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ABSTRACT

This paper considers the incorporation of constraints to enforce physically based conservation laws in

the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members

and the ensemble mean conserve mass and remain nonnegative through measurement updates. In

certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble

transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even

though the actual states must be nonnegative. In such situations if negative values are set to zero, or

a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are

both preserved by formulating the filter update as a set of quadratic programming problems that in-

corporate nonnegativity constraints. Simple numerical experiments indicate that this approach can

have a significant positive impact on the posterior ensemble distribution, giving results that are more

physically plausible both for individual ensemble members and for the ensemble mean. In two exam-

ples, an update that includes a nonnegativity constraint is able to properly describe the transport of

a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be

addressed, particularly the need to develop a computationally efficient quadratic programming update

for large ensemble.

1. Introduction

The importance of respecting physical conservation

principles has long been recognized in numerical weather

predictionmodeling (Arakawa 1972; Arakawa and Lamb

1977; Sadourny 1975; Janji�c 1984; Janji�c et al. 2011; Janji�c

and Gall 2012). One of the most basic of these principles

is the need to conserve the total mass of air, water in

its different phases, and relevant chemical species, in

the latter two cases accounting properly for sources

and sinks while maintaining the proper sign (positivity

or, more strictly, nonnegativity) in every grid volume

of a computational model (e.g., Lin and Rood 1996,

p. 2047). Smolarkiewicz and Margolin (1998, p. 460)

write in a review paper that ‘‘the preservation of sign

during numerical advection is the essential aspect of the

stability and accuracy in modeling water phase-change or

chemical processes.’’ Sign preservation should be an im-

plicit requirement in any numerical algorithm that at-

tempts to conserve mass. Although most of the concepts

described in this paper apply to the conservation of other

quantities, such as angular momentum and energy, we

focus on mass conservation to make the discussion more

specific and to illustrate ideas with simple examples.

When ensemble Kalman filters are used for data as-

similation two distinct mass conservation issues arise.

Mass should be conserved in each member (replicate) of
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the forecast ensemble produced by propagating states

over time with a forecast model, and it should be con-

served by the procedure used to update the ensemble

members with observations. Conservation of mass dur-

ing the forecast is dependent on the time- and space-

discretized method used to obtain a numerical solution

to the governing continuum equations. Althoughmass is

conserved by construction in the original differential

equations, it may not be conserved in the numerical

solution.

Similarly, conservation of mass during the ensemble

filter update depends on the particular numerical method

used to generate the replicates of the updated ensemble

and to generate the mean of this ensemble (analysis

itself). Mass may not be conserved during the update

even when the numerical forecast technique is mass

conservative. A number of methods have been proposed

to deal with this issue. For example, Jacobs and Ngodock

(2003) noted that mass in a simplified 1D ocean model

can be conserved when the model error in a representer

algorithm is expressed in terms of the mass flux due to

uncertainty in ocean depth rather than as additive error

in the continuity equation. In land surface hydrology,

Pan and Wood (2006) showed how to ensure conserva-

tion of total water mass by imposing it as a ‘‘perfect

observation’’ in a two-stepKalman filter approach. In an

ocean data assimilation system, Brankart et al. (2003)

imposed conservation of total mass, including positive

layer thicknesses, through an a posteriori adjustment to

the analyzed state. Positivity can also be ensured by

introducing a change of state variables, using techniques

such as Gaussian anamorphosis (e.g., Simon and Bertino

2009). In atmospheric data assimilation, nonnegativity

of the specific humidity has been imposed as a weak

constraint in a three-dimensional variational data as-

similation (3D-Var) implementation (Liu andXue 2006;

Liu et al. 2007).

It is reasonable to ask if we should conservemass in an

ensemble Kalman filter update if the total mass in the

system is uncertain. Measurements introduced during

the update may provide useful information about this

uncertain mass. If so, this information should be used to

adjust and improve mass estimates. But this does not

change the fact that a filtering algorithm should be able

to preserve a known value of total mass through both the

forecast and update steps. If the total mass is, in fact,

unknown then it should be treated as uncertain and es-

timated as part of an otherwise mass-conservative fil-

tering procedure. Thus, we distinguish the need to

respect conservation laws from the need to properly

account for uncertainties in conserved quantities. In the

simple examples considered here total mass is a known

constant that does not need to be estimated, but this

restriction could be relaxed by including uncertain

sources/sinks for instance in the state vector so they can

be updated when new information becomes available.

Going beyond mass conservation, Cohn (2009) has

shown in the context of minimum variance state esti-

mation that conservation of total energy requires in-

cluding a special term in the evolution equation for the

state estimate that couples state and covariance evolu-

tion. This requirement was subsequently formulated

more generally as the principle of energetic consistency,

and was used to study certain pathological behavior of

ensemble-based data assimilation schemes (Cohn 2010).

Cohn (2010) shows that the mild energy dissipation

typical of numerical weather prediction models can lead

to ensemble collapse through a feedback mechanism

introduced by the assimilation of observations, and that

this dissipative behavior can in principle be eliminated

by including an appropriately scale-selective, anti-

dissipative operator in the formulation of the ensemble

data assimilation scheme. Using such an operator to

maintain ensemble spread is a generalization of the co-

variance inflation technique now commonly used in

ensemble data assimilation schemes (Anderson and

Anderson 1999, p. 2747).

One objective of data assimilation is to use observa-

tions to correct forecast errors in the vicinity of well-

defined natural features such as fronts, filaments of

chemical constituents, or plumes from surface emissions

of aerosols. But data assimilation schemes have not

traditionally been explicitly formulated to preserve such

sharp features and, in fact, they often tend to blur and

distort sharp interfaces (e.g., Lawson and Hansen 2005).

Riishøjgaard (1998) proposed a type of state-dependent,

anisotropic covariance modeling as a simple and direct

analysis approach in the presence of sharp features; see

Liu and Xue (2006) for an implementation. Hoffman

et al. (1995) approached feature analysis by defining

nontraditional, feature-based measures of spatial fore-

cast error and minimizing them explicitly in variational

data assimilation; see Gilleland et al. (2010) for a review

of forecast verification methods utilizing such measures

of forecast error. Lawson and Hansen (2005) showed

that the performance of an ensemble Kalman filter in

the presence of a well-defined feature can be improved

dramatically by the use of alternative error models to

redefine the state estimation problem.

All of these studies highlight the importance of con-

serving known mass, maintaining nonnegativity, and

preserving feature geometry during data assimilation. In

an ensemble context it can be argued that individual

ensemble members as well as the ensemble mean should

meet all of these requirements. Here we examine the

issues of mass conservation, nonnegativity, and feature
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preservation with two computational experiments that

focus on simple features with well-defined shapes. In

addition, we propose a new sequential ensemble data

assimilation algorithm that enforces mass conservation

andmaintains nonnegativity by adding constraints to the

ensemble Kalman filtering update.

We can view the classical Kalman update at any given

time as either an unconstrained regularized minimum

variance estimator or, if we take a Bayesian perspective,

as a method for generating the maximum a posteriori

(MAP) estimate when the a posteriori probability is

Gaussian. In either case, the update requires the solution

of an unconstrained optimization problem. When the

measurement operator is linear the problem objective

function depends quadratically on the analysis (which is

the decision variable to be determined). In this case the

unconstrained optimization problem has a closed form

solution given by the classical Kalman filter update

equation.

If the Kalman update does not satisfy physically based

mass conservation or nonnegativity conditions, it is rea-

sonable to enforce these conditions by adding appropri-

ate constraints to the original unconstrained problem

(Simon and Simon 2005). When the constraints are

linear equalities and/or inequalities and the objective

function Hessian is positive definite the resulting con-

strained optimization problem is a convex quadratic

program with a unique global minimum. It is important

to emphasize that this constrained optimization problem

is a quadratic program even if the forecast model is non-

linear, so long as the constraints and observation operator

are linear.

It is possible to apply similar concepts to ensemble

filtering problems, where we can obtain each member

of the analysis ensemble by solving a replicate-specific

quadratic programming problem, replacing the forecast

mean with one of the forecast ensemble members and

adding random measurement errors to the actual ob-

servations. This procedure is analogous to the ensemble

Kalman filter formulation proposed by Burgers et al.

(1998).

In our extension of the Burgers et al. (1998) ensemble

Kalman update we include nonnegativity constraints

when computing the replicates of the analysis ensemble.

This ensures that the ensemble members are all physi-

cally plausible, making it more likely that sample sta-

tistics, such as the covariance of this ensemble, are also

physically realistic. From a Bayesian perspective, the

nonnegativity constraints provide additional prior in-

formation that is not included in the classical formula-

tion of the ensemble filtering problem. Consequently,

the analysis replicates are no longer Gaussian but are

strictly nonnegative.Our formulation of ensembleKalman

filtering as a sequence of static linear estimation problems

makes the incorporation of physically based constraints

a natural extension of the classical algorithm.

It is useful to briefly distinguish the ensemble qua-

dratic programming approach proposed here from other

approaches that share some of its features. The review

article of Simon (2010) gives an overview of various

methods for incorporating constraints into the classical

Kalman filter, including a version of quadratic pro-

gramming. These classical methods are able to maintain

mass conservation through the filter update but not

during the forecast if the system dynamics are nonlinear.

Our quadratic programming approach uses an ensemble

forecast that is able to conserve mass and nonnegativity

through the forecast step for each ensemble member,

even for nonlinear problems, if the forecast model is

properly formulated.

Another ensemble data assimilation technique known

as randomized maximum likelihood (RML) also solves

an ensemble of optimization problems (Gu and Oliver

2007; Emerick and Reynolds 2013). In this case each

problem minimizes the batch mean-squared measure-

ment misfit computed over all measurement times (per-

haps with an additional quadratic regularization term)

for a particular replicate. The forecast and observation

models are formulated as nonlinear equality constraints

and are incorporated into each optimization problem

through a set of derived objective function gradients.

The problem solution is obtained with an unconstrained

nonlinear programming procedure. Our approach uses

a different objective function at each measurement time

as well as for each ensemble member since it is formu-

lated as a sequence of static updates rather than as a batch

algorithm. This makes it possible to formulate the opti-

mization problem as an efficient quadratic programming

problem that readily accommodates inequality con-

straints. It is also compatible with the time-recursive

structure of the classical ensemble Kalman filter.

Other options for incorporating ensemble informa-

tion include a number of different ensemble variational

or hybrid data assimilation algorithms (see, e.g., Hamill

and Snyder 2000; Lorenc 2003; Buehner 2005; Zupanski

2005; Wang et al. 2007b, 2008; Wang 2010, 2011; Isaksen

et al. 2010; Bonavita et al. 2012). These generally use

a forecast ensemble to construct the hybrid covariance

needed for a variational update. The decision variables

in the optimization problem can include the analysis

mean (Wang et al. 2008; Wang 2010, 2011) or individual

ensemble members (Hamill and Snyder 2000; Isaksen

et al. 2010; Bonavita et al. 2012). Additional inequality or

equality constraints such as those used in our quadratic

programming approach are typically not included in these

hybrid methods. Despite these differences, our data
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assimilation procedure shares important features with

randomized maximum likelihood and ensemble varia-

tional methods (Hamill and Snyder 2000; Zupanski

2005) and it is possible to imagine variants that combine

aspects of all three approaches.

In this paper we compare our constrained Kalman

filtering algorithm to an ensemble Kalman filter (EnKF;

Evensen 2009; Houtekamer and Mitchell 1998; Burgers

et al. 1998). Section 2 provides background and con-

siders mass conservation and sign preservation for en-

semble Kalman filters. Section 3 describes two numerical

examples that illustrate the consequences of mass bal-

ance errors in this class of filters, using results obtained

with the EnKF. The first example is implemented both

with and without a log transform in order to explore

the behavior of an anamorphosis-based approach for

maintaining positivity. Section 4 introduces our con-

strained ensemble quadratic programming algorithm

and section 5 shows how this algorithm performs on the

numerical experiments introduced in section 3. Section 6

discusses benefits and drawbacks of the proposed algo-

rithm and identifies some open research issues.

2. Problem formulation

Consider a scalar quantity w whose evolution is gov-

erned by the continuity equation with no sources or

sinks:

wt 1$ � (vw)5 0, (1)

w(x, t0)5w0(x), for x in D , (2)

where v is a given velocity field, t0 is the initial time, and

D is the spatial domain, assumed either cyclic or to have

no mass flux through the boundaries. Then the total

integral of w over D is conserved through time:

ð
D
w(x, t) dx5

ð
D
w0(x) dx , (3)

and if h i denotes expectation, then
ð
D
hw(x, t)i dx5

ð
D
hw0(x)i dx . (4)

Here the value of the initial state w0 at any given loca-

tion is random but we suppose that the total mass M

of the initial state is fixed and deterministic, so thatÐ
Dhw0(x)i dx5

Ð
Dw0(x) dx5M. Note that the spatial

distribution of mass at times after the initial time will be

random as a result of initial condition uncertainty. We

assume that we have access to a numerical model that

exactly conserves a discrete version of the total mass

integral.

In ensemble data assimilation we typically work with

an ensemble of spatially and temporally discretized state

n-vectors wk that approximate realizations of w at the n

grid points of a computational grid that covers the do-

main D, evaluated at the time tk. The ensemble mem-

bers are updated to incorporate information from

observations collected at specified measurement times.

In sequential assimilation algorithms, such as the en-

semble Kalman filter, it is convenient to separate the

assimilation process into two steps, carried out at each

measurement time: 1) a forecast step that uses a nu-

merical model of Eq. (1) to propagate the analysis en-

semble from the previous measurement time forward to

the current measurement time and 2) an analysis step

that computes a new analysis ensemble from the forecast

ensemble and current measurements. The first forecast

in this recursion is initialized with a set of specified

random initial conditions and all subsequent forecasts

are initialized with the most recent analysis ensemble.

The specific operations used to derive the analysis en-

semble at each measurement time depend on the par-

ticular updating procedure selected. Here we consider

the EnKF described in Evensen (2009) and Burgers et al.

(1998). In the EnKF update step the analysis ensemble

memberwa,i
k is obtained by combining the forecast (prior)

ensemble member wf ,i
k with an mk vector of perturbed

measurements wo,i
k , as described by the following update

equation:

wa,i
k 5w

f ,i
k 1Kk(w

o,i
k 2 rok 2Hkw

f ,i
k ) , (5)

where i 5 1, . . . , Nens, Nens is the number of ensemble

members, and rok is a known possibly nonzero mea-

surement error mean. Following usual EnKF practice,

each perturbed measurement vector wo,i
k is a random

sample from a specified multivariate normal probability

distribution with a mean equal to the mk vector wo
k of

actual measurements and a covariance given by the

specified mk 3 mk observation error covariance matrix

Rk. The gain Kk is given by

Kk 5P
f
kH

T
k (HkP

f
kH

T
k 1Rk)

21 , (6)

where Hk is an n 3 mk observation matrix and P
f
k is the

n 3 n forecast error covariance of w f
k . The mean

wa
k 5 1/Nens�Nens

i51 w
a,i
k of the analysis ensemble, called the

analysis, is often selected as an estimate of the uncertain

state at tk. When the new analysis ensemble at tk is

computed one cycle of the filter recursion is completed

and the process repeats at tk11.
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In the EnKF the forecast error covariance appearing

in Eq. (6) is calculated as follows:

P
f
k 5

1

Nens2 1
�
N

ens

i51

[w
f ,i
k 2w

f
k ][w

f ,i
k 2w

f
k ]

T , (7)

where w f ,i
k are the individual forecast ensemble mem-

bers for i5 1, . . . , Nens, and w f
k is the forecast ensemble

mean (i.e., w f
k 5 1/Nens�Nens

i51 w
f ,i
k ).

Other versions of the ensemble Kalman filter update

include square root filters, which generate the analysis

ensemble by first calculating the analysis ensemblemean

and then adding a random deviation for each replicate.

These filters do not require the use of perturbed mea-

surements. An example is the ensemble transformKalman

filter (ETKF; Bishop et al. 2001;Wang et al. 2004, 2007a;

Hunt et al. 2007). Here we use the classical perturbed

measurement EnKF for comparison with the ensemble

quadratic programming algorithm introduced in section

4. This is convenient because the EnKF can be viewed as

an important special case of the quadratic programming

algorithm. However, the discussion of mass conserva-

tion and nonnegativity that follows applies to all com-

mon versions of the ensemble Kalman filter, including

both the EnKF and the ETKF.

From Eq. (4), we require that the continuous version,

wa(x, tk)5 hw(x, t) jwo
1 , . . . ,w

o
k i of an analysis wa

k must

satisfy

ð
D
wa(x, tk) dx5

ð
D
hw0(x)i dx , (8)

and that the analysis error covariance function,

Pa(x1, x2, tk)

[ h[w(x1, tk)2wa(x1, tk)][w(x2, tk)2wa(x2, tk)]i ,
(9)

must satisfy

ð
D
Pa(x1, x2, tk) dx15 0, for all x2 . (10)

The latter condition reflects the requirement that every

realization ofwa(x, tk) must conserve total mass. Such an

analysis error covariance is called ‘‘mass conserving.’’ In

the discrete case, the analysis error covariancematrixPa
k

is mass conserving if

Pa
ke5 0, (11)

where e 5 en31 5 [11. . .1]T. The form of e given here is

chosen for simplicity. The exact form of the definition in

Eq. (11) will depend on the grid of our numerical model

and the quadrature chosen for Eq. (10).

We can define the total mass of each member in the

forecast and analysis ensembles as M
f ,i
k 5 eTw f ,i

k and

Ma,i
k 5 eTw a,i

k , respectively. In appendix A we show that

both the EnKF and ETKF algorithms produce mass

conserving covariances that give the same total mass M

for each ensemble member through the update. That is,

if eTw f ,i
k 5M for each forecast ensemble member, then

eTw f ,i
k 5 eTw f

k 5 eTw a,i
k 5 eTw a

k 5M.

Now suppose that w is a nonnegative scalar quantity

such as humidity or the concentration of a chemical

constituent. There is no guarantee that the analysis

mean or a given analysis replicate produced by an en-

semble filter will be nonnegative everywhere, evenwhen

the forecast is nonnegative everywhere and total mass is

conserved. In fact, ensemble filters often conserve mass

by canceling large positive values with negative values.

This is easily shown with examples such as those de-

scribed in the next section. Various methods, such as

truncation of negative values to zero or formulating the

update step in terms of log(w) can force nonnegativity

but the resulting analysis mean and replicates typically

no longer conserve mass. Thus, it is fairly easy to obtain

either mass-conservative or nonnegative analyses but

much more difficult to obtain analyses that are both

mass conservative and nonnegative. The problem is il-

lustrated by example in section 3 and a possible solution

is presented in section 4.

3. Ensemble Kalman filter performance for two
examples

We now consider two examples chosen to illustrate

how mass conservation and/or nonnegativity problems

can arise during the filter update step. These examples

focus on feature-oriented problems where ensemble

Kalman filtersmay have difficulty generating results that

conserve mass and/or maintain the proper sign.

a. One-dimensional static analysis with non-Gaussian
background and observation errors

In our first example the true feature is a static one-

dimensional hat (isosceles triangle) function (cf. with

the smooth function used in Lawson and Hansen 2005)

of unit height and five grid points wide on a 1D periodic

domain. The state vector that describes this feature

consists of values defined at 40 uniformly spaced grid

points (see Fig. 1). The peak of the true feature is lo-

cated at grid point 20. In a virtual experiment we

generate noisy synthetic observations of the true state

at a single time by summing the true (nonnegative)

values at specified measurement locations and additive
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lognormal random measurement errors (also nonnega-

tive), as follows:

wo
k 5Hwk 1 rok , (12)

where H 5 Hk is a time-invariant measurement matrix

that consists of appropriately located zeros and ones.

The lognormal measurement error rok has a specified

mean rok (equal to 0.02 for each element) in this exper-

iment and a diagonal covariance Rk (variance values are

equal to 0.01). The measurement error mean is included

in the filter update expression, as indicated in Eq. (5).

The spatial configuration of the measurements that de-

termines H is discussed below.

We assume that the exact position of the true triangle

peak is unknown. This uncertainty is reflected through

differences in the state vectors used to define the 50

forecast (or prior) ensemble members, each being iden-

tical to the true state except that the peak is located

randomly, accordingly to a discrete uniform distribution,

over the grid points between locations 10 and 30. Figure 1

shows that the ensemble mean (red line) obtained by

averaging over the forecast replicates (light gray lines) is

nonnegative but does not preserve the triangular shape of

the true feature (black line).

Since neither the forecast nor measurement error dis-

tributions are normally distributed in this example the

Kalman filter analysis is not the exact mean of the a pos-

teriori probability distribution and the analysis replicates

are not samples from this distribution. Consequently,

from a Bayesian perspective, the ensemble Kalman filter

is suboptimal for this problem (Simon and Bertino 2009;

Bocquet et al. 2010). Ensemble estimators are frequently

suboptimal in applications, especially those involving

nonnegative features with sharp boundaries. Our pri-

mary interest here is in the filter’s ability to conserve

mass, maintain nonnegativity, and capture the shape of

the true triangular feature.

With the problem setup described above we first de-

rive the analysis replicates using the traditional EnKF

described in Eq. (5). Figure 2 shows the true feature

(black line) and analysis mean (red line) and ensemble

(light gray lines) generated by the EnKF when mea-

surements (green circles) are taken at every other grid

point in the interval between locations 10 and 30. The

analysis and the ensemble replicates exhibit spurious

positive and negative lobes away from the true peak,

although the total mass is conserved by both replicates

and mean. The analysis ensemble replicates are gener-

ally not positive isosceles triangles. The relatively large

anomalies shown in Fig. 2 appear to result from poor

interpolation of values to unmeasured locations.

This effect is revealed in a different form in Fig. 3,

where measurements are taken at every location over

the more limited range from 15 to 25. In this clustered

measurement case poor extrapolation yields large anom-

alies outside the measured region. Figure 4 compares

the standard deviation of the EnKF analysis ensemble

to the root-mean-square error (RMSE) between the

analysis replicates and the true state, for the case with

measurement gaps. This comparison indicates that the

analysis ensemble generally captures the true degree of

variability, with some underestimation at unmeasured

locations.

The problem of maintaining nonnegativity in a Kal-

man filter update lies in the underlying Gaussian as-

sumptions in Eqs. (5) and (A3) (Simon and Bertino

2009; Bocquet et al. 2010). These assumptions are not

FIG. 1. 1D static forecast/prior. The true state (black), forecast/prior mean (red), and forecast/

prior ensemble (gray) are shown. Mass of true, forecast mean, and each forecast ensemble

member is equal to 2.
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applicable for estimation of a state that has discontinu-

ities, or for a state that is nonnegative, or for problems

characterized by an error in the location of a disturbance

(Chen and Snyder 2007). There are several techniques

formodifying filters to enforce nonnegativity (Cohn 1997;

Lauvernet et al. 2009; Bocquet et al. 2010; Schneider

1984). One alternative is to use Gaussian anamorphosis

(Simon and Bertino 2009), which introduces a nonlinear

change of state variables, such as a log transformation,

in order to make the analysis step more consistent with

Gaussian assumptions.

We now consider a version of the EnKF, formulated

in terms of the transformed state ~wkj 5 log(wkj 1 �),

where � is a small positive number that ensures a finite
~wkj value when wkj 5 0 and the subscript j refers to the

jth scalar component of ~wk or wk. This transformation is

an example of the anamorphosis approach taken by

Simon and Bertino (2009). In our experiments we take

�5 1023. The log transformedEnKFworks with a vector

~wo
k of transformed synthetic measurements with com-

ponents ~wo
kj 5 log(wo

kj 1 �). The measurement equation

of the log transformed EnKF assumes that ~wo
k is related

to the log transformed state ~wk according to the fol-

lowing additive measurement equation:

~wo
k 5H~wk 1~rok , (13)

FIG. 2. 1D static analysis results for the EnKFwithmeasurement gaps. The true state (black),

observations (green), analysis ensemble (gray), and ensemble mean (red) are shown. Mass is

conserved by all analysis ensemble members and analysis mean, but there are significant

negative anomalies.

FIG. 3. 1D static analysis results for the EnKF with clustered measurements. The true state

(black), observations (green), analysis ensemble (gray), and ensemble mean (red) are shown.

Mass is conserved by all analysis ensemble members and the analysis mean, but there are

significant negative anomalies.
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where ~rok is a vector of additive measurement errors in

the observed components of the log transformed vari-

able ~wk. This additive error equation for log trans-

formed variables is not equivalent to the additive error

equation for untransformed variables given in Eq. (12)

but is required by the additive error assumption of

the EnKF if the states and measurements are expressed

as log transformed variables. Consequently, Eq. (13)

should be viewed as an alternative to Eq. (12). This al-

ternative is similar to the measurement error model

described by Simon and Bertino (2009).

The individual elements of ~rok are assumed to be mu-

tually independent with a uniform mean of zero and

a uniform variance that can be adjusted to capture the

aggregate effects of measurement error on the log

transformed measurements (Simon and Bertino 2009).

The need to adjust these measurement error statistics

can be viewed as a limitation of the log transform ap-

proach since it is difficult to know in advance how they

should be selected.

Results for the log transformed EnKF with measure-

ment gaps are shown in Figs. 5 and 6. The log trans-

formed filter is very sensitive to the variance specified

for its assumed additive measurement error ~rok. In Fig. 5

we have set the variance of ~rok equal to the variance of

the log of rok. This value is 1.81 for the experiments

FIG. 4. 1D static analysis results for the EnKF with measurement gaps. Comparison of en-

semble standard deviation (solid) and RMSE between analysis ensemble members and true

(circles). The EnKF variances are generally comparable to the RMSE, with some un-

derestimation at scattered locations.

FIG. 5. 1D static analysis results for the log transformed EnKF with measurement gaps and

additive log transformed measurement error variance set at the log of the additive un-

transformed synthetic measurement error. The true state (black), observations (green), anal-

ysis ensemble (gray), and ensemblemean (red) are shown. The analysis meanmass is 0.348, 2.

The mass is not conserved, but the analysis mean and all analysis replicates are nonnegative.

The analysis does not capture the triangular feature.
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described here. The ~r ok variance used to generate Fig. 6 is

0.181, one-tenth of the value used in Fig. 5. The analysis

values in the higher measurement error variance case of

Fig. 5 are small and the measurements have relatively

little impact. The mass of the analysis is 0.348, which

is much lower than the true mass of 2. The lower mea-

surement error variance case shown in Fig. 6 is highly

constrained by the measurements, with minimal en-

semble spread and an analysis mass of 1.42. This value is

still significantly lower than the true mass.

In the limit of very low measurement error variance

the log transformed EnKF analysis ignores the fore-

cast, giving a triangle with a smaller base and smaller

total mass than the true. The mass conservation results

are poorest for intermediate values of the measure-

ment error variance, when the analysis deviates from

the forecast but fails to capture the shape of the true

feature. Similar results are obtained for the clustered

measurement configuration, which is not shown here.

When the measurement error random seeds are varied

some of the analysis ensemble members can take on

positive values significantly higher than 1.0, even for

small measurement error variances. Generally speak-

ing, the log transform EnKF appears to be marginally

stable for this problem, requiring fine adjustments of

the measurement error variance to give reasonable

analysis results. In any case, although analysis ensem-

ble members and the analysis are nonnegative every-

where, mass is generally not conserved.

The results for this simple one-dimensional example

show the dilemma encountered with classical ensemble

Kalman filtering for problems where mass conservation

and sign are both important. The classical EnKF con-

serves mass if the forecasts are mass conservative but it

can produce unrealistic analyses (mean and ensemble)

that are negative. The log transformed filter gives non-

negative analyses but does not generally conserve mass.

b. Two-dimensional dynamic analysis

The previous example shows the behavior of the

EnKF solution for only one measurement update. To

estimate the effect of analysis errors through time and

on forecasts, we perform a second virtual experiment that

considers two-dimensional solid-body rotation (Tremback

et al. 1987; Janji�c et al. 2011). In this experiment a moving

cone completes a full clockwise rotation of 2p about the

origin (domain center) every 48 h. Synthetic observa-

tions are assimilated every quarter revolution (4320 time

steps) until seven forecast/analysis cycles are completed

(time step 30 241). The experiment is carried out on

a uniform numerical grid of 101 by 101 square cells, each

of size 8 km by 8 km.

The initial ensemble is specified to be a set of cones,

each with a radius of 100 km at the base and a height of

100 units. The true initial cone is centered at the grid

point with indices i5 33 and j5 33. The central location

of each cone in the 50-member ensemble is described by

an angle and radius defined relative to the domain

FIG. 6. 1D static analysis results for the log transformed EnKF with measurement gaps and

measurement error covariance diagonal set at 0.1 variance of the log measurement error. The

true state (black), observations (green), analysis ensemble (gray), and ensemblemean (red) are

shown. The analysis mean mass is equal to 1.42, 2 is not conserved, but the analysis mean and

all analysis ensemble members are nonnegative. The ensemble is greatly constrained by the

measurements and ensemble variability is small.
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origin. The angle is perturbed around the true cone

angle by a random number normally distributed with

mean 0 and standard deviation of 0.5 radians. The dis-

tance of the cone from the center of rotation is perturbed

as well, with normally distributed random error with

mean 0 and standard deviation of 0.5 km. The random

angle and the distance define the center of each cone in

the ensemble. The ensemble of cones is transported with

pure advection by simply changing the angle of their

centers relative to the domain origin at the appropriate

rate. This ensures that the solution to the governing

equation given in Eq. (1) is exact, with no numerical

dispersion or other numerical errors. Three of the en-

semble members are shown at the initial time in Fig. 7.

The synthetic observations are obtained by perturbing

the true solution with a small amount of log normally

distributed noise with mean 0.5 and variance 1. The

minimum observation value is 0.002. In this experiment

the observation operator Hk varies in time. It uses every

20th synthetic observation at the locations where true

cone would have values greater than zero. This corre-

sponds to measurements at 25 grid points per analysis

time. The restriction of noisy measurements to the re-

gion of the true cone reflects the fact that measurements

outside this region will be small compared to the cone

amplitude and would normally be removed by truncat-

ing measurements below an appropriate threshold.

The forecast mean at the first update time is computed

as an average over the ensemble members, producing

a much attenuated field with a maximum value of 46.7

and minimum value of zero (Fig. 8). Note that, although

every ensemble member generated at the initial time is

a perfect cone with the desired properties, the structure

of the cone is not preserved in the ensemble average.

Since the model is exact, each copy of the cone rotates

without losing its structure or its minimum and maxi-

mum values. However, the shape of the cone is not

preserved through the EnKF analysis step. Although the

total mass is conserved, unrealistic negative mass values

are obtained after the analysis. Figure 9 shows the

analysis and the three analysis ensemble members at

the end of the experiment (time step 30 241) from bird’s-

eye perspective. Theminimum,maximum, andRMSerror

values of the analysis are211.2, 98.4, and 1.1, respectively.

The analysis and each of the ensemble members show

spurious positive and unphysical negative values away

from the cone structure. Negative values (depicted with

dark blue contour lines in Fig. 9) reach 216.3 in the en-

semble. The ensemble members that have the lowest

(216.3) and the highest (27.3)minimumvalues are shown

in Fig. 9, together with an ensemble member with mini-

mum value of 210.5. The difference between the chosen

ensemble members is the largest in the area away from

FIG. 7. Threemembers of the initial 50-member ensemble generated by perturbing the location

of the center of the cone.

FIG. 8. The forecast ensemble mean at the first measurement time

from bird’s-eye perspective.
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the cone, where spurious error structures appear (see

Fig. 9). The maximum value of the true cone (100) is

slightly underestimated in the ensemble since the max-

imum of the ensemble members varies between 96.9 and

100.5. Although all ensemble members show the cone

structure in the right location, unphysical negative values

away from the cone are large. Both positive and negative

spurious values affect a large area of the domain.

4. Problem solution

The update step of the ensemble Kalman filter de-

scribed in Burgers et al. (1998) can be posed as the so-

lution to a set of regularized least squares optimization

problems, one problem for each member in the ensem-

ble. The problem associated with members i 5 1, . . . ,

Nens at time tk can be expressed using the same notation

as in Eqs. (5) and (6):

wa,i
k 5w

f ,i
k 1 argmin

dwi

1

2
[dw iT(P f )21dw i 1 fi

T

R21f i] ,

(14)

where dw i 5wa,i
k 2w f ,i

k is the analysis increment, which

serves as the decision variable, and f i 5wo,i
k 2Hkw

a,i
k 2

rok 5wo,i
k 2Hkw

f ,i
k 2Hkdw

i 2 rok. Note that Pf is obtained

from the forecast ensemble, as indicated in Eq. (7). Also,

the measurements appearing in f i are perturbed as in Eq.

(5). The solutions to the Nens optimization problems de-

fined in Eq. (14) form the analysis ensemble. When there

are no constraints in Eqs. (5) and (6) give a closed form

solution to the ensemble optimization problem in Eq. (14)

(Zupanski 2005; Wang et al. 2007a).

Our extension of this optimization formulation of

the ensemble Kalman filter adds linear inequality con-

straints in order to enforce nonnegativity in the update.

FIG. 9. (top left) The analysis at the end of the solid-body rotation experiment (time step 30 241), obtained with

the EnKF algorithm and 50 ensemble members. Ensemble members are shown as examples of replicates with the

(top right) highest and (bottom left) lowest minimum values. (bottom right) An ensemble member with a minimum

value between the two is depicted. Contour lines in the range from210 to 10 are shown in steps of 1, and above 10 in

steps of 10.
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The resulting constrained analysis step solves the fol-

lowing quadratic programming problem for each mem-

ber i 5 1, . . . , Nens:

wa,i
k 5w

f ,i
k 1 argmin

dwi

1

2
[dwiT(Pf )21dwi 1 fi

T

R21fi]

(15)

subject to the following nonnegativity constraint:

dwi $2w
f ,i
k . (16)

Note that the inequality in Eq. (16) is equivalent to

wa,i
k $ 0. In general the constrained solution to Eq. (15)

cannot be expressed in closed form but must be derived

numerically.

The quadratic programming objective given above

depends on the inverse of the sample covariance Pf,

which is singular whenNens2 1, n and/or the forecast

covariance is mass conserving. The low rank of Pf al-

lows us to transform the optimization problem by re-

ducing the number of decision variables to r5Rank(Pf),

which is no larger thanNens2 1. Appendix B shows that

the quadratic programming solution conserves mass if

the forecast covariance is mass conservative and the

decision variable dwi is chosen to lie in the r di-

mensional subspace spanned by the forecast ensemble.

For the unconstrained case this solution duplicates the

closed form EnKF solution given in Eq. (5).

If dwi lies in the forecast ensemble subspace it can be

expressed in terms of a r-dimensional transformed de-

cision variable hi as follows:

dwi 5Lhi , (17)

where the columns of the n 3 r dimensional matrix

L form a basis for the forecast ensemble subspace and

the elements of hi can be viewed as the weights in

a linear combination of the basis vectors. Then P f can

be written in terms of the r 3 r dimensional covari-

ance Q of h:

Pf 5LQLT . (18)

Since there is flexibility in defining L we select it to

satisfy the requirement that P f 5 LLT, so that Q is the

r-dimensional identity matrix and L is the matrix square

root of P f. This square root may be computed using

a singular value decomposition of the matrix whose

columns are the differences between the vectors of the

forecast ensemble members and the forecast ensemble

mean.

We use the change of variables given in Eq. (17) to

rewrite the constrained quadratic programming prob-

lem in terms of hi:

hi5 argmin
hi

1

2
[hiThi 1 fi

T

R21fi] , (19)

where f i 5wo,i
k 2Hkw

f ,i
k 2HkLh

i 2 rok subject to the fol-

lowing nonnegativity constraint:

2Lhi#w
f ,i
k . (20)

The analysis ensemble can be derived from the solution

to Eq. (19):

wa,i
k 5w

f ,i
k 1 dwi 5w

f ,i
k 1Lhi . (21)

The analysis ensemble and its mean all lie in the forecast

ensemble subspace since w f ,i
k and dwi lie in this space by

construction (see appendix B).

Once the analysis ensemble is calculated using

Eq. (21), it is propagated with the forecast model to

obtain the new forecast ensemble, as in the classical

unconstrained ensemble Kalman filter. For easy refer-

ence, we call this ensemble data assimilation method

QPEns. The structure of the QPEns algorithm insures

that the analysis and each member of the analysis en-

semble will have the desired mass conservation and

positivity properties if the forecast ensemble is mass

conservative.

There are a number of QP algorithms available to

compute the optimum for Eqs. (19)–(20). For example,

the active-set method can be viewed as an extension of

the traditional EnKF analysis. The first iteration starts

with an unconstrained optimization. If this solution

satisfies all constraints, then the optimum is found.

If not, more iterations will follow, where in each it-

eration some inequality constraints are converted to

equality constraints (i.e., made active) or removed as

equality constraints (i.e., made inactive). The number

of iterations depends on the problem at hand. For

the experiments in section 5a, we found that 10 iter-

ations are sufficient on average. For many applications,

obtaining the ensemble forecast with the forecast model

will dominate the computations, so the additional

effort required by the QPEns optimization will likely

be affordable. There is much potential in future re-

search for developing more efficient optimization pro-

cedures that exploit the special structure of the QPEns

problem.
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5. Quadratic programming performance for two
examples

a. One-dimensional static analysis with non-Gaussian
background and observation errors

This section considers the static one-dimensional

problem discussed in section 3 when the analysis en-

semble is derived with the ensemble quadratic pro-

gramming algorithm (QPEns). All results were obtained

with an active setMatlab quadratic programming routine.

Figure 10 shows the true state (black) and the analysis

mean (red line) and ensemble (light gray lines) generated

by QPEns for the measurements already considered in

Fig. 2 (green circles). In this case the measurement error

variance used in the QPEns is set equal to the variance of

the additive lognormal synthetic measurements, without

any adjustment. For our computational experiment the

mean and variance of the lognormal measurement errors

are 0.02 and 0.01, respectively. These are the same values

used to generate the untransformed EnKF results pre-

sented in section 3. The resulting QPEns analysis mean

and ensemble all conserve mass and are nonnegative ev-

erywhere. Some of ensemble members take on nonzero

values in regions where the true field is zero, leading to

nonzero analysis values in these regions. As a result, the

analysis mass near the true peak needs to decrease in

order to maintain the correct total analysis mass (i.e., the

areas under the red and black curves need to be the same).

The QPEns results are sensitive to the specified mea-

surement error covariance R. Figure 11 shows the results

obtained for the same problem considered in Fig. 10

with the measurement error variance used in the QPEns

algorithm reduced to one-quarter of the actual value

(i.e., from 0.01 to 0.0025). In this case, themeasurements

have more influence and the analysis mean and all the

ensemble members are very close to the true values.

This behavior reflects the fact that, for this particular

problem, the low measurement error covariance qua-

dratic programming objectives are minimized when the

values at the peak and the two nearest measurement

locations are as close as possible to the corresponding

measurements. Mass conservation and nonnegativity

can only be satisfied if the values at points farther from

the peak are all close to zero. It is interesting that the

EnKF still gives significant negative values (not shown

here) for the low measurement error variance case. In

this example the nonnegativity constraint that distin-

guishes the QPEns algorithm has an important impact

on overall accuracy as well as sign.

Figure 12 compares the QPEns standard deviation of

the analysis ensemble to the RMSE between the analysis

ensemble and the true state, for the nominal specified

measurement error variance value. The analysis ensem-

ble variances are generally comparable to the RMSE,

with some underestimation at a few locations near the

true peak. Note that the RMSE values for QPEns are

significantly lower than the EnKF values plotted in Fig. 4,

indicating a better match to the true feature.

The results shown above indicate that the constrained

QPEns algorithm provides a major improvement in

FIG. 10. 1D static analysis results for QP with positivity constraint and nominal assumed

measurement error variance 0.01. True state (black), observations (green), analysis ensemble

(gray), and analysis ensemble mean (red). The analysis ensemble members and their mean

conserve mass and are always nonnegative. The analysis mean underestimates true at the peak

in order to conserve total mass since the ensemble members and mean both include some mass

in the region where the true state is zero.
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accuracy and physical realism over either an un-

transformed or log transformed EnKF, at least for the

problem we have considered. The QPEns conserves

mass, gives nonnegative values, and provides an accu-

rate description of the true feature of interest.

b. Two-dimensional dynamic analysis

In this section we use the QPEns algorithm to solve

the two-dimensional dynamic data assimilation problem

introduced in section 3b. For implementation of the

QPEns algorithm in this example, we constructed the

perturbed observations as wo
k 1 ro,ik , where ro,ik is a vector

normally distributed N (0, Rk) and Rk is a diagonal

matrix with 12 on the diagonal. The results of this

experiment are summarized in Fig. 13. The QPEns al-

gorithm is able to recover the cone structure, with

a maximum value of 94.9 and RMSE of 0.4 at the end of

the experiment (cf. Fig. 9). As in Fig. 9 we show an ex-

ample of three ensemble members. Since the result of

the QPEns cannot be negative, we show the ensemble

members with lowest and highest maximum values, and

one with the maximum value in between. Maximum

values of ensemble members vary in the range between

56.6 and 98.5. One of the depicted ensemble member

(Fig. 13, bottom-left panel) almost perfectly represents

the true cone structure with the maximum value of 98.5.

The ensemble member with the lowest maximum value

differs from the true cone, with the errors primarily

FIG. 11. 1D static analysis results for QPEns with positivity constraint and lowered assumed

measurement error variance (0.0025). True state (black), observations (green), analysis en-

semble (gray), and analysis ensemble mean (red). The analysis ensemble and their mean

conserve mass and are always nonnegative. The analysis mean and ensemblemembers are very

close to the true values.

FIG. 12. 1D static analysis results for the QPEns with positivity constraint and nominal

measurement error variance. Comparison of ensemble standard deviation (solid) and RMSE

between analysis ensemble members and true (circles). The QPEns variances are generally

comparable to the RMSE, with some underestimation at a few locations near the true peak.

RMSE values for the QPEns are significantly lower than for the EnKF (cf. Fig. 4).
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localized around the cone in the range from 0 to 10. The

third ensemblemember shown in Fig. 13 has amaximum

value in between the lowest and highest. This member

has a clearer cone structure than the one with the lowest

maximal value but positive errors are still present around

the cone. In all cases, the analysis ensemble members

have the samemass as the true cone and are nonnegative,

resulting in a more accurate analysis mean than the tra-

ditional EnKF.

6. Discussion and conclusions

In this paper we propose using constraints to enforce

mass conservation, nonnegativity, and other physical re-

quirements in an ensemble Kalman filter update. Fore-

cast means and covariances convey useful but sometimes

incomplete information about the physical requirements

imposed by conservation laws. As a result, ensemble

Kalman filter updates that rely only on these moments

and scattered noisymeasurements can produce unphysical

analyses and analysis ensemble members. It is possible

to deal with some physical requirements, such as mass

conservation, through proper construction of the

forecast error covariance and the subsequent update.

But this does not generally insure that analysis results

are nonnegative. Conversely, it is possible to impose

nonnegativity by using transform methods such as

anamorphosis, but these methods do not necessarily

conserve mass. If the classical unconstrained ensem-

ble Kalman filter update is appropriately constrained

it is possible to conserve mass and also to maintain the

correct sign.

When measurements are linearly related to the state,

the ensemble Kalman filter update can be posed as a set

of unconstrained quadratic programming problems, one

for each replicate. The solutions to these unconstrained

problems can be expressed in closed form. The qua-

dratic programming structure of the problem is main-

tained if linear equality and inequality constraints are

added, but the solutions must generally be obtained from

a numerical optimization procedure rather than from

a closed form expression. Fortunately, many important

FIG. 13. (top left) The analysis at the end of the solid-body rotation experiment (time step 30 241), obtained with

the QPEns algorithm. Ensemble members are shown as examples of replicates with the (top right) lowest and

(bottom left) highest maximumvalues. (bottom right)An ensemblemember withmaximum value between the two is

depicted. Contour lines in the range from 210 to 10 are shown in steps of 1, and above 10 in steps of 10.
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physical constraints, including mass conservation and

nonnegativity, are linear and fit into a quadratic pro-

gramming framework. This makes it convenient to add

constraints to existing sequential data assimilation algo-

rithms based on ensemble Kalman filters. The quadratic

programming formulation has a number of important

advantages, including the availability of very efficient

solution algorithms and the guarantee that the problem

has a unique minimum for linear observation operators

when the Hessian of the quadratic objective function is

positive definite.

The benefits of including constraints to enforce non-

negativity are apparent in the results obtained in our

two synthetic experiments. In both cases, ensemble

quadratic programming captures the shape and mass of

a distinctive spatial feature through a filter update with

noisy measurements. The quadratic programming ap-

proach works much better than a classical ensemble

Kalman filter, which gives negative estimates even though

all measurements and forecasts are nonnegative. The

classical EnKF conserves total mass by generating in-

flated positive masses in some locations in order to

cancel negativemasses generated in other locations. The

log transformed EnKF is able to maintain nonnegativity

but does not generally conserve mass and requires ad-

justment of its measurement error covariance in order to

obtain reasonable ensemblemembers and to capture the

approximate shape of the true feature.

The quadratic programming approach described here

has some limitations that are important to note. It is

appropriate when the observation operator is linear and

when all constraints included in the update are linear.

The forecast model can be nonlinear, as in other en-

semble filtering methods that compute forecast statistics

by propagating ensemble with nonlinear dynamic models.

The basic concept of constraining the Kalman filter

update can be extended to accommodate nonlinear

measurement operators and constraints. However, the

optimization must then be performed with a more ex-

pensive nonlinear programming algorithm and there is

no longer a guarantee of a unique minimum. It is pos-

sible that the quadratic programming formulation adop-

ted here could be retained for nonlinear measurement

operators if the objective function to be minimized is

expressed in terms of the analysis error covariance rather

than the forecast and observation error covariances

(Zupanski 2005). Linear equality and inequality con-

straints could then be included as described in section 4.

As mentioned above, the ensemble quadratic pro-

gramming approach requires numerical solution of a

different quadratic programming problem at every

analysis time, for every ensemble member. This is not

a significant limitation for our simple examples but it

could require substantially greater computational

effort than the standard closed form ensemble Kalman

filter update, especially for spatially distributed prob-

lems with many degrees of freedom. However, the

relative increase in overall computational effort may

not be significant because in many high-dimensional

ensemble filtering problems computational effort

is dominated by the forecast rather than the analysis

step. Larger problems will have to be investigated

before we can assess the overall impact of solving a

quadratic programming problem for every analysis

ensemble member. It may be possible to reduce com-

putational effort by taking advantage of the fact that

quadratic programming solutions for the different en-

semble members tend to be clustered around a common

mean. Also, the different quadratic programming solu-

tions required in the analysis step can be computed in

parallel.

Our quadratic programming approach for including

constraints in an ensemble Kalman filter is related to

other ensemble data assimilation methods including

hybrid variational methods and randomized maximum

likelihood. These various approaches are complemen-

tary and it is likely that they could be combined in var-

ious ways. The distinctive aspects of our approach are an

emphasis on the need to include physical constraints

during the update and a formulation that takes advantage

of the computational benefits of quadratic programming.

Together, these provide a practical and effective way to

ensure that data assimilation results satisfy fundamental

physical requirements.
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APPENDIX A

Mass Conservation in Ensemble Kalman Filters

In ensemble Kalman filters the sample forecast error

covariancematrix in Eq. (7) is derived from an ensemble

of states produced by integration of a numerical model.

Many numerical integration schemes can conserve the

total (global) mass of tracers (e.g., Schneider 1984; Lin

and Rood 1997). Each replicate in a forecast ensemble
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computed with a conservative scheme conserves total

mass and the sample covariance derived from the fore-

cast ensemble is mass conserving. That is, eTw f ,i
k 5M

for each ensemble member and the mean wf
k over any

number of ensemble members has the same mass M, so

eT(w f ,i
k 2w f

k )5 0 for all i and Eq. (7) gives eTP f
k 5 0.

Since eTP f
k 5 0, Eq. (6) gives eTKk 5 0 and it follows

from Eq. (5) that eTwa,i
k 5 eTw

f ,i
k 5M for the classical

EnKF. Therefore, the analysis ensemble and analysis

mean of the EnKF all conserve mass if the forecast en-

semble members conserve mass or, equivalently, if the

forecast covariance is mass conserving. In this case the

EnKF analysis covariance is also mass conserving. This

covariance can be expressed, for any Kk, as

Pa
k 5 (I2KkHk)P

f
k (I2KkHk)

T 1KkRkK
T
k . (A1)

Since P
f
k is mass conserving and the gain Kk satisfies

eTKk 5 0, then from Eq. (A1) we have that eTPa
k 5 0, so

Pa
k is mass conserving.

Similar reasoning applies to the ETKF. In this case the

analysis mean is computed directly from

wa
k 5w

f
k 1Kk(w

o
k 2 rok2Hkw

f
k ) . (A2)

Consequently, it follows that eTwa
k 5 eTw f

k . This in-

dicates that the ETKF analysis is mass conserving if the

forecast model conserves mass.

The ETKF generates its analysis ensemble as follows:

wa,i
k 5wa

k 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nens2 1

q
[W

f
kTk]i , (A3)

where W
f
k 5 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nens 2 1

p
[w f ,1

k 2w f
k , . . . ,w

f ,Nens

k 2w f
k ] is

the n 3 Nens matrix of deviations of the forecast en-

semble members from their mean. We take the Nens 3
Nens transformation matrix Tk as in Wang et al. (2004,

2007a) and Hunt et al. (2007). Namely, if Ck and Dk are

the matrices of eigenvectors and corresponding eigen-

values of the matrix (W
f
k )

THT
kR

21
k HkW

f
k 5CkDk(Ck)

T,

respectively, then Tk 5Ck(INens
1Dk)

21=2Ck
T is the ma-

trix that transforms deviations of forecast ensemble

members from the forecast mean into deviations of

analysis ensemble members from the analysis mean.

Here, INens
denotes the Nens 3 Nens identity matrix.

The ETKF analysis error covariance can be shown to

be Pa
k 5W

f
kTkT

T
kW

f T

k (Bishop et al. 2001; Wang et al.

2007a). It follows that the ETKF analysis covariance is mass

conserving since eTPa
k 5 eTWf

kTkT
T
kW

f T

k and eTW f
k 5 0.

Also, from Eq. (A3) we have eTwa,i
k 5 eTwa

k 5M.

The above discussion indicates that the analysis en-

semble and analysis mean of both the EnKF and the

ETKF conserve mass and their analysis covariances are

mass conserving if the forecast ensemble members

conserve mass or, equivalently, if the forecast co-

variance is mass conserving. For this derivation wemade

no assumptions on linearity of the model dynamics. The

dynamics can be nonlinear as long as the numerical

discretization scheme conserves mass.

The proof that the analysis error covariance is mass

conserving if the forecast error covariance is mass con-

serving is applicable to any mass conserving forecast

error covariance, not only those derived from an en-

semble. Another example of a covariance formulation

that would conserve mass is one obtained by eigenvalue

decomposition on a sample that has a constant spatial

integral, since then e would be an eigenvector corre-

sponding to a zero eigenvalue of the covariance matrix

computed from the sample, and, therefore, would be

orthogonal to the other eigenvectors that are part of the

low-rank modeled covariance. Since this is a usual tech-

nique for initializing ensemble square root Kalman filter

algorithms, we assume that we start initially with a mass

conserving covariance matrix. Note that if the forecast

error covariance is modeled in such a way that all its el-

ements are positive [Gaussian, second order autore-

gressive (SOAR), third order autoregressive (TOAR)] or

nonnegative, then it cannot be mass conserving, since e

cannot be a null vector of a matrix with all positive

elements. Similarly, if localization is applied to the

ensemble-derived forecast error covariance through a

Schurmultiplication, then themass will not be conserved.

APPENDIX B

Mass Conservative Properties of the QPEns Analysis

The mass conservation properties of the QPEns anal-

ysis are related to the properties of the r-dimensional

subspace spanned by the ensemble of Nens forecast en-

semble members. This subspace is also spanned by the

ensemble of forecast deviations w f ,i
k 2w f

k , since the

mean w f
k also lies in the same subspace as the forecast

ensemble members. The analysis ensemble produced by

the QPEns algorithm or, equivalently, the analysis de-

viations wa,i
k 2wa

k, are constrained by construction to

also lie in the forecast ensemble subspace [see Eq. (17)].

Since the analysis deviations lie in the subspace spanned

by the forecast deviations, they may be written as a lin-

ear combination of the following form:

wa,i
k 2wa

k 5 �
N

ens

j51

ai,j(w
f ,j
k 2w

f
k) , (B1)

where the ai,j, i5 1, . . . ,Nens and j5 1, . . . ,Nens are the

scalar coefficients of the linear combination for replicate
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i. This implies that the analysis ensemble is mass con-

servative if the forecast ensemble is mass conservative

since

eT(wa,i
k 2wa

k)5 eT �
N

ens

j51

ai,j(w
f ,j
k 2w

f
k)

5 �
N

ens

j51

ai,je
T(w

f ,j
k 2w

f
k)5 0. (B2)

The final equality is a mathematical statement of the

assumption that the forecast ensemble is mass conser-

vative. Note that this result applies to any quadratic

programming problem with a vector decision variable

that is constructed to lie in the forecast ensemble sub-

space, as is done in Eq. (17).
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