02	\ldots	9.4	10.8	12.2	14.1	15.1	15.8	15.9

Table 6
Newly Discovered Stellar Companions

Star	MJD $+55,000$	Separation (arcsec)	P.A. $($ deg $)$	H-band Contrast
HIP 6869	137	0.444 ± 0.005	269.1 ± 0.6	100
HIP 12925	927	1.893 ± 0.005	252.9 ± 0.2	13
HIP 39896	920	0.252 ± 0.005	81 ± 1	6.4
HIP 45383	646	0.741 ± 0.005	45.9 ± 0.4	4.1
HIP 60661	219	1.92 ± 0.01	107.5 ± 0.3	5.7
HIP 78557	1116	0.565 ± 0.005	180.7 ± 0.5	190
HIP 82688	705	3.811 ± 0.005	58.3 ± 0.1	41

Note. ${ }^{\text {a }}$ Common proper motion to be confirmed.
interferometry. SEEDS images detect no companion candidates within $7^{\prime \prime}$ (~ 320 AU projected).

HIP 12925 (= HD 17250). This F8 star has been reliably classified in the Tuc-Hor association (Zuckerman et al. 2011; Malo et al. 2013). SEEDS imaging detects a companion candidate with an H-band flux ratio of ~ 13 and a separation of 1 1". 9 (~ 100 AU projected); there are no other companion candidates within $7^{\prime \prime} .5$ (~ 400 AU projected). Archival images from Keck/NIRC2 confirm this candidate to be HIP 12925's stellar companion.

HIP 17248. This M0 star is considered to be a reliable member of the Columba MG (Zuckerman et al. 2011; Malo et al. 2013). SEEDS images detected five candidate companions within $7^{\prime \prime}$, with H-band contrasts ranging from $\sim 10^{4}$ to $\sim 2 \times 10^{5}$, and separations ranging from $\sim 3^{\prime \prime}$ to $\sim 6^{\prime \prime}$. 5 . The star is less than a degree from the Galactic plane, making the density of background objects high. Indeed, all but one of our companion candidates are clearly visible as background objects in $H S T /$ NICMOS imaging from 2005. The final candidate, at a separation (E, N) $=$ $\left(-2^{\prime \prime} .85,0^{\prime \prime} 72\right)$ in our images from 2012 November, also appears to be in its expected background position in the archival $H S T /$ NICMOS data, albeit at a modest signal-to-noise ratio.

HIP 23362 (= HD 32309). This late B star is a secure member of the Columba MG. At an age of 30 Myr for the group, the isochrone fit is modestly discrepant; however, the isochrone analysis produces a very broad peak in the likelihood centered at ~ 60 Myr. Primarily part of the SEEDS high-mass sample, we include it here for completeness. SEEDS images detect two companion candidates which are currently awaiting follow-up observations.

HIP 25486 (= HD 35850). This F8 star is a well-established member of β Pic; its high activity and abundant lithium confirm its youth. The large discrepancy with the isochrone likelihood at 20 Myr is simply because the likelihood increases very sharply toward $\sim 25-30 \mathrm{Myr}$, and does not call the β Pic identification into question. SEEDS images do not detect any companion candidates within 7".5 (~200 AU projected).

HD 36869. This G3 star is a likely member of the Columba MG, but lacks a Hipparcos parallax. Though it is absent from the large Bayesian analysis of Malo et al. (2013), BANYAN gives a membership probability of more than 95%. HD 36869's Tycho parallax (Høg et al. 2000) is far below the distance inferred from its magnitude and spectral type (59 pc ; Zuckerman et al. 2011); we consider the spectroscopic parallax to be more reliable. HD 36869 does feature extremely high levels of activity, abundant lithium, and rapid rotation consistent with the young ($\sim 30 \mathrm{Myr}$) age of Columba. SEEDS does not detect any companion candidates within 7 '". $5, \sim 400$ AU projected.

HIP 29067 (= GJ 9198). This K8 star is associated with the Castor MG. HIP 29067 shows modest Ca II HK activity, but was not detected in the ROSAT all-sky survey and has little lithium. HS Psc, a ~ 100 Myr-old mid-K star in our sample, shows much stronger activity and lithium absorption. HIP 29067 is likely a much older star than its proposed Castor membership would imply. SEEDS imaging does not detect any companion candidates within 7". 5 (~ 180 AU projected).

HIP 30030 (= HD 43989). This F9 star has been classified both as a member of TW Hydrae (Zuckerman \& Song 2004) and Columba (Malo et al. 2013). We adopt the newer classification, which favors membership in Columba due to HIP 30030's Galactic position. Both associations are young ($\sim 8 \mathrm{Myr}$ for TW Hydrae, ~30 Myr for Columba), and HIP 30030 has strong youth indicators. SEEDS detects one highly significant companion candidate at a separation of 2 ". 57 ; however, archival images from NICMOS reveal it as a background star.

HIP 32104 (= HD 48097). This A2 star is a reliable member of the Columba MG. Primarily part of the SEEDS high-mass sample, it is included here for completeness. SEEDS images do not detect any companions.
$V 429$ Gem. This K5 star is a reliable member of the AB Dor MG, and shows strong youth indicators. Radial velocity surveys have detected a $6.5 M_{J}$ companion on a 7.8 day orbit (Hernán-Obispo et al. 2010). However, V429 Gem's strong activity makes radial velocity measurements difficult, and other authors have disputed the existence of a companion (Figueira et al. 2010). SEEDS images reveal a bright background star at a separation of 6.97 and a considerably fainter candidate at $(\mathrm{E}, \mathrm{N})=\left(-1^{\prime \prime} .92,3\right.$ 3'19). Follow-up observations revealed that this candidate is also a background object. No other candidates were detected within $7^{\prime \prime}$ (~ 180 AU projected).
HIP 37288 (=GJ 281). This K7 star was originally proposed to be a member of the Local Association (Montes et al. 2001b), but was later reclassified in the Her-Lya association (López-Santiago et al. 2006). HIP 37288 shows only weak chromospheric activity and was not detected in the ROSAT allsky survey; its lithium absorption lines are also weaker than the mid-K stars in our sample reliably associated with young, coeval MGs. SEEDS images reveal a companion candidate at $(E, N)=\left(-3^{\prime \prime} 95,-1^{\prime \prime} .64\right)$; however, archival images from Gemini/NIRI reveal it to be an unrelated background star.

HIP 39896 (=GJ 1108 A). This K7 star was originally proposed to be a member of the Local Association. However, BANYAN indicates a possible membership in Columba, with ~70\% probability neglecting I and J photometry. HIP 39896 also has abundant youth indicators, including very rapid rotation and high chromospheric and coronal activity. We consider it a possible Columba member and provisionally assign a 50% membership probability. SEEDS has revealed, for the first time, a close binary companion, with a separation of $0^{\prime}!25$. With an $\mathrm{H}-$ band contrast of only a factor of ~ 6.4, the companion is likely to be an early M dwarf. HIP 39896 is also bound to a spectroscopic M2.8+M3.3 binary (GJ 1108 B) at a separation of $14^{\prime \prime}$ (Lépine \& Bongiorno 2007; Shkolnik et al. 2010), ~300 AU projected, making HIP 39896 part of a hierarchical quadruple system.

HIP 40774. This G5 star was proposed as a member of the IC 2391 supercluster. Archival data in the literature, including a non-detection by ROSAT, and weak photospheric lithium absorption, cast further doubt on the star's youth. Mishenina et al. (2008) report a lithium abundance $\log n(\mathrm{Li})=1.6$ on the scale with $H=12$, which would be consistent with the values reported by Sestito \& Randich (2005) for stars of similar
$T_{\text {eff }}$ in clusters of several Gyr age. Taken together, these data suggest an age for HIP 40774 of $\gtrsim 1$ Gyr. SEEDS images detect a companion candidate at a separation of (E,N) = ($-0^{\prime \prime} 10,-4^{\prime \prime} 48$); follow-up observations showed it to be an unrelated background object.

HIP 44526 (= HD 77825). This K2 star has been classified as a member of the Castor MG. It shows only modest levels of activity and lithium absorption, but does have a well-measured period. SEEDS images show two bright companion candidates at a separation of $\sim 7^{\prime \prime} .5$; follow-up imaging concluded showed that both were unrelated background stars.

HIP 45383 (= HD 79555 = GJ 339). This K3 star has been classified as a member of the Castor MG. It does, however, have chromospheric measurements and X-ray activity consistent with a reasonably young age. SEEDS images reveal the system to be a binary with an angular separation of $0^{\prime} .74$ and an H-band flux ratio of ~ 4.1 : a K-dwarf and an M dwarf with a projected separation of 13 AU. SEEDS images detected a more distant companion candidate at a separation of $7^{\prime \prime}$; however, follow-up observations revealed it to be an unrelated background star.

HIP 46843 ($=$ HD 82443 = GJ 354.1). This K0 star was originally classified in the Local Association. However, BANYAN indicates that it is a likely member of Columba, estimating a membership probability of just over 95%. HIP 46843 also has an extraordinary suite of secondary age indicators, including a rotation period. The star's abundant lithium, rapid rotation, and high level of activity confirm its youth, and we estimate a 90% probability of bona fide membership in Columba. SEEDS images detect a companion candidate with a separation of $4^{\prime \prime}$; however, archival images from Gemini/NIRI confirm its status as an unrelated background object.

HIP 50156 (= GJ 2079). This M0 star was recently proposed as a member of β Pic (Schlieder et al. 2012a); however, the recent Bayesian analysis of Malo et al. (2013) finds a better match to the Columba MG. While the identity of its parent group remains ambiguous, the star is very active and unlikely to be a member of the field. Malo et al. (2013) mention a surprisingly large scatter in the radial velocity measurements necessary to clarify membership and suggest that HIP 50156 may be a spectroscopic binary. However, deep SEEDS images show no evidence for a stellar companion outside $\sim 0{ }^{\prime}{ }^{\prime} 02, \sim 0.5 \mathrm{AU}$. Assuming that HIP 50156 is a spectroscopic binary, its two components must be very close, potentially accounting for the strong observed activity (and large scatter in reported R_{HK}^{\prime} values), and the system may be tidally locked. We tentatively consider it to be a member of Columba, although the similar ages of Columba and β Pic make the distinction somewhat minor for our purposes. SEEDS images detect no companion candidates within 7 ". $5, ~ \sim 170$ AU projected.

GJ 388. This M4 star has been classified in Castor. It shows significant activity and rapid rotation, but as an M star, these are difficult to use as indicators of youth. SEEDS images do not reveal any companion candidates. However, unfortunately, this data set features an exceptionally small amount of field rotation 2°. The target passed almost directly overhead but was not successfully tracked until after it had passed zenith.

HIP 50660. This K0 star has been proposed as a member of the IC 2391 supercluster. HIP 50660 was not detected by ROSAT and has few other measurements in the literature. SEEDS images detected a companion candidate with 5.9σ significance at a separation of $4^{\prime \prime} 2$. However, slightly deeper follow-up did not recover the point source, making it a likely statistical fluctuation.

HIP 51317 (= GJ 393). This M2 star is a reliable member of AB Dor. SEEDS images detect no companion candidates within 7 ". 5 (~ 50 AU projected).

HIP 53020 (= GJ 402). This nearby M5 star has been classified in Her Lya. There is little additional data on the star, and its late spectral type makes any sort of dating extremely difficult. SEEDS images detect no companion candidates within 8.5 (~60 AU projected).

HIP 53486 (= HD 94765 = GJ 3633). This K0 star has been classified as a member of the Castor MG. Secondary age indicators show moderate levels of chromospheric and coronal activity together with a modest rotation period, and probably indicate an older age. SEEDS images detect no companion candidates within $7^{\prime \prime} .5$ ($\sim 130 \mathrm{AU}$ projected).

HD 95174. This K2 star, together with its K5 binary companion, has recently been proposed as a member of β Pic. It was not detected by ROSAT, but was instead selected as a candidate member based on its strong UV emission, and confirmed as a likely member based on its Galactic motion (Schlieder et al. 2012b). New spectroscopy, however, indicates an almost complete depletion of photospheric lithium, which is not expected for such a young K-dwarf. Chromospheric activity measurements are too uncertain to strongly constrain the system's youth. Further, as shown in Figure 1 of Schlieder et al. (2012b), its $U V W$ velocity would place it right at the edge of the β Pic search area in all three velocity components, and it lies about 30 pc above the bulk of the bona fide β Pic members. With further age constraints from our spectroscopic follow-up, we consider HD 95174's classification in β Pic to be highly doubtful. SEEDS images reveal no companion candidates other than the known K5 secondary at a separation of $5^{\prime \prime}$.

HIP 54155 (= HD 96064). This G8 star is a proposed member of the Local Association. Though we do not infer an age from this, HIP 54155's secondary age indicators show high levels of activity and relatively abundant lithium. SEEDS images show a bright background star also detected in archival Gemini/NIRI images, together with a marginal, 5.5σ source at $(E, N)=\left(-3^{\prime \prime} .28,-3^{\prime \prime} 23\right), 1^{\prime \prime}$ from the background star. In spite of their comparable sensitivity, the Gemini/NIRI images do not show this fainter source at either the same relative position or at the expected background position; it is almost certainly a statistical fluctuation.

TWA 2. This M2 star is a young T Tauri object in the TW Hydrae MG. It is a binary, with its two components of similar brightness and separated by 0 !'4. SEEDS observations were conducted in poor conditions, especially since the object's declination of -30° makes it relatively inaccessible from Subaru. Less than 1 minute of integration time was obtained before the observation was abandoned. We have therefore omitted TWA 2 from our contrast tables.

TYC 3825-716-1. This K7 star was recently proposed as a member of the AB Dor MG. It is detected by ROSAT and shows strong UV emission consistent with youth (Schlieder et al. 2012b). TYC 3825-716-1 lies on the outskirts of the AB Dor MG in $U V W$ velocity space, and ~ 30 pc above most of the stars in Galactic Z distance. As a result, BANYAN gives a negligible probability for AB Dor membership. Our spectroscopy detects modest lithium absorption, but shows a chromospherically inactive star. Lacking a parallax or more compelling secondary age indicators, we decline to assign the star any probability of membership in AB Dor. SEEDS images do not detect any companions within $8^{\prime \prime}(\sim 460$ AU projected
assuming the star's distance as inferred from kinematics and assuming AB Dor membership).

HIP 59280 (= HD 105631 = GJ 3706). This K0 star has been classified in the IC 2391 supercluster. Its secondary age indicators show only modest chromospheric and coronal activity and lithium absorption, measurements consistent with an age closer to 1 Gyr. SEEDS images detect no companion candidates within 7". 5 (~ 190 AU projected).

TYC 4943-192-1. This M0 star was recently proposed to be a member of the AB Dor MG (Schlieder et al. 2010). Malo et al. (2013) confirmed it as an excellent candidate, but without a trigonometric parallax and with few secondary age indicators, a conclusive association is not yet possible. We consider TYC 4943-192-1 to be a likely member of AB Dor, provisionally adopting the $\sim 80 \%$ membership probability suggested by Malo et al. (2013). SEEDS images do not detect any companion candidates within 8 ".5 (~ 250 AU projected, assuming the distance inferred from kinematics and $A B$ Dor membership).

HIP 60661 (= GJ 466). This M0 star is a proposed member of the Local Association (Montes et al. 2001a). López-Santiago et al. (2006) suggest membership in AB Dor, though HIP 60661 has the largest discrepancy in V and W with AB Dor's average kinematics of all of their proposed members. López-Santiago et al. (2010) note a significantly discrepant radial velocity in their measurements of HIP 60661 and suggest that it may be a binary. It has few secondary age indicators, and its weak chromospheric activity may indicate a much older age than that inferred for a young MG. We do not consider the star to be a likely member of AB Dor. SEEDS images confirm HIP 60661's binary status, with a companion separated by $1^{\prime \prime} .9$ and an H-band contrast of ~ 5.7 (~ 70 AU projected). The companion detected by SEEDS is too far away, however, to account for the observed variation in radial velocity of several $\mathrm{km} \mathrm{s}^{-1}$ over a period of a few years. There may be another, as-yet-undetected, companion lurking much closer to HIP 60661. SEEDS images do not detect any other companion candidates within 7". 5 (~ 280 AU projected).

HIP 63317 ($=$ HD 112733). This G5 star is a proposed member of the Local Association. HIP 63317 does show strong coronal and chromospheric activity and significant lithium, which provide some constraint on its age. SEEDS images detect no companion candidates within 7". 5 (~ 330 AU projected).

FH CVn. This K7 star was recently proposed as a member of the AB Dor MG (Schlieder et al. 2012b). Its Galactic velocity is in excellent agreement with the bona fide members of the group, though FH CVn lies somewhat above the Galactic plane compared with the more established members. The star also shows very strong X-ray activity and rapid rotation. However, our spectroscopy indicates weak chromospheric activity and little photospheric lithium, giving some tension between different age indicators. FH CVn does lie at the lithium depletion boundary at an age of $\sim 130 \mathrm{Myr}$ (Mentuch et al. 2008), making the weakness of photospheric lithium absorption somewhat expected. We provisionally consider it to be a moderately likely member of AB Dor, though additional follow-up is needed to clarify FH CVn's status. Using only the available kinematic data, BANYAN estimates a 40% probability of AB Dor membership, which we adopt for our analysis. SEEDS images do not detect any companions within $7^{\prime \prime} .5(\sim 350$ AU assuming the distance inferred from MG membership).

HIP 66252 ($=$ HD 118100 = GJ 517). This K5 star has been classified in the IC 2391 supercluster. It has an extraordinary range of secondary age indicators, including vigorous activity,
rapid rotation, and relatively abundant lithium, all of which point to youth. SEEDS imaging detects no companion candidates within $75^{\prime \prime}, \sim 150$ AU projected.

HIP 67412 (= HD 120352). This K0 star has been classified in the IC 2391 supercluster. Its secondary age indicators show only modest chromospheric and coronal activity, while our spectroscopy reveals little photospheric lithium. SEEDS images reveal no companion candidates within 7".5, ~280 AU projected.

HIP 73996 (= HD 134083 = GJ 578). This F5 star was classified as a member of the UMa supercluster by Montes et al. (2001a). However, more recent work disputes this classification. Maldonado et al. (2010) list HIP 73996 as a probable nonmember, while their Table 8 claims that López-Santiago et al. (2010) list it as a probable member (the latter paper does not include the star at all). The star is not especially active either chromospherically or coronally. Our spectroscopy shows little photospheric lithium. Regardless of its membership in the UMa supercluster, HIP 73996 is almost certainly not a member of the coeval UMa MG. SEEDS images revealed a 7σ companion candidate at $(\mathrm{E}, \mathrm{N})=\left(2^{\prime \prime} .76,-0^{\prime} .33\right)$ with an H-band contrast of 2×10^{6}. However, this candidate was near an image artifact and was not detected in follow-up observations. No other candidates were detected within 7.5 (~ 280 AU projected).

HIP 78557 (= HD 143809). This G0 star is a proposed member of the Local Association. At 80 pc, it is also the most distant target in our sample. HIP 78577 has modest chromospheric, coronal activity, and reasonably abundant lithium. However, its relatively early spectral type makes these age indicators somewhat less useful. SEEDS detects a binary companion with a separation of $0!57(\sim 45$ AU projected) and an H-band contrast of ~ 190, which would make it a late M dwarf.

HIP 82688 ($=$ HD 152555). This late $\mathrm{F} /$ early G star is considered a reliable member of AB Dor, and its secondary age indicators confirm its youth. SEEDS images detect two bright stars, one of which is HIP 82688's binary companion. The companion has a separation of 3.18 ($\sim 85 \mathrm{AU}$ projected) and an H-band contrast of ~ 41, making it likely a mid-M dwarf. SEEDS also detects a faint candidate at (E, N) $=$ ($-1^{\prime \prime} .62,1^{\prime \prime} .82$); however, follow-up observations revealed it to be a background star.

HIP 83494 ($=154431$). This A5 star was proposed as a member of Tuc-Hor by Zuckerman et al. (2011). While it shows evidence of a debris disk, and is likely young, Malo et al. (2013) find a very poor match to Tuc-Hor, and classify HIP 83494 as a field star (nonmember of any of their studied associations) with high confidence. We decline to place a nonzero probability on Tuc-Hor membership. HIP 83494 is a member of the SEEDS high-mass sample, and is included here for completeness. The secondary age indicators that we use for our other targets are of little use for such a high-mass star. SEEDS images detected no companions.
HIP 87579 (= GJ 697). This K0 star is a proposed member of the Castor MG. Secondary age indicators show only modest coronal and chromospheric activity. SEEDS images detect many companion candidates within $8^{\prime \prime}$ (~ 200 AU projected); however, follow-up observations reveal them all to be background stars.

HIP 87768 (= GJ 698). This K5 star is a proposed member of the Local Association. SEEDS observations do not detect any companion candidates within $7^{\prime \prime} .5$ (~ 190 AU projected).

HIP 91043 (= HD 171488). This G2 star is a proposed member of the Local Association. Its secondary age indicators show an exceptionally active star with abundant lithium and rapid rotation. The isochrone analysis shows a strong discrepancy at
first glance, due to two strong peaks in the likelihood function, at $\sim 20 \mathrm{Myr}$ and $\sim 10 \mathrm{Gyr}$. The latter age is certainly incompatible with the secondary age indicators. The isochrones may therefore indicate that our age estimates are overly conservative. SEEDS observations reveal many companion candidates; however, this is expected for a source at low Galactic latitude, with $(l, b)=\left(48^{\circ}, 12^{\circ}\right)$. Follow-up observations confirmed these sources to be background objects; several brighter sources were seen in Keck imaging and listed in Metchev \& Hillenbrand (2009).

HIP 93580 (= HD 177178). This A4 star was proposed as a member of AB Dor by Zuckerman et al. (2011). It is part of the SEEDS high-mass sample, and included here for completeness. Malo et al. (2013) also favor membership in AB Dor, but with a somewhat low probability of 80% neglecting photometry, due to a discrepant U velocity. The isochrone analysis further calls this MG assignment into question. The likelihood function shows two peaks: one from ~ 5 to 20 Myr , and a second, broad peak centered at ~ 500 Myr. We provisionally adopt a lower probability of 30% for group membership. Due to HIP 93580's high mass, it never develops a large outer convective zone, and secondary age indicators are of little value. HIP 93580 lies just 2° from the Galactic plane and has many companion candidates awaiting follow-up observations.
$B D+05$ 4576. This K 7 star has recently been proposed as a member of AB Dor (Schlieder et al. 2010) on the basis of kinematics and its X-ray flux as measured by ROSAT. However, there is no trigonometric parallax, and our spectroscopy finds little photospheric lithium. The latter is not too surprising, as the star's spectral type places it right at the lithium depletion boundary for an age of ~ 130 Myr. Given the paucity of data, we adopt the 80% membership probability as estimated by BANYAN based only on the available kinematics. SEEDS images do not detect any companion candidates within $8^{\prime \prime}$ ($\sim 300 \mathrm{AU}$ assuming the distance inferred from kinematics and group membership).

HIP 102409 (= HD $197481=$ GJ $803=$ AU Mic). This M1 star hosts a well-known debris disk, and is reliably identified with the β Pic MG. The debris disk appears nearly edge-on and extends out to 200 AU in radius (Kalas et al. 2004), making AU Mic an excellent target for high-contrast observations. However, its declination of -31° makes it difficult to observe from Subaru; it is the most southerly target in the entire MG sample. SEEDS images do not detect any companions within 3 ". $2, \sim 30 \mathrm{AU}$ projected.

HD 201919. This K 6 star is a likely member of the AB Dor MG, and its secondary age indicators confirm its youth. SEEDS images detect only a bright companion candidate just over 7" away, a projected separation of nearly 300 AU at HD 201919's distance inferred from its kinematics assuming MG membership.

HIP 107350 (= HD 206860 = GJ 9751). This G0 star is a proposed member of the Her-Lya association. HIP 107350 does, however, have an exceptional set of measurements in the literature, including a rotation period and multi-decade Mt. Wilson chromospheric data. These secondary age indicators point to a relatively young system. SEEDS observations detect a single companion candidate around HIP 107350, but archival images from Gemini/NIRI reveal it to be an unrelated background star.

TYC 2211-1309-1. This K7 star was recently proposed as a likely member of β Pic based on its kinematics and strong secondary youth indicators. Indeed, this star is the fastest known rotator in our sample, with a period less than 0.5 day
independently measured by Norton et al. (2007) and Messina et al. (2010). However, our new spectroscopic measurements introduce some tension with the strong X-ray activity and rapid rotation, finding little evidence of photospheric lithium. This may point to an unusual accretion history or recent merger responsible for both the high angular momentum and relative lack of lithium; TYC 2211-1309-1 certainly deserves more study. We consider it to be a likely, albeit far from certain, member of $\beta \mathrm{Pic}$, and provisionally assign a 50% membership probability. SEEDS images were taken under very poor observing conditions and were made in the K band to enable even a basic AO correction. The only companion candidate detected was also visible in archival NACO images, which showed it to be an unrelated background star.

HIP 111449 ($=$ HD $213845=G J$ 863.2). This F7 star is a proposed member of the Her-Lya association. It has limited activity measurements from the literature, is relatively inactive in X-rays, and lacks significant photospheric lithium. SEEDS detects a stellar companion at a separation of 6 ." 1 ($\sim 140 \mathrm{AU}$ projected); this object was previously reported in Lafrenière et al. (2007a).

HIP 114066 (= GJ 9809). This M0 star is a reliable member of the AB Dor MG, and shows relatively rapid rotation and vigorous X-ray activity. HIP 114066 lies nearly in the Galactic plane; as a result, it has an extremely high density of spurious background stars. Using archival Gemini/NIRI data, we have confirmed that all of these candidates are unrelated background stars.

HIP 115162. This star is a reliable member of the AB Dor MG. Its secondary age indicators show strong signs of youth, including abundant photospheric lithium and relative strong chromospheric and coronal activity. HIP 115162 has had some controversy over its spectral type, with Schlieder et al. (2010) listing it as G0V, while Zuckerman \& Song (2004) list G4, and Ofek (2008) fit G8V to a spectral energy distribution template. We used the known spectral-class/temperature dependent line ratio of $\mathrm{Fe}_{\text {II }} 6432.65 \AA / \mathrm{Fe}_{\text {I }} 6430.85 \AA$ (Strassmeier \& Fekel 1990; Montes \& Martin 1998) to better constrain the spectral classification of HIP 115162. The observed line ratio for HIP $115162, \sim 0.22$, was more consistent with that observed in K0V stars (~ 0.2; Montes \& Martin 1998) than in G0V (~ 0.5; Montes \& Martin 1998) or G5V (~ 0.4; Montes \& Martin 1998) stars. This supports a late G spectral type for HIP 115162, and we adopt the Ofek (2008) G8V classification. SEEDS images detect no companion candidates within $7^{\prime \prime}$, or 350 AU projected.
$B D-13$ 6424. This M0 star is a reliable member of the β Pic MG. Its secondary age indicators show rapid rotation, abundant lithium, and strong X-ray activity. SEEDS images detect no companion candidates within $7^{\prime \prime} 5$, or ~ 200 AU projected.

HIP 116805 ($=$ HD $222439=\kappa$ And) . banyan gives a very high probability, 95%, of Columba membership, as was asserted in its companion's discovery paper (Carson et al. 2013). However, our isochrone analysis casts doubt on this classification, with a strong peak in the likelihood function at ~ 200 Myr. Other authors have recently re-analyzed HIP 116805 and also find evidence for an older age and possible non-membership in Columba (Bonnefoy et al. 2014; Hinkley et al. 2013). We note however, that the rapid rotation and unknown inclination angle of the star may make isochronal age determination unreliable; if the star is viewed close to pole on, it could be as young as Columba. In this work, we provisionally assign the star a 30% probability of Columba membership. HIP 116805 is primarily part of the SEEDS high-mass sample, and is

Figure 3. Contrast curves for the SEEDS MGs sample; FK Psc, HIP 3589, HIP 6869, HIP 12925, HIP 45383, HD 95174, HIP 60661, HIP 82688, and HIP 91043 show strong artifacts from bright neighbors and have been omitted. At separations of $\lesssim 1^{\prime \prime}$, the contrast limits depend on field rotation and observing conditions. Several arcseconds from the star, SEEDS observations are read noise limited, and the magnitude limits depend on AO performance, total integration time, and integration per frame. Fainter targets have less contrast, but fainter limiting magnitudes, at separations $\gtrsim 2^{\prime \prime}$.
(A color version of this figure is available in the online journal.)
included here for completeness. HIP 116805 hosts a substellar companion, κ And b, recently discovered by SEEDS (Carson et al. 2013). κ And b has a mass of $\sim 13-50 M_{J}$, depending on the assumed system age (Carson et al. 2013; Bonnefoy et al. 2014; Hinkley et al. 2013), and lies at a separation of $1^{\prime \prime} .06$, or 55 AU projected, from its host star.

8. DISCUSSION

Table 5 shows the 5.5σ detection limits for the SEEDS MG targets; Figure 3 plots these limits, together with 20%, 50%, and 80% curves, omitting stars with contrast artifacts from nearby bright stars. At small angular separations ($\left.\lesssim 1^{\prime \prime}\right)$, the limiting contrast depends mostly on observing conditions, AO performance, and field rotation, with only a weak dependence on stellar brightness. Far from the central star, SEEDS observations are read noise limited. In this regime, limiting magnitude is a more appropriate measure than limiting contrast. Sensitivity at these separations ($\gtrsim 2^{\prime \prime}$) depends almost exclusively on AO performance, total integration time, and integration time per frame.

The typical limiting contrast of a SEEDS observation varies from $\sim 10^{3}$ at $0^{\prime \prime} 3$, to $\sim 10^{5}$ at $1^{\prime \prime}$, to nearly 10^{6} at separations $\gtrsim 2^{\prime \prime}$. The limiting masses are far more variable, due to the spread in ages (and often enormous uncertainties in age) of the targets observed. As a very crude guide to the mass sensitivity of our sample, Figure 4 plots the mass detection limit as a function of projected separation around each target, assuming the median age of the posterior probability distribution (Section 5, Table 3). These sensitivities assume the COND03 exoplanet cooling models (Baraffe et al. 2003) and neglect uncertainties in stellar age and exoplanet modeling. We defer a full analysis of our sensitivity as a function of exoplanet mass, together with a statistical analysis of the sample and its constraints on exoplanet frequency and properties, to a forthcoming paper (T. D. Brandt et al. 2013, in preparation).

Figure 4. Mass sensitivity of the SEEDS MGs sample at the median age of the posterior probability distribution (Section 5, Table 3); FK Psc, HIP 3589, HIP 6869, HIP 12925, HIP 45383, HD 95174, HIP 60661, HIP 82688, and HIP 91043 show strong artifacts from bright neighbors and have been omitted. The COND03 models (Baraffe et al. 2003) have been used to convert from mass to luminosity. The red line marks the approximate stellar/brown dwarf boundary, while the blue line marks the brown dwarf/planet transition. Jupiter and Saturn are indicated near the lower-left corner. A thorough treatment of the statistics of the sample and its sensitivities as a function of mass will be presented in a forthcoming paper.
(A color version of this figure is available in the online journal.)

Our sensitivity limits are competitive with other high-contrast instrumentation at other observatories, but should improve dramatically with the new extreme AO system, SCExAO, currently being commissioned at Subaru (Guyon et al. 2011). We are also exploring more minor upgrades to HiCIAO that may offer significant performance improvements. In the Southern hemisphere, Gemini Planet Imager (GPI; Macintosh et al. 2008) and SPHERE (Beuzit et al. 2008) will combine integral-field spectroscopy with high-performance AO to offer exceptional sensitivity at small angular separations. CHARIS, an integral-field spectrograph being developed and built for the Subaru telescope, will offer similar capabilities in the Northern hemisphere (McElwain et al. 2012; Peters et al. 2012).

9. CONCLUSIONS

We have presented high-contrast observations of 63 nearby stars in the SEEDS MG sample. All of the stars have been suggested to be members of coeval stellar associations. We have reviewed each proposed association, and conclude that five associations, β Pictoris, AB Doradus, Tucana-Horologium, Columba, and TW Hydrae, are sufficiently well-defined to provide conclusive age estimates for bona-fide members. Somewhat under half of our target sample have firm ages derived from MG membership.

For all stars, and in particular for those without a firm MG age, we use empirical age indicators including stellar rotation, chromospheric and coronal activity, and photospheric lithium abundance to estimate an age. Some of these data are new observations we have acquired at the Apache Point Observatory. The heterogeneity of our targets and their age indicators result in a wide range of constraints, with some of our targets having very precise ages and others being almost completely unconstrained. This picture should improve as transit surveys
measure photometric periods for an increasing fraction of field stars.

We have reduced all of our observations uniformly with the recently published software ACORNS-ADI (Brandt et al. 2013) and published contrast curves for our target stars. The contrast varies from $\sim 10^{3}$ at $0^{\prime \prime} 3$ to $\sim 10^{5}$ at $1^{\prime \prime}$ to $\sim 10^{6}$ at $2^{\prime \prime}$; it is limited by field rotation, PSF fluctuations, and AO performance at small separations, and by AO performance and exposure time at separations $\gtrsim 2^{\prime \prime}$. A full analysis of our sensitivity as a function of exoplanet mass, and the constraints on exoplanet frequency and properties, is beyond the scope of this paper. We will provide this analysis of the SEEDS MG sample, the debris disk sample, and archival data from other surveys in a forthcoming paper.

The authors thank an anonymous referee for many helpful suggestions that substantially improved the age analysis presented in this paper. This research is based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatories of Japan. This material is based on work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE-0646086. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Abt, H. A., \& Morrell, N. I. 1995, ApJS, 99, 135
Agüeros, M. A., Anderson, S. F., Covey, K. R., et al. 2009, ApJS, 181, 444
Anosova, J. P., \& Orlov, V. V. 1991, A\&A, 252, 123
Arriagada, P. 2011, ApJ, 734, 70
Baliunas, S., Sokoloff, D., \& Soon, W. 1996, ApJL, 457, L99
Baraffe, I., \& Chabrier, G. 2010, A\&A, 521, A44
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., \& Hauschildt, P. H. 2003, A\&A, 402, 701
Barenfeld, S. A., Bubar, E. J., Mamajek, E. E., \& Young, P. A. 2013, ApJ, 766, 6
Barnes, S. A. 2003, ApJ, 586, 464
Barnes, S. A. 2007, ApJ, 669, 1167
Barrado y Navascues, D. 1998, A\&A, 339, 831
Barrado y Navascués, D. 2006, A\&A, 459, 511
Barrado y Navascués, D., Stauffer, J. R., \& Jayawardhana, R. 2004, ApJ, 614, 386
Barrado y Navascués, D., Stauffer, J. R., Song, I., \& Caillault, J.-P. 1999, ApJL, 520, L123
Beuzit, J.-L., Feldt, M., Dohlen, K., et al. 2008, Proc. SPIE, 7014, 701418
Bildsten, L., Brown, E. F., Matzner, C. D., \& Ushomirsky, G. 1997, ApJ, 482, 442
Biller, B. A., Close, L. M., Masciadri, E., et al. 2007, ApJS, 173, 143
Biller, B. A., Liu, M. C., Wahhaj, Z., et al. 2010, ApJL, 720, L82
Binks, A. S., \& Jeffries, R. D. 2014, MNRAS, 438, 11
Bonnefoy, M., Currie, T., Marleau, G.-D., et al. 2014, A\&A, 562, A111
Bouchy, F., Hébrard, G., Udry, S., et al. 2009, A\&A, 505, 853
Bowler, B. P., Liu, M. C., Shkolnik, E. L., et al. 2012, ApJ, 753, 142
Brandt, T. D., McElwain, M. W., Turner, E. L., et al. 2013, ApJ, 764, 183
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856
Caballero, J. A. 2010, A\&A, 514, A98
Carson, J., Thalmann, C., Janson, M., et al. 2013, ApJL, 763, L32
Carson, J. C., Eikenberry, S. S., Smith, J. J., \& Cordes, J. M. 2006, AJ, 132, 1146
Casagrande, L., Schönrich, R., Asplund, M., et al. 2011, A\&A, 530, A138
Chabrier, G., Baraffe, I., Allard, F., \& Hauschildt, P. 2000, ApJ, 542, 464
Chauvin, G., Lagrange, A.-M., Dumas, C., et al. 2004, A\&A, 425, L29

Cincunegui, C., Díaz, R. F., \& Mauas, P. J. D. 2007, A\&A, 469, 309
Close, L. M., Thatte, N., Nielsen, E. L., et al. 2007, ApJ, 665, 736
Cumming, A., Butler, R. P., Marcy, G. W., et al. 2008, PASP, 120, 531
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, yCat, 2246, 0
da Silva, L., Torres, C. A. O., de La Reza, R., et al. 2009, A\&A, 508, 833
Davila, J. M. 1987, ApJ, 317, 514
de la Reza, R., Torres, C. A. O., Quast, G., Castilho, B. V., \& Vieira, G. L. 1989, ApJL, 343, L61
De Silva, G. M., D’Orazi, V., Melo, C., et al. 2013, MNRAS, 431, 1005
Delorme, P., Gagné, J., Girard, J. H., et al. 2013, A\&A, 553, L5
Dong, R., Hashimoto, J., Rafikov, R., et al. 2012, ApJ, 760, 111
Duncan, D. K., Vaughan, A. H., Wilson, O. C., et al. 1991, ApJS, 76, 383
Eggen, O. J. 1958, MNRAS, 118, 65
Eggen, O. J. 1961, RGOB, 41, 245
Eggen, O. J. 1975, PASP, 87, 37
Eggen, O. J. 1983a, MNRAS, 204, 391
Eggen, O. J. 1983b, MNRAS, 204, 377
Eggen, O. J. 1991, AJ, 102, 2028
Eggen, O. J. 1992, AJ, 104, 2141
Eggen, O. J. 1995, AJ, 110, 2862
Eisenbeiss, T., Ammler-von Eiff, M., Roell, T., et al. 2013, A\&A, 556, A53
Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A\&A, 537, A146
Evans, T. M., Ireland, M. J., Kraus, A. L., et al. 2012, ApJ, 744, 120
Famaey, B., Jorissen, A., Luri, X., et al. 2005, A\&A, 430, 165
Famaey, B., Siebert, A., \& Jorissen, A. 2008, A\&A, 483, 453
Favata, F., Barbera, M., Micela, G., \& Sciortino, S. 1993, A\&A, 277, 428
Fernández, D., Figueras, F., \& Torra, J. 2008, A\&A, 480, 735
Figueira, P., Marmier, M., Bonfils, X., et al. 2010, A\&A, 513, L8
Flower, P. J. 1996, ApJ, 469, 355
Follette, K. B., Tamura, M., Hashimoto, J., et al. 2013, ApJ, 767, 10
Frasca, A., Freire Ferrero, R., Marilli, E., \& Catalano, S. 2000, A\&A, 364, 179
Fuhrmann, K. 2004, AN, 325, 3
Gaidos, E. J. 1998, PASP, 110, 1259
Gaidos, E. J., Henry, G. W., \& Henry, S. M. 2000, AJ, 120, 1006
Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E., \& da Costa, L. 2005, A\&A, 436, 895
Gizis, J. E. 2002, ApJ, 575, 484
Glatzmaier, G. A. 1985, ApJ, 291, 300
Gliese, W. 1969, VeARI, 22, 1
Grady, C. A., Muto, T., Hashimoto, J., et al. 2013, ApJ, 762, 48
Gray, R. O., Corbally, C. J., Garrison, R. F., et al. 2006, AJ, 132, 161
Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T., \& Robinson, P. E. 2003, AJ, 126, 2048

Gregorio-Hetem, J., Lepine, J. R. D., Quast, G. R., Torres, C. A. O., \& de La Reza, R. 1992, AJ, 103, 549
Guyon, O., Martinache, F., Clergeon, C., et al. 2011, Proc. SPIE, 8149, 814908
Hartman, J. D., Bakos, G. Á., Noyes, R. W., et al. 2011, AJ, 141, 166
Hashimoto, J., Dong, R., Kudo, T., et al. 2012, ApJL, 758, L19
Hashimoto, J., Tamura, M., Muto, T., et al. 2011, ApJL, 729, L17
Hawley, S. L., Gizis, J. E., \& Reid, I. N. 1996, AJ, 112, 2799
Hayano, Y., Takami, H., Guyon, O., et al. 2008, Proc. SPIE, 7015, 701510
Helou, G., \& Walker, D. W. (ed.) 1988, Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Volume 7: The Small Scale Structure Catalog (Hanover, MD: NASA STI)
Hempelmann, A., Schmitt, J. H. M. M., Schultz, M., Ruediger, G., \& Stepien, K. 1995, A\&A, 294, 515

Henry, G. W., Fekel, F. C., \& Hall, D. S. 1995, AJ, 110, 2926
Hernán-Obispo, M., Gálvez-Ortiz, M. C., Anglada-Escudé, G., et al. 2010, A\&A, 512, A45
Heyvaerts, J., \& Priest, E. R. 1983, A\&A, 117, 220
Hinkley, S., Oppenheimer, B. R., Soummer, R., et al. 2009, ApJ, 701, 804
Hinkley, S., Pueyo, L., Faherty, J. K., et al. 2013, ApJ, 779, 153
Hinz, P. M., Rodigas, T. J., Kenworthy, M. A., et al. 2010, ApJ, 716, 417
Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A\&A, 355, L27
Houk, N., \& Smith-Moore, M. 1988, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars, Vol. 4, Declinations -26.0 to -12.0 (Ann Arbor, MI: Department of Astronomy, Univ. Michigan)
Houk, N., \& Swift, C. 1999, Michigan Catalogue of Two-dimensional Spectral Types for the HD Stars, Vol. 5 (Ann Arbor, MI: Department of Astronomy, Univ. Michigan)
Howard, A. W., Marcy, G. W., Johnson, J. A., et al. 2010, Sci, 330, 653
Hünsch, M., Schmitt, J. H. M. M., Sterzik, M. F., \& Voges, W. 1999, A\&AS, 135, 319
Hunt-Walker, N. M., Hilton, E. J., Kowalski, A. F., Hawley, S. L., \& Matthews, J. M. 2012, PASP, 124, 545

Isaacson, H., \& Fischer, D. 2010, ApJ, 725, 875
Janson, M., Bonavita, M., Klahr, H., et al. 2011a, ApJ, 736, 89

Janson, M., Brandner, W., Lenzen, R., et al. 2007, A\&A, 462, 615
Janson, M., Brandt, T. D., Kuzuhara, M., et al. 2013, ApJL, 778, L4
Janson, M., Carson, J., Thalmann, C., et al. 2011b, ApJ, 728, 85 Jeffries, R. D. 1995, MNRAS, 273, 559
Jeffries, R. D., \& Jewell, S. J. 1993, MNRAS, 264, 106
Jenkins, J. S., Murgas, F., Rojo, P., et al. 2011, A\&A, 531, A8
Jenkins, J. S., Pavlenko, Y. V., Ivanyuk, O., et al. 2012, MNRAS, 420, 3587
Jenkins, J. S., Ramsey, L. W., Jones, H. R. A., et al. 2009, ApJ, 704, 975
Kalas, P., Liu, M. C., \& Matthews, B. C. 2004, Sci, 303, 1990
Kastner, J. H., Zuckerman, B., Weintraub, D. A., \& Forveille, T. 1997, Sci, 277, 67
Kenyon, S. J., \& Hartmann, L. 1995, ApJS, 101, 117
King, J. R., Villarreal, A. R., Soderblom, D. R., Gulliver, A. F., \& Adelman, S. J. 2003, AJ, 125, 1980

Kiss, L. L., Moór, A., Szalai, T., et al. 2011, MNRAS, 411, 117
Klimchuk, J. A. 2006, SoPh, 234, 41
Koen, C., \& Eyer, L. 2002, MNRAS, 331, 45
Kraft, R. P. 1967, ApJ, 150, 551
Kuhn, J. R., Potter, D., \& Parise, B. 2001, ApJL, 553, L189
Kusakabe, N., Grady, C. A., Sitko, M. L., et al. 2012, ApJ, 753, 153
Kuzuhara, M., Tamura, M., Kudo, T., et al. 2013, ApJ, 774, 11
Lafrenière, D., Doyon, R., Marois, C., et al. 2007a, ApJ, 670, 1367
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., \& Artigau, É. 2007b, ApJ, 660, 770
Lagrange, A.-M., Bonnefoy, M., Chauvin, G., et al. 2010, Sci, 329, 57
Lagrange, A.-M., Gratadour, D., Chauvin, G., et al. 2009, A\&A, 493, L21
Landolt, A. U. 1992, AJ, 104, 340
Lépine, S., \& Bongiorno, B. 2007, AJ, 133, 889
Lépine, S., \& Simon, M. 2009, AJ, 137, 3632
Looper, D. L., Bochanski, J. J., Burgasser, A. J., et al. 2010a, AJ, 140, 1486
Looper, D. L., Burgasser, A. J., Kirkpatrick, J. D., \& Swift, B. J. 2007, ApJL, 669, L97
Looper, D. L., Mohanty, S., Bochanski, J. J., et al. 2010b, ApJ, 714, 45
López-Santiago, J., Montes, D., Crespo-Chacón, I., \& Fernández-Figueroa, M. J. 2006, ApJ, 643, 1160
López-Santiago, J., Montes, D., Gálvez-Ortiz, M. C., et al. 2010, A\&A, 514, A97
Luhman, K. L., Stauffer, J. R., \& Mamajek, E. E. 2005, ApJL, 628, L69
Macintosh, B. A., Graham, J. R., Palmer, D. W., et al. 2008, Proc. SPIE, 7015, 701518
Maldonado, J., Martínez-Arnáiz, R. M., Eiroa, C., Montes, D., \& Montesinos, B. 2010, A\&A, 521, A12

Malo, L., Doyon, R., Lafrenière, D., et al. 2013, ApJ, 762, 88
Mamajek, E. E. 2005, ApJ, 634, 1385
Mamajek, E. E. 2012, ApJL, 754, L20
Mamajek, E. E., Bartlett, J. L., Seifahrt, A., et al. 2013, AJ, 146, 154
Mamajek, E. E., \& Feigelson, E. D. 2001, in ASP Conf. Ser. 244, Young Stars Near Earth: Progress and Prospects, ed. R. Jayawardhana \& T. Greene (San Francisco, CA: ASP), 104
Mamajek, E. E., \& Hillenbrand, L. A. 2008, ApJ, 687, 1264
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., \& Lissauer, J. J. 2007, ApJ, 655, 541
Marois, C., Macintosh, B., Barman, T., et al. 2008, Sci, 322, 1348
Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., \& Barman, T. 2010, Natur, 468, 1080
Martínez-Arnáiz, R., Maldonado, J., Montes, D., Eiroa, C., \& Montesinos, B. 2010, A\&A, 520, A79
Masciadri, E., Mundt, R., Henning, T., Alvarez, C., \& Barrado y Navascués, D. 2005, ApJ, 625, 1004
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., \& Ogawara, Y. 1994, Natur, 371, 495
Mayama, S., Hashimoto, J., Muto, T., et al. 2012, ApJL, 760, L26
McCarthy, C., \& Zuckerman, B. 2004, AJ, 127, 2871
McCarthy, K., \& White, R. J. 2012, AJ, 143, 134
McElwain, M. W., Brandt, T. D., Janson, M., et al. 2012, Proc. SPIE, 8446, 84469C
Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R., \& Hauschildt, P. H. 2008, ApJ, 689, 1127
Messina, S., Desidera, S., Tutatto, M., Lanzafame, A. C., \& Guinan, E. F. 2010, A\&A, 520, 15
Messina, S., Guinan, E. F., Lanza, A. F., \& Ambruster, C. 1999, A\&A, 347, 249
Messina, S., Rodonò, M., \& Guinan, E. F. 2001, A\&A, 366, 215
Mestel, L. 1968, MNRAS, 138, 359
Metchev, S. A., \& Hillenbrand, L. A. 2009, ApJS, 181, 62
Minowa, Y., Hayano, Y., Oya, S., et al. 2010, Proc. SPIE, 7736, 77363N
Mishenina, T. V., Soubiran, C., Bienaymé, O., et al. 2008, A\&A, 489, 923
Monnier, J. D., Che, X., Ming, Z., et al. 2012, ApJL, 761, L3

Montes, D., López-Santiago, J., Fernández-Figueroa, M. J., \& Gálvez, M. C. 2001a, A\&A, 379, 976
Montes, D., López-Santiago, J., Gálvez, M. C., et al. 2001b, MNRAS, 328, 45
Montes, D., \& Martin, E. L. 1998, A\&AS, 128, 485
Muto, T., Grady, C. A., Hashimoto, J., et al. 2012, ApJL, 748, L22
Narita, N., Kudo, T., Bergfors, C., et al. 2010, PASJ, 62, 779
Narita, N., Takahashi, Y. H., Kuzuhara, M., et al. 2012, PASJ, 64, L7
Nielsen, E. L., Liu, M. C., Wahhaj, Z., et al. 2013, ApJ, 776, 4
Nordström, B., Mayor, M., Andersen, J., et al. 2004, A\&A, 418, 989
Norton, A. J., Wheatley, P. J., West, R. G., et al. 2007, A\&A, 467, 785
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., \& Vaughan, A. H. 1984, ApJ, 279, 763

Ofek, E. O. 2008, PASP, 120, 1128
Oppenheimer, B. R., \& Hinkley, S. 2009, ARA\&A, 47, 253
Ortega, V. G., de la Reza, R., Jilinski, E., \& Bazzanella, B. 2002, ApJL, 575, L75
Ortega, V. G., Jilinski, E., de La Reza, R., \& Bazzanella, B. 2007, MNRAS, 377, 441
Pace, G. 2013, A\&A, 551, L8
Palous, J., \& Hauck, B. 1986, A\&A, 162, 54
Parker, E. N. 1955, ApJ, 122, 293
Parker, E. N. 1988, ApJ, 330, 474
Pecaut, M. J., \& Mamajek, E. E. 2013, ApJS, 208, 9
Peters, M. A., Groff, T., Kasdin, N. J., et al. 2012, Proc. SPIE, 8446, 84467U
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., \& Demarque, P. 1989, ApJ, 338, 424
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., \& Ventura, P. 2003, A\&A, 397, 147
Proctor, R. A. 1869, RSPS, 18, 169
Reid, I. N., Cruz, K. L., Allen, P., et al. 2004, AJ, 128, 463
Reid, I. N., Hawley, S. L., \& Gizis, J. E. 1995, AJ, 110, 1838
Reid, N. 2003, MNRAS, 342, 837
Rice, E. L., Faherty, J. K., \& Cruz, K. L. 2010, ApJL, 715, L165
Rodriguez, D. R., Bessell, M. S., Zuckerman, B., \& Kastner, J. H. 2011, ApJ, 727, 62
Rucinski, S. M., \& Krautter, J. 1983, A\&A, 121, 217
Sato, B., Fischer, D. A., Ida, S., et al. 2009, ApJ, 703, 671
Schlieder, J. E., Lépine, S., \& Simon, M. 2010, AJ, 140, 119
Schlieder, J. E., Lépine, S., \& Simon, M. 2012a, AJ, 143, 80
Schlieder, J. E., Lépine, S., \& Simon, M. 2012b, AJ, 144, 109
Schmitt, J. H. M. M., Fleming, T. A., \& Giampapa, M. S. 1995, ApJ, 450, 392
Schneider, A., Song, I., Melis, C., Zuckerman, B., \& Bessell, M. 2012, ApJ, 757, 163
Scholz, R.-D., Meusinger, H., \& Jahreiß, H. 2005, A\&A, 442, 211
Schröder, C., Reiners, A., \& Schmitt, J. H. M. M. 2009, A\&A, 493, 1099
Sestito, P., \& Randich, S. 2005, A\&A, 442, 615
Shkolnik, E., Liu, M. C., \& Reid, I. N. 2009, ApJ, 699, 649
Shkolnik, E. L., Anglada-Escudé, G., Liu, M. C., et al. 2012, ApJ, 758, 56
Shkolnik, E. L., Hebb, L., Liu, M. C., Reid, I. N., \& Collier Cameron, A. 2010, ApJ, 716, 1522
Shkolnik, E. L., Liu, M. C., Reid, I. N., Dupuy, T., \& Weinberger, A. J. 2011, ApJ, 727, 6
Skumanich, A. 1972, ApJ, 171, 565
Soderblom, D. R. 1985, AJ, 90, 2103
Soderblom, D. R. 2010, ARA\&A, 48, 581
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., Mamajek, E. E., \& Naylor, T. 2014, Protostars and Planets VI, ed. H. Beuther, R. Klessen, C. Dullemond, \& Th. Henning (Tuscon, AZ: Univ. of Arizona Press)
Song, I., Zuckerman, B., \& Bessell, M. S. 2003, ApJ, 599, 342
Spiegel, D. S., \& Burrows, A. 2012, ApJ, 745, 174
Strassmeier, K., Washuettl, A., Granzer, T., Scheck, M., \& Weber, M. 2000, A\&AS, 142, 275
Strassmeier, K. G., \& Fekel, F. C. 1990, A\&A, 230, 389
Suzuki, R., Kudo, T., Hashimoto, J., et al. 2010, Proc. SPIE, 7735, 773530
Takeda, G., Ford, E. B., Sills, A., et al. 2007, ApJS, 168, 297
Tamura, M. 2009, in AIP Conf. Ser. 1158, Exoplanets and Disks: Their Formation and Diversity, ed. T. Usuda, M. Tamura, \& M. Ishii (Melville, NY: AIP), 11
Tanii, R., Itoh, Y., Kudo, T., et al. 2012, PASJ, 64, 124
Thalmann, C., Carson, J., Janson, M., et al. 2009, ApJL, 707, L123
Thalmann, C., Grady, C. A., Goto, M., et al. 2010, ApJL, 718, L87
Thalmann, C., Janson, M., Buenzli, E., et al. 2013, ApJL, 763, L29
Thalmann, C., Janson, M., Buenzli, E., et al. 2011, ApJL, 743, L6
Torres, C. A. O., Busko, I. C., \& Quast, G. R. 1983, in IAUC, Vol. 71, Activity in Red-dwarf Stars, ed. P. B. Byrne \& M. Rodonò (Dordrecht: Reidel), 175

Torres, C. A. O., da Silva, L., Quast, G. R., de la Reza, R., \& Jilinski, E. 2000, AJ, 120, 1410
Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A\&A, 460, 695
Torres, C. A. O., Quast, G. R., de La Reza, R., et al. 2003, in Astrophysics and Space Science Library, Vol. 299, Open Issues in Local Star Formation, ed. J. Lépine \& J. Gregorio-Hetem (Dordrecht: Kluwer), 83
Torres, C. A. O., Quast, G. R., Melo, C. H. F., \& Sterzik, M. F. 2008, in Young Nearby Loose Associations, ed. B. Reipurth (San Francisco, CA: ASP), 757
Torres, G. 2010, AJ, 140, 1158
van Leeuwen, F. 2007, A\&A, 474, 653
Vigan, A., Patience, J., Marois, C., et al. 2012, A\&A, 544, A9
Voges, W., Aschenbach, B., Boller, T., et al. 1999, A\&A, 349, 389
Voges, W., Aschenbach, B., Boller, T., et al. 2000, yCat, 9029, 0
Webb, R. A., Zuckerman, B., Platais, I., et al. 1999, ApJL, 512, L63
Weinberger, A. J., Anglada-Escudé, G., \& Boss, A. P. 2013, ApJ, 762, 118
Weis, E. W. 1993, AJ, 105, 1962

White, R. J., Gabor, J. M., \& Hillenbrand, L. A. 2007, AJ, 133, 2524
Wilson, O. C. 1963, ApJ, 138, 832
Wright, J. T., Marcy, G. W., Butler, R. P., \& Vogt, S. S. 2004, ApJS, 152, 261
Wu, Y., Singh, H. P., Prugniel, P., Gupta, R., \& Koleva, M. 2011, A\&A, 525, A71
Yamamoto, K., Matsuo, T., Shibai, H., et al. 2013, PASJ, 65, 90
Yoon, J., Peterson, D. M., Kurucz, R. L., \& Zagarello, R. J. 2010, ApJ, 708, 71
Zuckerman, B., Rhee, J. H., Song, I., \& Bessell, M. S. 2011, ApJ, 732, 61
Zuckerman, B., \& Song, I. 2004, ARA\&A, 42, 685
Zuckerman, B., Song, I., \& Bessell, M. S. 2004, ApJL, 613, L65
Zuckerman, B., Song, I., Bessell, M. S., \& Webb, R. A. 2001a, ApJL, 562, L87
Zuckerman, B., Song, I., \& Webb, R. A. 2001, ApJ, 559, 388
Zuckerman, B., Vican, L., Song, I., \& Schneider, A. 2013, ApJ, 778, 5
Zuckerman, B., \& Webb, R. A. 2000, ApJ, 535, 959
Zuckerman, B., Webb, R. A., Schwartz, M., \& Becklin, E. E. 2001b, ApJL, 549, L233

