
National Aeronautics and Space Administration 

www.nasa.gov 

Observations of Thermosyphon Flooding in 
Reduced Gravity Environments  

Donald A. Jaworske, Marc A. Gibson, James L. Sanzi 

1 

May 1-3, 2012 

https://ntrs.nasa.gov/search.jsp?R=20150010133 2019-08-31T07:54:23+00:00Z



National Aeronautics and Space Administration 

www.nasa.gov 

Planetary Applications of Fission Power  
• Several architecture studies have examined the use of Fission Power 

Systems (FPS) for the human exploration of the moon and Mars. 
 

2 

• For a 40 kWe installation, radiators 
would be needed to dissipate 
approximately 140 kWt of waste heat. 

• A 180 m2 radiator panel over 10 years 
would have 3.6 hits of sufficient kinetic 
energy to damage fluid flow. 

• The design solution to mitigate the risk 
of rupturing a fluid line is to utilize 
multiple heat pipes. 

– In the event of a micrometeoroid hit to a 
single heat pipe, only the fluid in the heat pipe 
is lost. 

• The design solution also includes high thermal 
conductivity composite facesheets to distribute 
heat across the radiator panel.  
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FPS Preliminary Reference Concept 

• A guide for technology 
development. 

• Power levels, 
temperatures, pressures, 
flow rates, and 
efficiencies become 
notional requirements. 
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Heat Pipes Operating as Thermosyphons 
• Radiators equipped with thermosyphons 

spread and reject waste heat effectively. 
 

• With the aid of gravity, thermosyphons 
can be used within appropriate heat 
transfer limits. 

– The limit of most concern is the flooding limit. 
 

• Understanding these limits requires 
testing of thermosyphons in Reduced 
Gravity Environments (RGEs). 

– Drop towers 
– Parabolic flights 
– Sounding rockets 

 

• Parabolic flights provide the opportunity to 
achieve both lunar and Martian gravity 
environments. 
 
 

 
 

 
 

4 



National Aeronautics and Space Administration 

www.nasa.gov 

Experiment Justification 
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• In the literature, it was found that the flooding limits of 
thermosyphons have never been tested in RGEs. 

 

• If existing flooding models were incorrect then the heat rejection 
system could be under-designed, leaving significant risk that the 
thermosyphons could reach their flooding limit. 
 

• Upon flooding, the reactor and power converters would have to be 
powered down. 

– A decrease in temperature would allow thermosyphon recovery. 
 

• After recovery, the fission power system may have to operate at a 
lower power level. 
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The Flooding Limit 
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• Heating in the evaporator vaporizes fluid 
which travels upward into the condenser. 

 

• Vapor condenses on the condenser wall 
and travels back down to the evaporator 
with the aid of gravity. 

 

• As heating increases, more vapor is 
formed and travels at a higher velocity up 
the pipe. 

 

• As more vapor condenses, the fluid 
thickness on the wall increases. 

 

• The increasing mass flow and shrinking 
vapor throat area create high shear 
between the vapor and the fluid. 

 

• This shear force overcomes the gravity 
force and the condenser floods. 
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Experiment Setup 
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• Twelve 0.25” O.D. x 0.035” wall Ti/H2O 
thermosyphons 

 

• Individual evaporators heated electrically 
 

• Maximum heat input:  350 W/each 
 

• Forced air cooling w/aluminum-finned 
condensers 
 
 

• National Instruments 
PXI realtime DAC 
system 

 

• Labview programming 
 

• Laptop computer 
control 
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Predictions via the Bond Number 
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Faghri’s Correlation 
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Tien and Chung 
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Establishing the Flooding Limit (1g) 
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Initial 1g Flooding Limit Data 
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Flight Week 1, September 2011 
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• 40 parabolas per day 
 

• 12 Lunar, 3 Martian, 25 zero 
 

• 4 days totaling 160 parabolas 
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Data Analysis 
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Lunar Results 
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Conclusions 

• The observed RGE flooding limit falls between Faghri 
and Chung’s correlations providing boundaries for 
analysis. 

 

• Initial results show that correlation models may have 
discrepancies in the slope at lower temperatures as 
compared to the test data, both in 1g and reduced g. 

 

• Follow on work is continuing in 2012 to reduce data 
scatter and provide an improved correlation.  
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