

Understanding the Flow Physics of Shock Boundary Layer Interactions Using CFD and Numerical Analyses

David Friedlander, Nick Georgiadis NASA Glenn Research Center Mark Turner, Paul Orkwis University of Cincinnati

4/24/13

Outline

- Introduction
- Geometry and Modeling
- Cases
- Results
- Conclusions
- Future Work

Introduction

- SBLI's are not trivial in nature and are very three dimensional flows.
- Physics associated with SBLI's that are often ignored in numerical modeling:
 - Heat transfer boundary conditions
 - Geometry sensitivities
 - Laminar vs. turbulent flow assumptions

Figure from "Computational Fluid Dynamics Investigation into the Shock Boundary Layer Interactions in the "Glass Inlet" Wind Tunnel" by D. Galbraith, courtesy of M. Galbraith

Introduction

- Workshop held at the 48th AIAA Aerospace Sciences Meeting.
 - CFD analyses failed to match experimental data.
- Further CFD analyses performed at the University of Cincinnati/NASA Glenn Research Center.
 - University of Michigan Glass Tunnel
 - Mach 2.75 freestream
 - 7.75 degree semi-spanning wedge

Introduction

- Focus on the *u* and *v* velocity components.
 - Felt that the CFD and post-processing calculations from the workshop missed the peak *u* velocity as well as the location of the shock as defined by the *v* velocity profile.
- Explored alternatives to the previous workshop error metric.

Geometry and Modeling

• 3D overset grid* with 56 million grid points divided into 15 zones.

*Grid based on the one made by Marshall Galbraith

- OVERFLOW Version 2.2E
- Ran on 20 Quad-Core Xeon X5570 (NASA Pleiades-Nehalem).
- Local time-step scaling.
 - CFLMIN=5
 - CFLMAX=20
- Cases took about 68hrs to converge.

CFD Cases

- Standard
- Isothermal
- Modified Geometry
- Trip
- Combined
- TKE
- MUT
- Particle Lag*
- Total Temperature**
- Perfect vs. Non-Ideal**

*Post-processing only **Quasi-1D only

Standard Case

- Geometry: As designed (A/A*=3.7062)
- SST turbulence model
 - Modified SST (SST-GY)
 - BSL
- All surfaces adiabatic
- TKE_{INF}=3.576x10⁻¹ m²/s²
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

Isothermal Case

- Geometry: As designed (A/A*=3.7062)
- SST turbulence model
- Top and bottom walls and wedge isothermal (295.7 K), all other surfaces (including bottom window) adiabatic.
- TKE_{INF}=3.576x10⁻¹ m²/s²
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

Modified Geometry Case

- Geometry: As currently installed with max tolerance (A/A*=3.7847)
- SST turbulence model
- All surfaces adiabatic
- TKE_{INF}=3.576x10⁻¹ m²/s²
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

Trip Case

- Geometry: As designed (A/A*=3.7062)
- Laminar from inlet to 67.6mm downstream of the throat, SST turbulence model for remaining regions.
 - Trip at approximately where Re_{θ} =400, based on alllaminar case (see next slide)
- All surfaces adiabatic
- TKE_{INF}= $3.576 \times 10^{-1} \text{ m}^2/\text{s}^2$
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

Combined Case

- Geometry: As currently installed with max error (A/A*=3.7847)
- Laminar from inlet to 67.6mm downstream of the throat, SST turbulence model for remaining regions.
 - Ran with SST-GY and BSL in addition to SST.
- Top and bottom walls and wedge isothermal (295.7 K), all other surfaces (including bottom window) adiabatic.
- TKE_{INF}=3.576x10⁻¹ m²/s²
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

TKE Case

- Geometry: As designed (A/A*=3.7062)
- SST turbulence model
- All surfaces adiabatic
- TKE_{INF}=3.576x10³ m²/s²
- Re_{T,INF}=0.3
- Constant $c_p/c_v=1.4$

MUT Case

- Geometry: As designed (A/A*=3.7062)
- SST turbulence model
- All surfaces adiabatic
- TKE_{INF}=3.576x10³ m²/s²
- Re_{T,INF}=3.0
- Constant $c_p/c_v=1.4$

Particle Lag Simulation

- Time constants represent 50%, 75%, and 100% total particle relaxation time:
 - Short Lag (1.8 µs)
 - Medium Lag (3.7 µs)
 - Long Lag (5.5 μs)

$$x' = x + u_x \tau$$
$$y' = y + v_y \tau$$

Figure 3.1: Measured particle response through an oblique shock. The velocity component normal to the shock, \overline{u}_n , is normalized by the pre-shock (\overline{u}_{n_1}) and post-shock (\overline{u}_{n_2}) velocities and shown as a function of the shock-normal direction, n. An exponential fit to the data reveals the particle relaxation time, $\tau_p = 5.5 \,\mu$ s.

Figure from "Experimental Study of Passive Ramps for Control of Shock-Boundary Layer Interactions" by A. Lapsa

Total Temperature Sensitivity

- Discrepancy in total temperature:
 - Workshop: 293 K
 - Experiment: 295.7 ±1 K
- Using 1D perfect gas equations:
 - 2.8 m/s (0.47% of a 600 m/s freestream velocity).
 - ±1 K alone is ± 1 m/s (0.17% of a 600 m/s freestream velocity).

Perfect vs. Non-Ideal Air

- MATLAB code developed to perform quasi-1D flow calculations for perfect and non-ideal air.
- Very little difference between perfect and non-ideal air calculations

Flat Plate Study

- 2D Zero Pressure Gradient case from Turbulence Model Benchmarking Working Group.
- Ran with SST, SST-GY, BSL, and K-Omega

Solutions agree well with each other (except K-Omega)

Grid Resolution Study

Inlet: Tt=295.7 K, Pt=98000 Pa

Throat

	Coarse	Medium	Fine
Tt (K)	296.530	295.909	295.701
Pt (Pa)	98761.8	98199.4	98009.4
М	0.95217	0.94737	0.94703

Upstream

	Coarse	Medium	Fine
Tt (K)	296.504	295.960	295.704
Pt (Pa)	98134.4	98103.0	97996.9
Μ	2.73365	2.73637	2.74482

Downstream

	Coarse	Medium	Fine
Tt (K)	296.173	296.073	295.742
Pt (Pa)	96083.7	96459.3	96247.1
М	2.49111	2.48308	2.47317

Mass flow conserved within < 0.5%

National Aeronautics and Space Administration

Results

www.nasa.gov 23

Data Comparison Plane

National Aeronautics and Space Administration

Isothermal Case

$$\frac{T_{aw}}{T_{\infty}} = 1 + \frac{r_c}{2} (\gamma - 1) M_{\infty}^2 \qquad r_c = 92.3\%$$

Isothermal case shifts interaction region slightly upstream

Difference=Isothermal-Standard

National Aeronautics and Space Administration

Trip Case

CFD turbulent kinetic energy lower in the freestream

National Aeronautics and Space Administration

TKE and MUT Cases

Increase in freestream TKE results in better agreement with freestream experimental data National Aeronautics and Space Administration

Turbulence Model Effects

U<0

National Aeronautics and Space Administration

Metrics

Error Metric

U Error	V Error	
0.02373 Q	0.008947 Expt.	
0.02633 B	0.01158 Standard (Medium Lag)	
0.02669 P	0.01185 Standard (Long Lag)	
0.02676 Standard (Long Lag)	0.01224 Standard (Short Lag)	
0.02747 Standard (Medium Lag)	0.01308 MUT	
0.02759 G	0.01331 TKE	
0.02840 F	0.01348 Combined (Medium Lag)	
0.02853 Standard (Short Lag)	0.01360 Combined (Short Lag)	
0.02899 M	0.01375 Combined (Long Lag)	
0.02957	0.01377 Standard	
0.02964 Standard	0.01403 Combined	
0.02999 K	0.01414 Trip	
0.03020 Standard (SST-GY)	0.01449 B	
0.03025 Combined (Short Lag)	0.01514 Isothermal	
0.03035 N	0.01621 Modified Geometry	
0.03036 Combined (Medium Lag)	0.01682 P	
0.03043 TKE	0.01716 G	
0.03043 MUT	0.01729 F	
0.03047 Combined	0.01771 M	
0.03064 Combined (Long Lag)	0.01828 Q	
0.03090 Isothermal	0.01867 K	
0.03114 Modified Geometry	0.01917 N	
0.03115 Standard (BSL)	0.01950 Standard (SST-GY)	
0.03129 O	0.01961 O	
0.03163 Trip	0.02227 Standard (BSL)	
0.03473 Expt.	0.02344 J	
0.03571 H	0.02348 Combined (SST-GY)	
0.03739 Combined (SST-GY)	0.02576 Combined (BSL)	
0.03856 Combined (BSL)	0.02721 H	
0.03980 L	0.03883 L	
0.03995 J	0.04002	

Note all prior workshop CFD analyses utilized a total temperature of 293 K while the new CFD analyses utilized a total temperature of 295.7 K.

Point Comparison Location

U Velocity Deltas

	Point A		Point B	
Case	U (m/s)	ΔU (m/s)	U (m/s)	ΔU (m/s)
Standard	594.600	0.000	587.042	0.000
Isothermal	594.454	-0.146	586.377	-0.665
Modified Geometry	596.567	1.967	586.413	-0.629
Trip	595.186	0.586	587.737	0.695
Combined	596.980	2.380	587.038	-0.004
Experiment	-	-	599.330	12.288

Shock Angle

Conclusions

- CFD analyses were performed and generally under predicted the freestream velocities but with improvements.
 - Improved modeling.
 - The flow was shown to be most likely transitional downstream of the throat.
 - SST likely has corner separation too large, which was reduced with SST-GY and BSL.

Conclusions

- A fraction of the measured PIV lag was used with a simple model to modify the CFD solutions.
 - Showed improved comparisons to the experimental data.
 - Future comparisons should have the CFD results augmented in a post-processing step to calculate particle velocities.
- New complimentary metrics:
 - max *u* velocity
 - shock angle

Future Work

- Sensitivities to address:
 - Additional geometric parameters
 - Turbulence model and parameters
 - Heat transfer boundary conditions
 - Conjugate heat transfer
 - Boundary-layer transition/trip location and model

Future Work

- The simplified PIV model should be improved on.
 - Calculating the particle lag based on the forces exerted on the individual particles by the air (including particle size distribution).
 - Obtaining flow field snapshots at two instances in time.
 - Snapshots would then be processed using the same PIV post-processing algorithm used with the experimental data.

Acknowledgements

- Air Force Research Laboratory, Air Vehicle Directorate, AFRL/RB and the interaction with the U.S. Air Force Collaborative Center for Aeronautical Sciences
- NASA Fundamental Aeronautics Program High Speed Project and the NASA High End Computing Program (HECC)
- Marshall Galbraith

National Aeronautics and Space Administration

Backup Slides

	Throat (in)	Test Section (in)	A/A*
As Designed	2.25 x 0.742	2.25 x 2.75	3.7062
As Installed	2.25 x 0.725	2.25 x 2.72	3.7847

Error of "As Installed" Measurement: +/- 0.005 in

Throat Modification

Added an additional 50 grid points to base grid to define the nozzle contour

Grid Modification

2.

3.

4.

5.

Total Temperature at Bottom Wall, Center-Span Standard Case CFD 310 **Isothermal Case CFD Combined Case CFD** Throat **Trip Location** 300 Start of Straight Section Tt (K) Wedge Leading Edge 290 Wedge Trailing Edge 280 -500 500 -1000 10 X (mm)

3

5

12