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Introduction to the General Interplanetary 
Mission Design Problem
 The interplanetary design problem is composed of both discrete and 

real-valued decision parameters:
- Choice of destination(s), number of planetary flybys, identities of flyby 

planets
- Launch date, flight time(s), epochs of maneuvers, control history, flyby 

altitudes, etc.
 For example, for a main-belt asteroid mission, the designer must 

choose:
- The optimal asteroid from a set of scientifically interesting bodies 

provided by the customer
- Whether or not to perform planetary flybys on the way to the main belt 

and, if so, at which planets
- Optimal trajectory from the Earth to the chosen asteroid by way of the 

chosen flyby planets
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Unique Characteristics of Low-Thrust 
Interplanetary Mission Design
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 Low-thrust electric propulsion is characterized by high power requirements but 
also very high specific impulse (Isp), leading to very good mass fractions
 Low-thrust trajectory design is a very different process from chemical trajectory 

design
- Chemical thrusters fire for minutes during a mission time-scale of years
 Chemical maneuvers may be approximated as occurring instantaneously (impulsively)
 This allows a mission designer to parameterize the cost of a chemical mission in units of “change 

in velocity,” or ∆v
 ∆v is invariant to changes in spacecraft hardware or launch vehicle, and mass fraction may be 

computed using only Isp and ∆v
- Electric thrusters fire for months or years, sometimes the entire mission duration
 The mission designer therefore must choose a time-history of thrust control rather than discrete 

maneuvers
 The impulsive approximation does not apply, and so the affect of the thruster must be continuously 

integrated as the spacecraft flies
 The propellant flow rate required to provide a given thrust is dependent on the available power at 

that instant
 Therefore different choices of power and thruster systems change the trajectory solution!
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Traditional Methods of Low-Thrust, Multi-
Flyby Trajectory Design
 Several methods of picking the destination and flyby sequence:

- Grid search over all possible choices of destinations, flyby sequence, 
propulsion system, power system, etc. (very expensive and often 
impractical)

- Intuition-guided manual design of the trajectory (even more expensive, 
can miss non-intuitive solutions)

 Several methods of designing the trajectory:
- Local optimization from an initial guess provided by a chemical 

mission design (but sometimes the optimal chemical trajectory does 
not resemble the optimal low-thrust trajectory)

- Local optimization from an initial guess provided by a low-fidelity 
approximation to the low-thrust model, i.e. shaped-based methods 
(but sometimes the shape-based method cannot accurately 
approximate the true trajectory)
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Brief History of Automated Interplanetary 
Trajectory Design
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 Gage, Braun, and Kroo, 1994 – autonomous chemical design with variable mission 
sequence (no deep-space maneuvers)
 Vasile and de Pascale, 2005 – autonomous chemical design for fixed mission sequence
 Vἰnko and Izzo, 2008 – autonomous chemical design for fixed mission sequence
 Wall and Conway, 2009 – autonomous low-thrust design for fixed mission sequence (no 

planetary flybys)
 Chilan and Conway, 2009 – autonomous low-thrust and chemical design for fixed mission 

sequence (no planetary flybys)
 Yam, di Lorenzo, and Izzo, 2011 – autonomous low-thrust design for fixed mission 

sequence
 Abdelkhalik and Gad, 2011, 2012, and 2013 – autonomous chemical design with variable 

mission sequence
 Englander, Conway, and Williams, 2012 – autonomous chemical design with variable 

mission sequence
 Englander (dissertation) 2013 – autonomous low-thrust design with variable mission 

sequence
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Automated Mission Design via Hybrid 
Optimal Control
 Break the mission design problem into two stages, or “loops”

- “outer-loop” picks sets of destinations, planetary flybys, sizes the 
power system, can pick propulsion system – a discrete optimization 
problem

- “inner-loop” finds the optimal trajectory for a given candidate outer-
loop solution – a real-valued optimization problem

- For the outer-loop to work, the inner-loop must function autonomously 
(i.e. no human interaction)
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Multi-Objective Hybrid Optimal Control

 The customer (scientist or project manager) most often does not want 
just one point solution to the mission design problem
 Instead, an exploration of a multi-objective trade space is required
 For a typical main-belt asteroid mission the customer might wish to see 

the trade-space of:
- Launch date vs
- Flight time vs
- Deliverable mass
- While varying the destination asteroid, planetary flybys, solar array 

size, etc
 To address this question we use a multi-objective discrete outer-loop 

which defines many single objective real-valued inner-loop problems
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Outer-Loop Transcription and Optimization

 The outer-loop finds the non-dominated trade surface between any set 
of objective functions chosen by the user
 Non-dominated surface means “no point on the surface is superior to 

any other point on the surface in all of the objective functions”
 The outer-loop solver may choose from a menu of options for each 

decision variable
 The choices made by the outer-loop solver are used to define trajectory 

optimization problems to be solved by the inner-loop
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Anatomy of a Mission
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• Break mission into a set of “journeys,” 
each of which in turn is broken into 
“phases”

• The endpoints of a journey are chosen in 
the problem assumptions

• The endpoints of a phase (i.e. a flyby 
target) may be chosen by the user or an 
Outer-Loop solver
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Outer-Loop Transcription: An Example
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Sample Mission
Array Size Flight Time Upper 

Bound
Asteroid 1 Potential Planetary 

Flyby 1
Asteroid 2 Potential 

Planetary Flyby 2

Code 8 4 0 1 1 1
Translation 18 kW 8 y Ceres Mars Pallas none

Array Size
Code Power (kW)
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20

Asteroid Choices
Code Body
0 Ceres
1 Pallas
2 Juno
3 Vesta
4 Astraea
5 Hebe
6 Iris
7 Flora
8 Metis
9 Hygiea
10 Parthenope
11 Victoria
12 Egeria
13 Irene
14 Eunomia
15 Psyche
16 Thetis

Flyby Choices (Journey 2)
Code Body
0 Mars
1 none

Flyby Choices (Journey 1)
Code Body
0 Earth
1 Mars
2 none
3 none

Flight time upper bound
Code Flight Time (y)
0 6
1 6.5
2 7
3 7.5
4 8
5 8.5
6 9
7 9.5
8 10
9 10.5
10 11
11 11.5
12 12
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Multi-Objective Optimization via NSGA-II

 The outer-loop optimization problem is solved using a discrete multi-
objective solver, in this case Non-Dominated Sorting Genetic Algorithm 
II (NSGA-II)
 NSGA-II finds the non-dominated front, surface, or hyper-surface 

between any number of objectives chosen by the user

12

Initial generation

TOF TOF

Mass
Population evolves via 

genetic operators
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Inner-Loop Modeling and Optimization

 The inner-loop solves a real-valued trajectory optimization problem 
which is defined by each candidate solution to the outer-loop problem
 The inner-loop must function autonomously because the problems are 

generated in real time and there is no opportunity for human 
intervention
 The outer-loop is only as good as the solutions to the inner-loop 

problem, so the inner-loop must be robust
 A given run of the outer-loop may require hundreds or even thousands 

of runs of the inner-loop, so the inner-loop must be fast
 If the individual inner-loop runs are independent then many of them can 

be run in parallel
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 Break mission into phases. Each phase starts and ends at a body.
 Sims-Flanagan Transcription

- Break phases into time steps
- Insert a small impulse in the center of each

time step, with bounded magnitude
- Optimizer Chooses:
 Launch date

- For each phase:
 Initial velocity vector
 Flight time
 Thrust-impulse vector at each time step
 Mass at the end of the phase
 Terminal velocity vector

 Assume two-body force model; propagate by solving Kepler’s problem
 Propagate forward and backward from phase endpoints to a “match point”
 Enforce nonlinear state continuity constraints at match point
 Enforce nonlinear velocity magnitude and altitude constraints at flyby

Multiple Gravity Assist with Low-Thrust 
(MGALT) via the Sims-Flanagan Transcription

14
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Power, Propulsion, and Ephemeris 
Modeling

15

 Medium-fidelity mission design requires accurate hardware modeling
 Launch vehicles are modeled using a polynomial fit

݉ௗ௘௟௜௩௘௥௘ௗ ൌ 	 ൫1	 െ	ߪ௅௏൯ ቀܽ௅௏ܥଷହ ൅	ܾ௅௏ܥଷସ ൅	ܿ௅௏ܥଷଷ ൅	݀௅௏ܥଷଶ ൅	݁௅௏3ܥ	 ൅	 ௅݂௏ቁ
where ߪ௅௏ is launch vehicle margin and ܥଷ is hyperbolic excess velocity

 Thrusters are modeled using either a polynomial fit to published thrust and mass flow rate data
ሶ݉ ൌ 	 ܽி	ܲସ 	൅	ܾி	ܲଷ 	൅ 	ܿி	ܲଶ 	൅ 	݀ி	ܲ	 ൅ 	݁ி
ܶ	 ൌ 	்ܽܲସ ൅	்ܾܲଷ ൅	்ܿܲଶ ൅	்݀ܲ	 ൅	்݁

or, when detailed performance data is unavailable

ܶ	 ൌ
ܲߟ	2
௦௣݃଴ܫ

 Power is modeled by a standard polynomial model

଴ܲ
ଶݎ
ቌ ଴ߛ ൅

ଵߛ
ݎ ൅ ଶߛ

ଶݎ
1	 ൅	ߛଷݎ	 ൅ ଶݎସߛ	

ቍ 1 െ ߬ ௧

where ଴ܲ is the power at beginning of life at 1 AU and ߬ is the solar array degradation constant

 Ephemeris data for solar system bodies is provided via the SPICE toolkit
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Inner-Loop Solver:
Nonlinear Programming (NLP)

Minimize ݂ ࢞
Subject to:

௟௕࢞ ൑ ࢞ ൑ ௨௕࢞
ࢉ ࢞ ൑ ૙
࢞࡭ ൑ ૙

where:
௨௕࢞ ,௟௕࢞ are lower and upper bounds on the decision variables

ࢉ ࢞ is a vector of nonlinear constraints
࢞࡭ is a vector of linear constraints

 There are several third party solvers that do this (SNOPT, IPOPT, fmincon, 
vf13AD)
 But all of these methods require an initial guess…

Page: 16
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Inner-Loop Solver:
Monotonic Basin Hopping (MBH)

Page: 17

Leary, 2000
Vasile, Minisci, and Locatelli, 2009
Yam, di Lorenzo, and Izzo, 2011
Englander (dissertation), 2013
Casioli et al., 2013
Englander and Englander, 2014

Improved from standard MBH by:
1. “Feasible point finder” aggregate penalty method
2. Non-uniform (Pareto) perturbation step
3. “Time-hop” operator (Casioli et al.)
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Example: Main-Belt Two Asteroid Tour
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Mission Objective Visit two main-belt asteroids with diameter greater than 50 km
(475 bodies meet this filter)

Launch Vehicle Atlas V 401
Power System
Array power at 1 AU 15 kW
Cell performance model 1/r2

Spacecraft bus power 800 W
Power margin 15%
Propulsion System
Thruster NEXT (throttle table 11, high-Isp mode)
Number of thrusters 1
Duty cycle 90%
Propellant tank unconstrained
Mission Sequence up to two planetary flybys are permitted before the first asteroid and up to 

one between the first and second asteroids
Inner-Loop Objective Function Maximize delivered mass to second asteroid
Outer-Loop Objective Functions Delivered mass to second asteroid

Launch year
Flight time
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Main-Belt Two Asteroid Tour:
Outer-Loop Menu
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Launch Year
Code Year

0 2020
1 2021
2 2022
3 2023
4 2024
6 2025
7 2026
8 2027
9 2028

10 2029

Flight Time Upper 
Bound

Code # Years
0 5
1 6
2 7
3 8
4 9
5 10
7 11
8 12

First Asteroid
Code Body

0 Ceres
1 Pallas
2 Juno
3 Vesta
4 Astraea
5 Hebe
6 Iris
7 Flora

…
(475 

choices)

First Journey First Flyby
Code Body

0 Earth
1 Mars
2 Jupiter
3 No flyby
4 No flyby
5 No flyby

First Journey Second Flyby
Code Body

0 Earth
1 Mars
2 Jupiter
3 No flyby
4 No flyby
5 No flyby

Second Asteroid
Code Body

0 Ceres
1 Pallas
2 Juno
3 Vesta
4 Astraea
5 Hebe
6 Iris
7 Flora

…
(475 

choices)

Second Journey Flyby
Code Body

0 Earth
1 Mars
2 Jupiter
3 No flyby
4 No flyby
5 No flyby

1.16x109

possible 
combinations,
4.82x109 with 
duplicates
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Main-Belt Two Asteroid Tour:
First Generation Trade Space
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Main-Belt Two Asteroid Tour:
Final Generation Trade Space

21
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Main-Belt Two Asteroid Tour: Example 
Trajectories
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A 12-year mission to Anahita and 
Lutetia delivers a very large science 
payload

A 5-year mission to Ausonia and 
Baucis delivers a smaller payload in 
less time and at a lower cost

Both of these candidate missions, and many others, would be 
valuable data points for our scientist customers
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Example: Deimos Large-Mass Sample Return

23

Mission Objective Return a large boulder from Deimos
Launch Vehicle Delta IV Heavy with lunar flyby (C3 2.0)
Power System
Array power at 1 AU chosen by optimizer
Cell performance model 1/r2

Spacecraft bus power 2.0 kW
Power margin 0%
Propulsion System
Thruster chosen by optimizer (high-Isp or high-thrust versions of a large Hall 

thruster)
Number of thrusters chosen by optimizer (3, 4, 5, or 6)
Duty cycle 90%
Propellant tank unconstrained
Mission Sequence Direct travel to Mars followed by direct return to C3 2.0 for lunar flyby 

capture
Mars arrival/departure is modeled using an Edelbaum spiral

Inner-Loop Objective Function Maximize sample return mass
Outer-Loop Objective Functions Sample return mass

Solar array size
Launch epoch
Flight time
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Deimos Sample Return:
Outer-Loop Menu
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Power Supply at 1 AU
Code Array Output

0 40
1 41
2 42
3 43
4 44
5 45
6 46
7 47
8 48
9 49

10 50
11 51
12 52
13 54
14 56
15 58
16 60
17 62
18 64
19 66
20 68
21 70

Flight Time Upper Bound
Code Days

0 800
1 900
2 1000
3 1100
4 1200
5 1300
7 1400
8 1500
9 1600

10 1700
…
26 3300

Launch Year
Code Year

0 2019
1 2020
2 2021
3 2022
4 2023
6 2024
7 2025
8 2026
9 2027

Thruster Type
Code Thruster

0 13 kW Hall (High-Isp)
1 13 kW Hall (medium-thrust)
2 13 kW Hall (High-thrust)

Number of Thrusters
Code # Thrusters

0 3
1 4
2 5
3 6

71280 possible 
combinations
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Deimos Sample Return:
First Generation Trade Space
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Deimos Sample Return:
Final Generation Trade Space
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Deimos Sample Return:
Two Trajectories
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A 7-year mission with a 41 kW solar 
array returns a 4 ton boulder

A 5-year mission with a 68 kW solar 
array returns a 10 ton boulder

Both of these candidate missions, and many others, would be 
of interest to our customers
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Conclusions
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 The low-thrust interplanetary mission and systems design problem may be posed as a multi-
objective hybrid optimal control problem

 The combination of a multi-objective discrete NSGA-II outer-loop with a MBH+NLP inner-loop is 
a very powerful way to explore a mission and systems trade space in an efficient, automated 
manner

 The algorithm described here has revolutionized the low-thrust interplanetary mission design 
process at NASA Goddard Space Flight Center
- We can now study multiple mission design cases simultaneously, limited only by available 

computing power
- Mission design engineers can now spend more time with the customer and with spacecraft 

hardware engineers so that we can fully understand the scientific and engineering context of 
our work

- Good mission ideas are much less likely to be rejected due to lack of time to work on mission 
design, and bad ideas are much more likely to be rejected before they consume too many 
resources

 Skilled analysts are expensive. With a multi-objective HOCP automaton, analysts can focus on 
understanding the customer’s needs and the spacecraft’s capabilities and also detailed design 
work, leaving repetitive tasks to the computer
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Thank You

EMTG is available open-source at 
https://sourceforge.net/projects/emtg/
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Backup – Tuning Monotonic Basin Hopping

31



NAVIGATION & MISSION DESIGN BRANCH, CODE 595
NASA GSFC

Tuning Monotonic Basin Hopping (MBH)

 We examined two components of classical MBH:
- the random hops are driven by a uniform probability distribution; hops can 

occur in a ball of some user-defined radius about the current best point
- There is a concept of “impatience” – a certain number of iterations where the 

solution does not improve, after which the algorithm resets
 In this work we consider:

- Alternative probability distributions (Gaussian, Cauchy, Pareto) which have 
the ability to “hop” over the entire solution space

- Given the above, that the concept of “impatience” may not be necessary when 
using alternative probability distributions

 Our objective was to find a version of MBH that would be:
- Efficient (find better solutions in less time)
- Robust (work well on highly constrained problems and not be sensitive to 

tuning parameters)
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Probability Distributions and Their Tuning 
Parameters
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Distribution RV Generator Excursion
Parameter

Uniform ߩ2 ݎ െ 0.5 ,ball size :ߩ
impatience

Gaussian ݏ
ߪ ߨ2

݁ି
௥మ
ଶఙమ

standard :ߪ
deviation

Cauchy ߩ tan ߨ ݎ െ 0.5 scale :ߩ

Pareto ݏ
߳
ߙ െ 1.0
߳

߳ ൅ ݎ
ିఈ

”parameter“ :ߙ

ݎ ൌ ݉ݎ݋݂݅݊ݑ 0.0,1.0 ݏ , is a fair coin flip, ߳ ൌ 1.0 ∗ 10ିଵଷ
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RV Generators
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We want a distribution which  takes lots of small steps to “exploit” the 
local region but also takes frequent large steps to “explore” the rest of 
the space.
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The Experiment

 16 four-day (10000 step) runs of EMTG were conducted for each 
distribution
 Each of the 16 runs had a different value of the excursion parameter
 Impatience was turned off, i.e. MBH was never allowed to reset during 

the experiment
- This was necessary to see how effectively each distribution could 

random-walk around the decision space

35
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Results – Best and Worst Path
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Results – Average Performance
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Pareto-driven MBH is most efficent (better solution in less time)
and most robust (insensitive to tuning parameters)
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Why?

 Random walks (RWs) can be compared in terms of mean squared 
displacement (MSD)
- A higher MSD means that an RW travels the problem space faster and 

more thoroughly than a lower MSD
MSD can be used to describe RWs as diffusions through media
 In diffusion through homogeneous media (i.e. unconstrained problem 

spaces), RWs driven by independent identically distributed (i.i.d.) 
distributions with finite variance are considered “normally diffusive” 
- MSD proportional to the number of steps
 RWs driven by i.i.d. distributions with infinite variance are “super-

diffusive”
- MSD proportional to the number of steps raised to some power

38
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Why? Continued…

 In a simplified test problem the Pareto RW is super-diffusive while the 
uniform and Gaussian RWs are normally diffusive (or just barely super-
diffusive for Gaussian)
 It is difficult to plot MSD of the Cauchy RW on the same graph because 

Cauchy distributions do not have a mean

39
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What about constraints?

 Constraints introduce serial negative auto-correlations
- Constraint effectively restricts RW from moving in a certain direction, i.e. into the 

constraint
 Stochastic global search in constrained problem spaces can be described as diffusions 

through in-homogenous media
 When constraints are added to the simplified test problem, the uniform and Gaussian 

RWs become sub-diffusive but the Pareto distribution is still super-diffusive

40


