Sensors and Rotordynamics Health Management Research for

Aircraft Turbine Engines

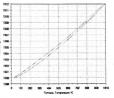
J. Lekkj^(a), A. Abdul-Aziz^(b), G. Adamovsky^(a), D. Berger^(c), G. Fralick^(a), A. Gyekenyesi^(d), G. Hunter^(a), R. Tokars^(a), M. Venti^(e), M. Woike^(a), J. Wrbanek^(a), S. Wrbanek^(a) (a) NASA GRC. (b) Cleveland State University, (c) NASA DFRC, (d) Ohio Aerospace Institute, (e) Tybrin Corporation

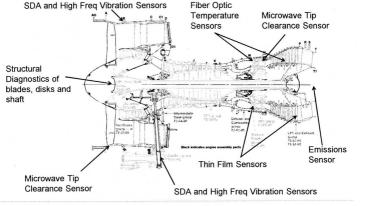
Objective:

Develop Advanced Sensor Technology and rotordynamic structural diagnostics to address existing Aviation Safety Propulsion Health Management needs as well as proactively begin to address anticipated safety issues for new technologies

Microwave Blade Tip Clearance / Tip **Timing Sensor**

- Blade Tip Clearance to monitor blade growth & wear
- Blade Tip Timing to monitor blade deflection & vibration
- Goal is to detect precursors to faults and prevent a blade / disk "event" before it happens


Engine Failure Incident June 2, 2006


Microwave Tip Clearance Probe

Fiber optic sensors mitigate potential reliability & performance issues associated with conventional sensors and have integration advantages

Developed & demonstrated high temperature optical sensors operational at 1000 C for up to 1000 hours

Emissions Sensors to Quantify composition of critical constituents in turbine engine exhaust products, E.G., CO, CO₂, NOX, O₂, HC (unburned Hydrocarbons)

Sensor

SiC Hydrocarbon Sensor

CO2 Sensor

Vehicle Integrated Propulsion Research (VIPR) engine tests (2011 to 2013) as a part of Technology Development

- Engine testing is a necessary and challenging component of VHM technology
- Test Objective: Demonstrate multiple structural and gas path health management sensors in an operating engine environment. Integrate sensor / detection technologies with Structural and Gas Path diagnostics.
- Approach: Perform engine ground tests using commercial derivative engine. Conduct normal engine operations and also operations that have seeded mechanical and gas path faults (simulated).

Self Diagnostic Accelerometer: For mission critical decisions, such as an engine being shut off due to anomalous acceleration readings, ensuring sensor heath is critical.

On-Component Thin Film Sensors for monitoring degradation and damage that develops over time in hot section components

to T=1000°C

Rotordynamics for Structural Health Management Diagnostics - Crack Signatures obtained through Subscale Engine Disk Spin Rig

