

NASA's Turbofan Engine Concept Study for a Next-Generation Single-Aisle Transport

Presentation to ICAO's Noise Technology Independent Expert Panel January 25, 2012

National Aeronautics and Space Administration U.S.A.

Contributors

- Jeff Berton (NASA Glenn Research Center)
- Ken Fisher (NASA Glenn Research Center)
- Mark Guynn (NASA Langley Research Center)
- Bill Haller (NASA Glenn Research Center)
- Doug Thurman (NASA Glenn Research Center)
- Mike Tong (NASA Glenn Research Center)

Presentation Outline

- Introduction
- Baseline Vehicle
- Engine Modeling
- Airframe Modeling
- Noise Modeling
- Results and Trade-off Analysis
- Summary

NASA Subsonic Transport System Level Metrics

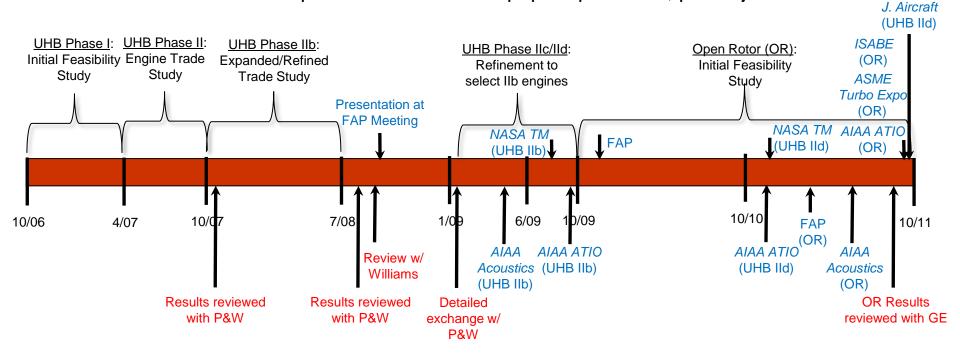
.... technology for dramatically improving noise, emissions, & performance

TECHNOLOGY	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)				
BENEFITS*	N+1 (2015)	N+2 (2020**)	N+3 (2025)		
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-71 dB		
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%		
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%		
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%		

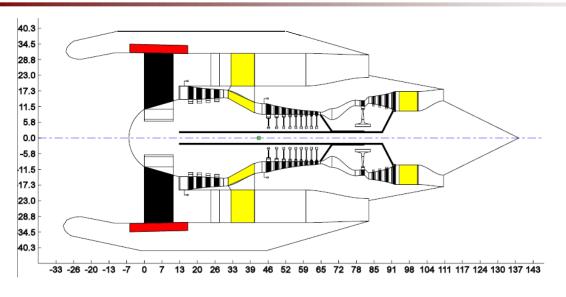
^{*} Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

SFW Approach

- Conduct Discipline-based Foundational Research
- Investigate Advanced Multi-Discipline Based Concepts and Technologies
- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes
- Enable Major Changes in Engine Cycle/Airframe Configurations

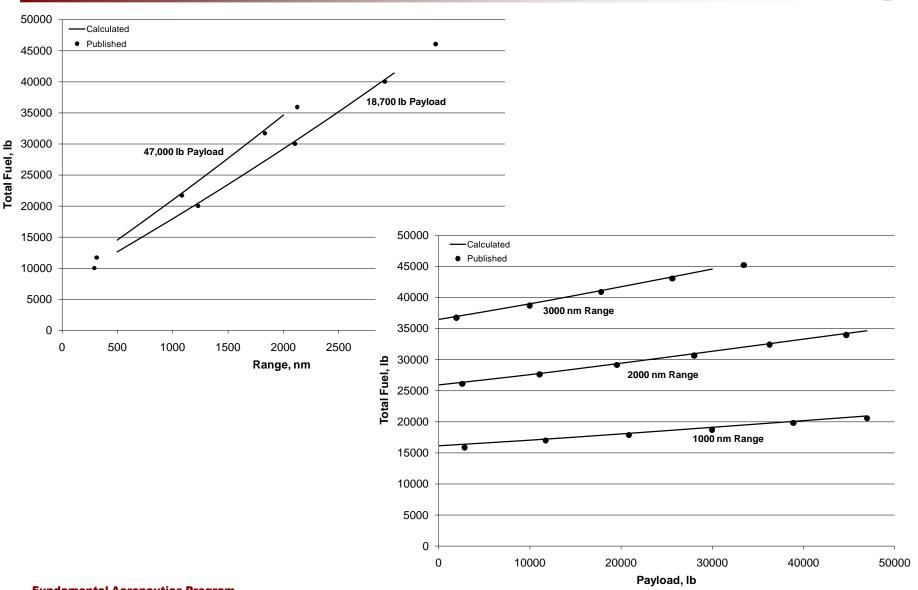

^{**} ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

 $[\]ddagger$ CO₂ emission benefits dependent on life-cycle CO_{2e} per MJ for fuel and/or energy source used


Historical Look at SFW Propulsion Studies

- SFW has been conducting an on-going engine trade study to assess propulsion options for advanced single-aisle (737/A320 class) aircraft
 - Multi-year, Multi-phase effort
 - Initial focus on ultra-high bypass ratio (UHB) turbofan concepts, followed by investigation of open-rotor engine architectures
 - Multiple interactions with industry over the years to obtain feedback
 - Numerous technical reports and conference papers produced, plus 1 journal article

Baseline Vehicle Model



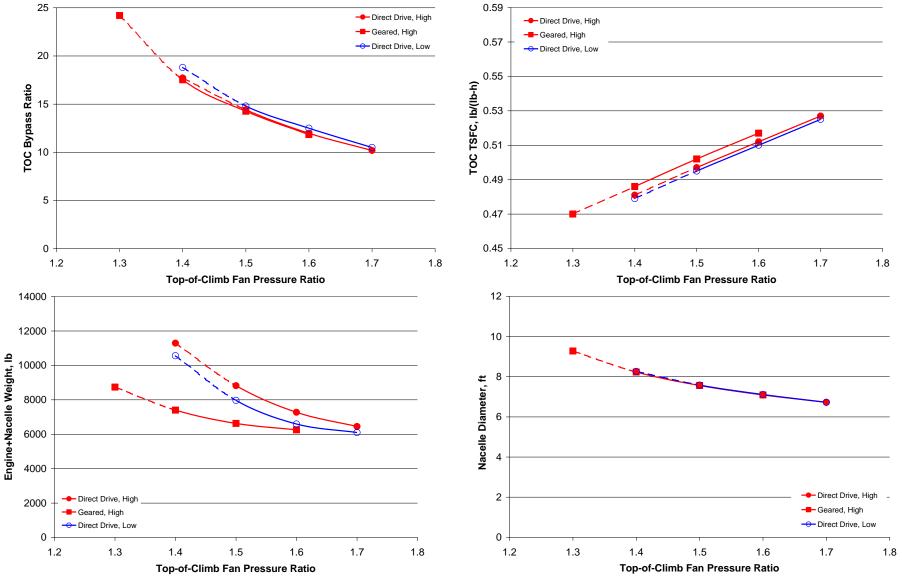
- Model of CFM56-7B type engine developed at Glenn Research Center using the Numerical Propulsion Simulation System (NPSS)
- Baseline 737-800 w/winglets airframe model developed in NASA's FLOPS (Flight Optimization System) software
 - Publicly available geometry, weight data; proprietary low speed and cruise aerodynamic data
 - Minor calibrations performed to match available data
- Overall mission performance modeled with FLOPS
 - minor calibration of fuel consumption performed to match published range capability
- 737 model resized to assumed N+1 vehicle mission to provide a 1998 technology baseline vehicle

737-800 Fuel Consumption Validation

Advanced Turbofan Trade Study

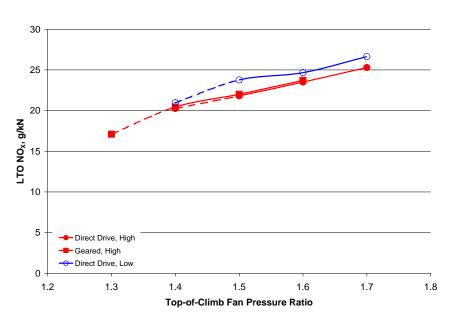
- 12 different turbofan engines developed with NPSS and WATE using consistent technology assumptions and ground rules (not all combinations result in practical designs)
 - Engine Aero Design Point: Overall Pressure Ratio=42; M=0.80; 35,000ft
 - Fan Pressure Ratio varied (FPR= 1.3 to 1.7); bypass ratio set by jet velocity ratio at ADP
 - Fan drive approach varied (direct or geared); gearbox efficiency of 0.99
 - Fan exit nozzle type varied (fixed or variable area); surge margin target of 20%
 - Low spool compression work varied ("high" or "low")
- 2015-2020 entry-into-service assumed for technology projections
 - Advanced Materials: polymer matrix composites, Titanium aluminide, Titanium metal matrix composite, 5th generation nickel-based alloys
 - Turbine inlet (T4) & turbine rotor inlet (T41) temperatures increased over current technology
 - Advanced Low NO_X combustor (using NASA in-house Emission Index correlation representative of Lean Direct Injection architecture)
- Engines designed to meet same thrust requirements at Aero Design Point (topof-climb) & rolling takeoff (M=0.25, SL)
- Engines applied to a common advanced single-aisle transport ("ASAT") airframe
- Sensitivity of efficiency, emissions, and noise to engine design assessed

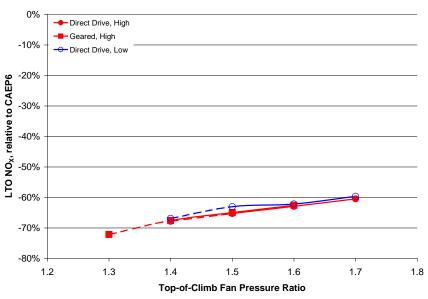
Engine Trade Space



Engine	Fan Drive	Fan Nozzle	ADP	FPR	OPR	LPC PR	HPC PR
Lo_dd_fpr1.4_VAN*	Direct	Variable	M0.80/35kft	1.4	42	1.69	17.7
Lo_dd_fpr1.5_fixed	Direct	Fixed	M0.80/35kft	1.5	42	1.58	17.7
Lo_dd_fpr1.6_fixed	Direct	Fixed	M0.80/35kft	1.6	42	1.48	17.7
Lo_dd_fpr1.7_fixed	Direct	Fixed	M0.80/35kft	1.7	42	1.39	17.7
Hi_dd_fpr1.4_VAN*	Direct	Variable	M0.80/35kft	1.4	42	2.50	12.0
Hi_dd_fpr1.5_fixed	Direct	Fixed	M0.80/35kft	1.5	42	2.33	12.0
Hi_dd_fpr1.6_fixed	Direct	Fixed	M0.80/35kft	1.6	42	2.19	12.0
Hi_dd_fpr1.7_fixed	Direct	Fixed	M0.80/35kft	1.7	42	2.06	12.0
Hi_g_fpr1.3_VAN*	Geared	Variable	M0.80/35kft	1.3	42	2.69	12.0
Hi_g_fpr1.4_VAN	Geared	Variable	M0.80/35kft	1.4	42	2.50	12.0
Hi_g_fpr1.5_fixed	Geared	Fixed	M0.80/35kft	1.5	42	2.33	12.0
Hi_g_fpr1.6_fixed	Geared	Fixed	M0.80/35kft	1.6	42	2.19	12.0

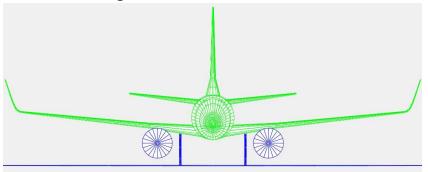
^{*}Design ground rules lead to impractical designs for these cases

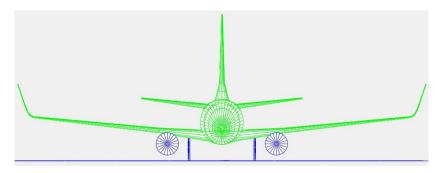

Engine Characteristics



Engine Characteristics (2)

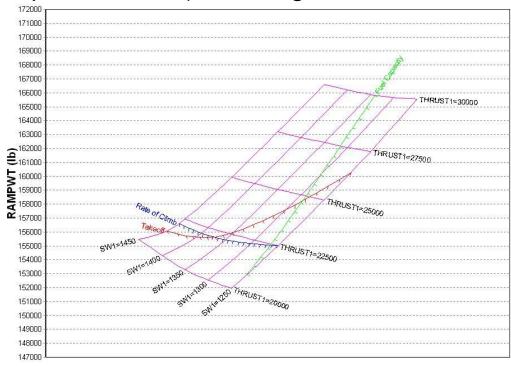
Advanced Airframe Assumptions




- Structures:
 - composite materials for wing, fuselage, and tails (15% structural weight benefit assumed)
- Aerodynamics:
 - 1% reduction in drag for trailing edge variable camber and drag clean-up
- Subsystems:
 - 5000 psi hydraulic pressure
- Design range @ 32,400 lb payload increased from 3060 nm to 3250 nm
- Cruise Mach number increased to 0.8
 - Wing sweep adjusted to reflect changes in cruise Mach from 737

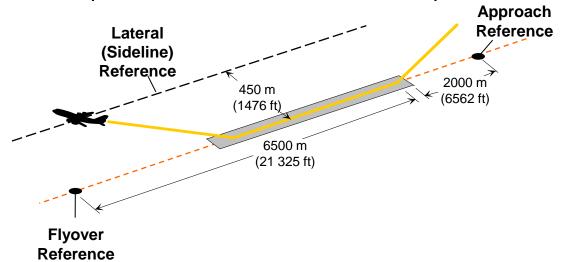
Engine-Airframe Integration

- Relative span-wise and chord-wise location of engine unchanged from 737-800
- Nacelle drag assumed proportional to nacelle size (wetted area)
- Approximate calculation of required landing gear length
 - Minimum nacelle clearance (18 inches)
 - No nacelle impact in case of nose gear collapse
- Approximate sizing of vertical tail
 - Minimum tail volume (based on 737-800)
 - Maximum tail loading during one engine out
 - Handbook method for windmilling drag, 737-800 data used for engine out control drag


Example FPR=1.4 Configuration

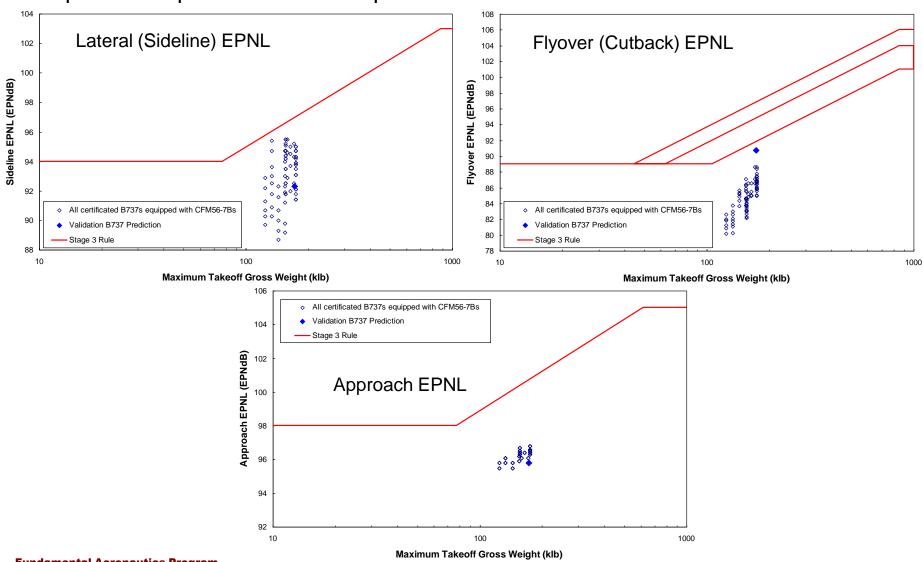
Example FPR=1.7 Configuration

Aircraft Sizing


- Aircraft weight, thrust, and wing area sized with FLOPS analysis
 - design mission: 3250 nm @ 32,400 lb payload
 - 7000 ft takeoff field length constraint
 - 300 fpm rate-of-climb constraint at M=0.80; 35,000 ft
- Basic geometric parameters (e.g., fuselage length, wing aspect ratio, wing taper ratio, etc.) unchanged from 737-800

Noise Analysis Methodology

- Noise predictions performed using ANOPP
 - Source noise modules fed data from NPSS and WATE models
 - Propagation modeling includes spherical spreading, atmospheric attenuation, ground effects, reflections, and lateral attenuation
- Trajectory simulation done using SAE AIR-1845 INM empirical procedures for a 737-800 and FLOPS for advanced vehicles
- Noise predictions performed for noise certification points

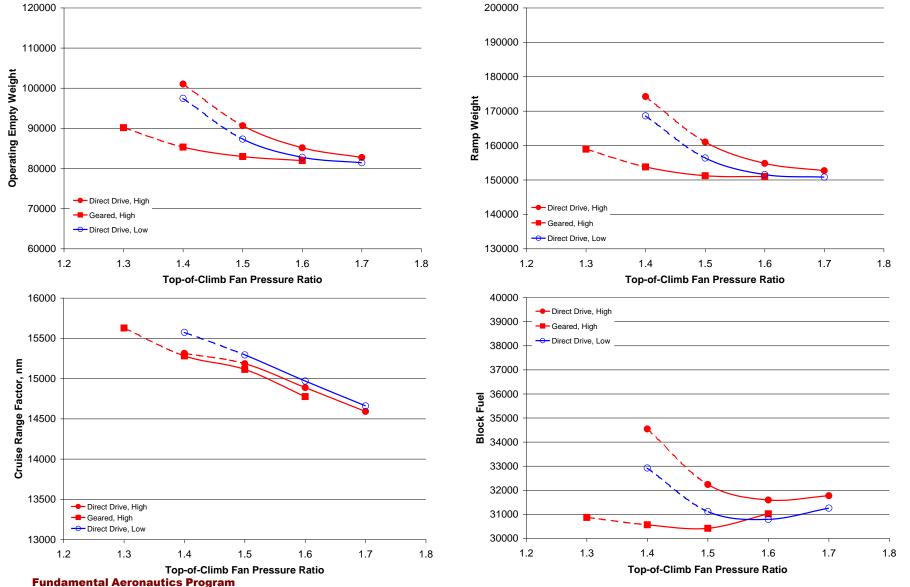


Noise analysis validated by comparison to 737-800 certification data

Noise Analysis Validation

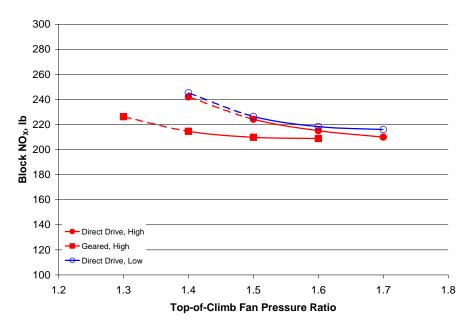
Comparison of predicted noise to published 737NG/CFM56-7B certification data

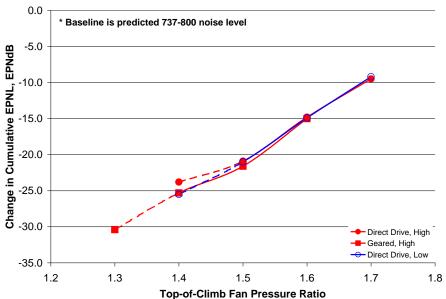
ASAT Noise Reduction Technology



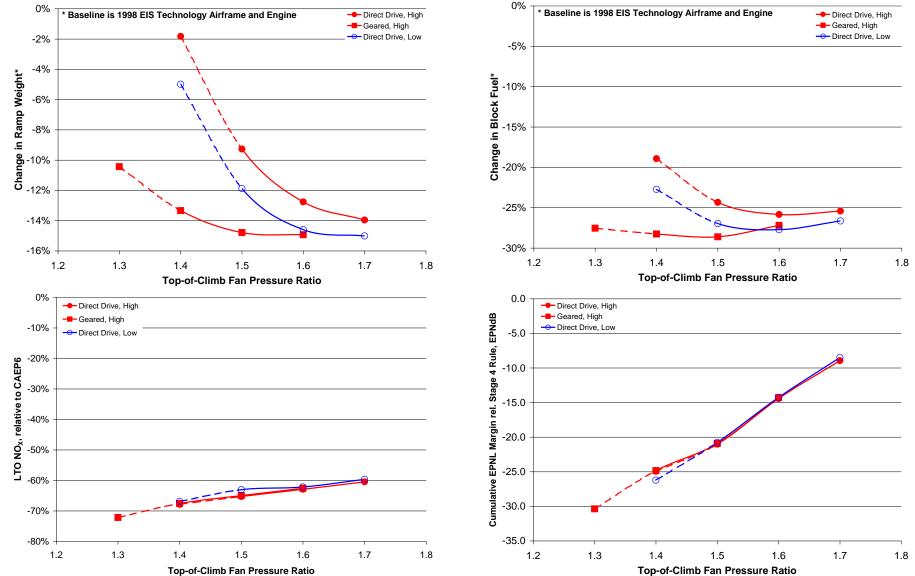
- Core nozzle chevrons assumed on all systems, bypass nozzle chevrons on fixed nozzles only (potential conflict with variable area bypass nozzles)
 - Benefit analytically modeled using 2004 Stone jet prediction methods in ANOPP
- Conventional 2DOF acoustic liner
- Soft vane and over-the-rotor liner technologies applied to all systems
 - Additional acoustic treatment in areas not currently treated
 - ANOPP HDNFAN is insensitive to this feature; system-level 4 dB reduction applied
 - Benefits are additive, and assumed constant across frequency, direction, and throttle setting
- Advanced airframe noise reduction technologies
 - Innovative slat cove designs, flap porous tips, landing gear fairings
 - 4 dB reduction in slat/flap noise; 3 dB reduction in gear noise

Aircraft Characteristics


Subsonic Fixed Wing Project



Aircraft Characteristics (2)

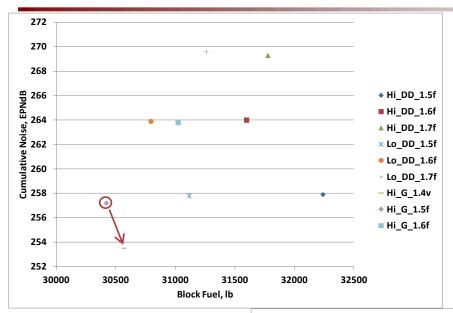


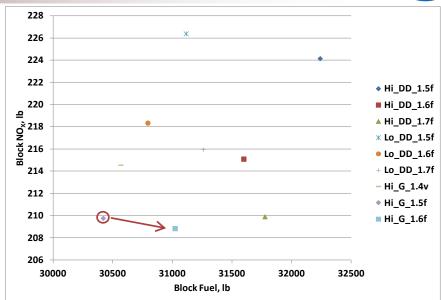
Overall Benefits

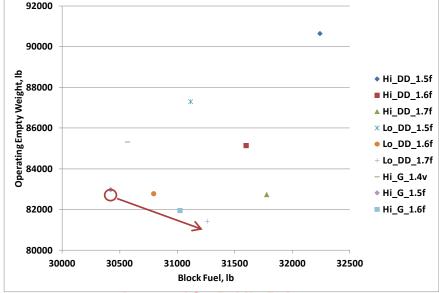
Fundamental Aeronautics Program

Subsonic Fixed Wing Project

Trade-off Analysis


	Ramp Weight	Block Fuel	Block NO _X	LTO NO _X	Cum. EPNdB (Stage 4 Margin*)
High, Geared, FPR=1.4	+2.0 %	+0.5%	+2.7%	Minimum	Minimum (25-29 cum.)
High, Geared, FPR=1.5	+0.3%	Minimum	+0.5%	+0.5%	+3.7 (21-25 cum.)
Low, Direct, FPR=1.5	+3.7%	+2.3%	+8.4%	+10.6%	+4.3 (21-25 cum.)
High, Direct, FPR=1.5	+6.8%	+6.0%	+7.3%	+4.8%	+4.4 (21-25 cum.)
High, Geared, FPR=1.6	+0.1%	+2.0%	Minimum	+6.9%	+10.3 (14-18 cum.)
Low, Direct, FPR=1.6	+0.5%	+1.2%	+4.5%	+11.5%	+10.4 (14-18 cum.)
High, Direct, FPR=1.6	+2.6%	+3.9%	+3.0%	+6.9%	+10.5 (14-18 cum.)
Low, Direct, FPR=1.7	Minimum	+2.8%	+3.4%	+18.9%	+16.1 (9-13 cum.)
High, Direct, FPR=1.7	+1.2%	+4.5%	+0.5%	+12.7%	+15.8 (9-13 cum.)


Good "balanced" performance across all metrics


^{*} Range represents uncertainty associated with possible overprediction of flyover noise

Trade-off Analysis (Cont.)

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Approved for Public Release

Summary

- SFW project has been performing aircraft system studies to evaluated advanced propulsion concepts for 2015-2020 advanced single-aisle transports
- For advanced turbofans, optimum fan pressure ratio depends on metric of interest
 - Empty/Ramp weight minimized with high FPR
 - Block fuel minimized with FPR ~1.5
 - Block NO_X minimized with high FPR
 - LTO NO_X and noise minimized with FPR low as possible
- With current models and assumptions
 - Fan pressure ratio with best compromise among all objectives seems to be ~1.5
 - Geared fan approach is preferred for fan pressure ratios at and below 1.5
 - A direct drive, FPR=1.6 engine can provide similar fuel burn to the geared FPR=1.5 engine, but has higher noise
- Relative to 1998 EIS technology, "practical" study configurations demonstrate
 - Up to 29% reduction in fuel burn
 - Up to 25 EPNdB cum. noise reduction (25-29* EPNdB cum. margin to Stage 4)
 - Up to 67% below CAEP6 for LTO NO_x

^{*} Range represents uncertainty associated with possible overprediction of flyover noise

