

Development of Stable Two-Way Shape Memory Behavior in a Polycrystalline NiTi Shape Memory Alloy

<u>O. Benafan</u>, S.A. Padula II, R.D. Noebe, A. Garg, D.J. Gaydosh and G.S. Bigelow

Structures and Materials Division NASA Glenn Research Center

R. Vaidyanathan and D.E. Nicholson

Advanced Materials Processing and Analysis Center Mechanical, Materials and Aerospace Engineering Department University of Central Florida

T.A. Sisneros, B. Clausen and D.W. Brown

Los Alamos Neutron Science Center Los Alamos National Laboratory

Acknowledgment

- NASA Fundamental Aeronautics Program, Supersonics and Fixed-Wing Programs
- Basic Energy Sciences (DOE)
- > CASMART

Two-Way Shape Memory Effect (TWSME)

- > Two-Way Shape Memory effect (TWSME) is not an inherent behavior of SMAs
- Can be obtained after specific thermomechanical training procedures (<u>many</u> <u>different training methods have been developed</u>)

Motivation and Objectives

Motivation:

- > Training by martensite deformation is relatively easy and quick [4] Y. Liu et al./Acta Mater. 47, (1998)
- > Requires little more than a onetime deformation of the material
- > Multiple thermomechanical cycles are NOT REQUIRED

Objectives:

- > Investigate the role of deformation on the stability and efficacy of the TWSME
- Examine the micromechanical and microstructural changes associated with the training procedure (neutron diffraction)
- > Optimize training for a specific TWSME actuator application
- > Use the same training method to obtain different properties
- Can we apply this to the load-biased actuators??

Neutron Diffraction at LANL

- Bulk penetration ~1cm
- Ability to follow micromechanical and microstructural changes
- Phase specific, quantitative information during heating/cooling and loading
- ➤ Material: 55NiTi (wt%), d = 5.08 mm

CASMART

Training Procedures

TWSME magnitude

TWSME stability

Deformation Mechanisms in Martensitic NiTi

Microstructure

Macroscopic response

Training Procedures

CONSORTIUM FOR THE ADVANCEMENT OF SHAPE COMPANIES AND A COMPANY ALLOY RESEARCH AND TECHNOLOGY CASSMART

www.nasa.gov 12

Training II: Constant Strain/Variable Temperature

cooling

heating

Training condition

E=14 %

T = 70 °C

200

- coo ling

heating

Training condition

E= 14 %

T = 140 °C

200

150

Training condition

E= 14 %

T = 300 ° C

150

temperature (°C)

cooling

heating

200

150

temperature (°C)

TWSME Response

temperature (°C)

<u>Training II</u>: Constant Strain/Variable Temperature

TWSME magnitude

TWSME stability

- ▶ Positive TSWME $\rightarrow \sim 2.4\%$
- ▶ No TWSME \rightarrow 0%
- ▶ Negative TWSME \rightarrow ~-1%

Training II: Constant Strain/Variable Temperature

CARSON ACCEPTED ADVANCEMENT OF SHAPE MENORY ALLOY RESEARCH AND TECHNOLOGY CASSMART Government Academia Industry

Extend from TWSME to Load-Biased On the Optimization of Actuator Properties

CONSORTIUM FOR THE ADVANCEMENT OF SHAPE MEMORY ALLOY RESEARCH AND TECHNOLOGY CASSMART Government Academia Industry

www.nasa.gov 16

Summary and Conclusions

- The role of deformation and the corresponding microstructure on the TWSME training was investigated
- The TWSME can be optimized to fit several applications using the same training procedure
- ➤ In this alloy (55NiTi):
 - ▶ Positive TSWME $\rightarrow \sim 2.2\%$
 - ▶ No TWSME \rightarrow 0%
 - ▶ Negative TWSME $\rightarrow \sim -1\%$
- > Can be extended to optimize SMA actuators under load
- Understanding the microstructure (in this work using neutron diffraction) is key in training and optimizing the structure (e.g., SMA actuators)

