57th Annual SAS/ACS/MSNO May Conference

Revealing Interfaces and Nanostructure: The Application of Atom Probe Tomography to Nickel Based Superalloys

Dr. Chantal Sudbrack, NASA Glenn Research Center, chantal.k.sudbrack@nasa.gov

- 1.Background in nickel-based superalloys
- 2.Background in atom-probe tomography
- 3.Decomposition behavior of model Ni-Al-Cr alloy when aged at 600 °C

Acknowledgements: Prof. David Seidman, Kevin E. Yoon , Zugang Mao (Northwestern); Ronald Noebe (NASA GRC); Georges Martin (Comm. à l'Energie Atomique); Northwestern University Center for Atom Probe Tomography (NUCAPT)

<u>Poster</u>: The effect of prior exposures on the notched fatigue behavior of disk superalloy ME3 Co-authors: Susan L Draper¹, Timothy T Gorman², Jack Telesman¹, Timothy P Gabb¹, David R Hull¹, Daniel E Perea³ and Daniel K Schreiber³: 1. NASA Glenn 2. NASA USRP 3. PNNL

Ni-Based Superalloys

Due to an unusual combination of properties, Ni-based superalloys are used in many applications which require structural integrity at elevated temperatures Precipitate strengthened

Mechanical properties

- Capable of bearing loads at $T/T_M = \sim 0.85-0.9$ ($T_{M(Ni)} = 1453$ °C) without significant deformation
 - -γ' strengthening (precipitatestrengthening)
 - Solid solution strengthening in the γ -matrix
- Damage Tolerance (Ductility and Toughness)

Requirements:

- Resistance to Environmental Degradation
 - Hot corrosion and oxidation

Single Crystal Ni-Based Superalloys

- Engineered for Extreme Temperature Capability Creep, Thermal Fatigue and Environmental Protection
- Anisotropic Properties
- Turbine Blade and Nozzle Applications
 NASA GRC

- Intermediate Temperature Capability Fatigue, Tensile, Crack Growth and Environmental Resistance
- Isotropic Properties
- Turbine Disk Applications

Model Ni-Based Superalloys

 Fundamental thermodynamic and kinetic underpinning of γ'-precipitation

NASA GRC

Atom-probe tomography measurements

- *APT*: post-mortem atomic imaging technique in direct space with subnanometer spatial resolution (static snapshots of dynamic process)
- 1. Short-range ordering, clustering, impurity concentration & distribution
- 2. Morphological development

~50 million atoms

3. Dimensional and nanostructural quantification

- Variations in layer thicknesses
- Radius, number density, volume fraction of precipitates

4. Compositional characterization

- Bulk phases
- Fine scale nanostructure
- Buried interfaces (e.g. grain boundaries):
 - Chemical interdiffusion, chemical roughness, segregation, transients

3-D Atom Probe Tomography

- Analyze volumes >10⁶ nm³
 0.1 x 0.1 x 0.5 μm³
- 5 x 10⁻¹¹ torr ultrahigh vacuum
- Specimen T: 20 to 300 K
- Equipped with both electrical and thermal-assisted pulsing:
 - 250 kHz electrical pulse
 - 500 kHz picosecond laser

(green: 532 nm, 10 ps)

• Analyze data with 3D visualization software, IVAS, from Cameca (formerly Imago Scientific)

Determines the spatial position of individual atoms and their chemical identities with sub-nanometer scale resolution

Ion detection efficiency: 40-60%, Depth positioning: 0.02-0.05 nm, Lateral positioning: 0.2-0.3 nm

APT specimens are needle shaped

Metals: Electrochemical wire sharpening from APT blank (0.25 x 0.25 x 10 mm³)

D. A. Shashkov, M. F. Chrisholm and D. N. Seidman Acta. Mater, 47, 3939-3951 (1999).

Nanowires: Direct growth on a micropost

Multilayers: FIB preparation / Lift-out to micropost

www.nasa.gov

3-D LEAP™ Tomography

Specimens & Pucks

Specimen Carousel

Load Lock Chamber (Top Entry)

Analysis Chamber (Side Viewport)

Needle Geometry

Microtip Geometry

Courtesy of NUCAPT

8

Fine scale microstructural analysis with APT

Ni-5.2 Al-14.2 Cr (at. %) aged at 600°C for 4 hours

www.nasa.gov ⁹

Proximity Histogram Concentration Profile Data analysis in IVAS 3D visualization software

Proximity Histogram or "Proxigram" is a 3D nonlinear compositional profile with respect to isoconcentration surface (interfaces).

Three steps

- 1. A sampling to generate a regular grid of concentration points
- 2. An interpolation to identify an isoconcentration surface
- 3. A correlation of the isoconcentration surface to the original set of discrete atomic positions

- Analyzes all the concentrations of the same value in a data set in parallel, invaluable for large data sets
- Invariant to interfacial geometry

Hellman, Seidman et al. Micro. Microanal. 6, 437 (2000)

Decomposition behavior of model Ni-Al-Cr alloy when aged at 600 °C

11

T= 600 °C aging studies of Ni-5.2 Al-14.2 Cr at. %

NASA

Atomic-scale mechanisms that drive the early stage precipitation

National Aeronautics and Space Administration **Temporal evolution of** γ **'-precipitation in 3D**

10 x 10 x 25 nm³ sub-volumes of APT reconstructions 9 at. % Al isoconcentration surfaces (atoms omitted for clarity)

Ni-5.2 Al-14.2 Cr aged at 600°C

- Precipitates as small as R = 0.45 nm are resolved, 20 detected atoms, which is close to lattice kinetic Monte Carlo (LKMC) predictions for critical nuclei size of 0.485 nm
- Dimensions and orientation of each precipitate are determined using best-fit ellipsoid
- <u>Buried interfaces</u>: generate average compositional profiles across the γ/γ' interfaces using proximity histogram compositional profiles

APT measurements of the mean precipitate radiu

<i>t</i> (h)	Nb. of ppts. analyzed	< <i>R</i> > ± <i>σ</i> (nm)	
0.17	7.5	0.74 ± 0.24	nucleation
0.25	74	0.75 ± 0.14	
1	100	0.89 ± 0.14	nucleation
4	173.5	1.27 ± 0.21	and growth
16	101	2.1 ± 0.4	
64	46	2.8 ± 0.6	growth and
256	81	4.1 ± 0.8	coarsening
1024	6	7.7 ± 3.3	

Growth regimes established by APT measurements

15

Concentration profile evolution in the matrix

Schematic: **Growth of stable nucleus** occurs by solute diffusion **driven by chemical potential gradient** due to supersaturated matrix

Transients disappear after 16 h .:. quasi-steady state obtained

F. S. Ham, J. Phys. Chem. Solids, 6 (1958) 335

* Proxigram method, which averages over all interfaces in the analysis volume.gov 16

Gibbs-Thomson effect: predicts an increase in solid-solubility at an interface due its curvature. It is non-negligible when precipitate dimensions are on the of the order capillary length, typically 1-2 nm

See: Sudbrack et al, Acta Mater 55 (2007) 119.

National Aeronautics and Space Administration Confirmation of early-stage coagulation & coalescence

- Atom probe tomography is a powerful characterization technique
- The combined APT/LKMC approach has been particularly helpful in:
 - Nanometer scale characterization of morphological development in 3D
 - Precise compositional analysis of buried interfaces
 - Insight into diffusional processes that drive phase transformations