

# Capacitor Failure Investigation Results for the NEXT Ion Thruster Power Processing Unit (PPU)

James F. Soeder, Luis Pinero, Robert Scheidegger NASA Glenn Research Center John Dunning – Alpha-port Inc., Art Birchenough – QinetiQ-NA Inc.

April 17, 2012



# **Discussion Topics**

- PPU background
- Failure #3 Investigation
- Key Findings
  - Beam module testing and analysis
  - Capacitor testing and analysis
- Electrical Testing to Mimic in Circuit Phenomena
- Failure Conclusions and Corrective Actions
- Summary

#### <u>NASA's Evolutionary Xenon Thruster (NEXT)</u> Background

- 7.0 kW ion propulsion system
- Leverages elements from NSTAR (DEEP Space I)
- Designed to meet propulsion requirements of Jupiter/Saturn DRMs
- PPU was constructed with the objective of flight-like form/fit/function
- Multiple functional test cycles conducted in ambient/vacuum with resistive load/thruster
- Environmental qualification-level testing planned until string of failures occurred



#### **NEXT Thruster**







# **NEXT Power Processing Unit**

www.nasa.gov



- Discharge supply
- Quad supply containing
  - -Accelerator
  - Neutralizer keeper
  - Discharge cathode heater
  - -Neutralizer heater
- Housekeeping power
- Beam supply
  - Processes 93% total power
  - Up to 96% efficient
  - Contains 6 parallel modules
  - Input Voltage: 80 to 160 V
  - Output voltage: 275 to 1800 V





National Aeronautics and



### **BEAM MODULE**





#### **POWER PWB**







# **Background MLC Capacitor Failures**

1st failure3rd failure2nd failureModule #1Module #4Module #6March 2008April 2010Feb 2009



National Aeronautics and Space Administration



## Failure #3 Investigation





#### Module #4 PC Board (Post Failure)



Module #4 failure

- Top capacitor
- 50°C baseplate temp.
- Operating at 3.5kW
- 4 modules @ 820 W/module
- Failed during
- forced recycle
- 160 V input
- < 136 hrs

operating in vacuum

National Aeronautics and Space Administration

#### **PPU Capacitor Failure Tree**



| Color Code  |  |
|-------------|--|
| Very Likely |  |
| Likely      |  |
| Not Likely  |  |
| Clear       |  |

National Aeronautics and Space Administration



# **Key Findings**

#### Beam module testing and analysis

www.nasa.gov



## Beam Supply Simplified Schematic

# Circulating Current



Ripple Current 20Ap-p @ 200kHz Failures #1 &# 2

Failure #3

Circulating Current between Two Capacitors In Phase Shift Mode

#### **Cap Current and Circulating Current**





#### **Capacitor Current and Voltage During a Fault**



National Aeronautics and Space Administration



# **Key Findings**

#### **Capacitor testing and analysis**

www.nasa.gov 14

#### **Ceramic Capacitors**





- A ceramic capacitor is constructed of alternating layers of metal and ceramic, with the ceramic material acting as the dielectric.
- A typical dielectric material is X7R a form of Barium Titanate
  - Minor Dopants change the electrical and mechanical properties
  - Barium Titanate can be highly piezoelectric based on the additives used

# **Ceramic Capacitor Used in the Beam Supply**



- Custom Part 9uf; 300 Volt ceramic capacitor; case code #3
- This custom dielectric formulation is highly piezoelectric
  - Easily polarized by applied voltage at elevated temperature
  - Internal mechanical resonances a function of case dimensions
    - Frequency = (Velocity of Sound in Dielectric)/ 2\* (Length Dimension)
    - Electrical behavior is a strong function of frequency near resonances
    - Capacitance drops with applied voltage

# Piezoelectricity



Piezoelectricity is a form of electricity created when certain crystals are bent or otherwise deformed. These same crystals can also be made to bend slightly when a small current is run through them,



Barium Titanate (the capacitor dielectric) is piezoelectric

#### Displacement = f (Electric Field)



# NASA

#### New Custom Caps from Stock



# Not subjected to temperature or voltage



#### Custom Caps Burned-In @ 125°C and 600 V<sub>DC</sub>



Temperature and voltage polarizes the dielectric creating the piezoelectric effect.
Spike in the impedance indicate piezoelectric resonant frequencies.
Resonant frequencies are function of ceramic slab dimensions and material.



# Electrical Testing to Mimic in Circuit Phenomena





# **Test Circuits**



#### Growler

- Provides 7.5 amps rms of sinusoidal circulating current @ 170 to 220 kHz

#### Growler / V-Thumper - Augment the growler circuit with a 75 volt transient 3 times / second to simulate recycle conclusion







- 200kHz
- 5.47 degree phase lag

### FRB Cap Failure #3



#### **Failure Specifics**

- 345 total hours
- In Vacuum & Air
- Exercised at 192-205 kHZ
  - (90sec sweep)

#### Day of Failure Recorded Temp & Current





Temp (C) Current(Adc)





# **Failure Conclusions and Corrective Action**





# **Summary of Failure Mechanism**





#### Replacement 5.6µF/500V









#### Custom 9µF/300V

**0** volt Bias



National Aeronautics and Space Administration

## **Reduce Circulating Current**





# Summary

- Piezo-electric characteristics of the custom capacitor at the operating frequency of the beam power supply led to its failure in this application
- Circulating currents at the operating frequency within the bridge aggravated the problem
- Recycle of the beam supply may be final trigger of the failure but is not the primary cause
- Replace capacitors with a non-piezoelectric capacitor
- Add MPP Core to eliminate circulating current

#### Capacitor problem has been solved