brought to you by CORE

Optical Property Evaluation of Next Generation Thermal Control Coatings RES/Jaworske

Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

National Aeronautics and Space Administration

Optical Property Evaluation of Next Generation Thermal Control Coatings

Donald A. Jaworske NASA Glenn Research Center

Mukund S. Deshpande Applied Material Systems Engineering, Inc.

> Edward A. Pierson Lockheed Martin Corporation

National Space and Missile Materials Symposium 28 June – 2 July 2010

www.nasa.gov 🕠