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Introduction

• NASA is developing advanced space-rated vacuum seals 
for future space exploration missions to International 
Space Station and beyond

• Used to seal interfaces between docked or mated vehicles 
and structures
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Key Seal Requirements

• Large seals: Up to 50 in. 
(127 cm) in diameter

• Seal-on-flange or seal-on-
seal mating

• Extremely low leak rates to 
ensure that astronauts 
have sufficient breathable 
air for extended missions

• Compression and adhesion 
loads must stay below 
prescribed thresholds
– High adhesion loads could 

restrict undocking and/or 
damage seals
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Adhesion Mitigation
• Adhesion loads for untreated silicone 

seals exceed capabilities of docking 
system separation mechanisms

• Pre-treatment of seals with low doses of 
atomic oxygen (AO) drastically reduces 
seal adhesion loads

– Oxidizes silicone and passivates seal 
surfaces 

– Little effect on seal compression loads or 
leak rates

• Previous studies demonstrated low 
adhesion loads after multiple 
compression cycles (simulated docking 
and undocking) 

• However, seals can also be subjected to 
lateral, scrubbing movements due to:

– Mechanical alignment of docking systems 
after initial engagement

– Thermal equilibration after mating has 
completed
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Goal & Approach for Study
• Goal:

– Evaluate effects of lateral scrubbing on 
seal performance by comparing leak 
rates and adhesion loads of AO pre-
treated seals before and after scrubbing

• Approach:
– Due to limited number of test 

specimens, performed durability (scrub) 
tests on seals made of two materials 
under anticipated worst-case conditions:

• Seal-on-flange configuration
• Warm operating temp. of 142°F (61°C)
• High compression level (near full 

compression)
– Performed room temperature leak tests 

and adhesion tests before and after 
durability tests to evaluate effects of 
scrubbing
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Test Specimens

• Test specimens were subscale 
versions (~12 in. dia.) of 
candidate full-scale seal design
– Elastomer seals made from two 

different silicone compounds:
• 40 durometer material (XS3088-02)
• 70 durometer material (S0383-70)

– Retainers fabricated out of 6061-
T651 aluminum

– Eight #8-32 fasteners made of 
A286

• Test specimens were pre-treated 
to AO fluence level of 
approximately 1x1020 atoms/cm2 

prior to testing
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Test Sequence

• Each test specimen was 
subjected to same test sequence:
1. Room temperature adhesion test
2. Room temperature leak test
3. Durability test at anticipated 

warm operating temperature of 
142°F (61°C)

4. Room temperature leak test
5. Room temperature adhesion test

• Seal test specimen remained 
installed in same test fixture as it 
was moved from test to test to 
minimize handling and 
disturbances of seal 
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Test Fixture Details

• Seals were tested in seal-on-flange configuration:
– Installed in groove in lower platen
– Compressed against flat, smooth (16 µin. (0.4 µm)) sealing surface on upper 

platen
• Vent holes included in platens to prevent air entrapment that could 

otherwise:
– Be measured as load during compression testing
– Help separate platens during adhesion testing
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Durability Testing
• Upper test platen with flat 

surface:
– Secured to base of test 

apparatus through standoffs
– Remained fixed during testing

• Lower test platen with seal:
– Mounted on pair of linear rails 

connected to screw jack 
assembly

– Moved back and forth during 
testing

• Amount of compression on 
seals controlled by precision 
metal shims installed on top 
of standoffs

– Gap between upper and lower 
platens minimized (~0.005 in. 
(0.127 mm)) to nearly fully 
compress seals

• Heaters mounted on backs of 
platens warmed test fixture to 
142°F (61°C) during testing
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Durability Testing (cont.)

• Each seal subjected to 50 scrub cycles:
– Each cycle consisted of a movement of 0.056 in. (1.42 mm) 

away from and back to original home position
– Simulated amount of movement seal could experience 

during 50 missions
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Adhesion Testing
• Room temperature adhesion 

tests performed before and 
after durability tests

• Seals initially compressed in 
test fixture for 24 hrs at room 
temperature outside load 
frame

• Test fixture assembly then 
installed in load frame for 
adhesion test:
– Upper platen raised according 

to specific displacement profile 
to simulate undocking 
sequence

– Test was completed when 
seal was no longer in contact 
with mating surface

– Maximum force required to 
separate seal from mating 
surface was reported as seal 
adhesion value
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Adhesion Test Results

• Before scrubbing, AO pre-treatment was more effective at reducing adhesion loads 
for seals made of S0383-70 than for seals made of XS3088-02

• Effects of scrubbing on adhesion loads were inconclusive:
– For XS3088-02 seals, load increased after scrubbing for one seal and decreased for the other
– For S0383-70 seals, load increased quite a bit for one seal but very little for other two seals; 

however, even max load was still lower than those for seals without AO pre-treatment

12



Leak Testing

• Room temperature leak tests 
performed before and after 
durability tests

• Control volume inboard of inner 
seal bulb pressurized with dry air 
to create ∆p across seal of 14.7 
psid

• Measured pressure and 
temperature of volume as air 
permeated through seal

• After test was completed, utilized 
mass point leak rate method to 
quantify leak rate for inner seal 
bulb

• Calculated uncertainty for leak rate 
based on 95% confidence interval
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Leak Test Results

• Leak rate after scrubbing increased slightly compared to 
leak rate prior to scrubbing for each seal

• However, leak rates before and after scrubbing were 
deemed to be statistically equivalent since their 
confidence intervals overlap
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Summary & Conclusions

• Durability tests were performed on subscale seals under 
anticipated worst-case conditions to evaluate effects of lateral, 
scrubbing movements on performance of AO pre-treated seals

• Testing revealed:
– AO pre-treatment was more effective at reducing adhesion loads 

before scrubbing for seals made of S0383-70 than for seals made of 
XS3088-02 compound

– Effects of scrubbing on seal adhesion loads were inconclusive; 
however, still lower than those for seals without AO pre-treatment

– Potential increase in seal adhesion after scrubbing must be accounted 
for in future docking system seal designs

– Scrubbing of S0383-70 and XS3088-02 seals did not cause 
statistically significant changes in seal leak rates

• Additional tests and evaluations are warranted to confirm these 
findings since conclusions are based on limited number of tests
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Leak Testing
• Room temperature leak tests performed 

before and after durability tests
• Control volume inboard of inner seal 

bulb pressurized with dry air to create 
∆p across of 14.7 psid

• Measured pressure and temperature of 
volume as air permeated through seal

• After test was completed, utilized mass 
point leak rate method to quantify leak 
rate for inner seal bulb:

– Calculated mass of air in test section at 
each time step using Ideal Gas Law:

m(t) = (pV)/(RT) 
– Performed linear regression on population 

of mass sample points using Least Squares 
Method to yield:

m(t) = a1t + a0
– Variable a1 was slope of curve and 

corresponded to leak rate for inner bulb of 
test seal

– Calculated uncertainty for leak rate based 
on 95% confidence interval
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