annun

National Aeronautics and Space Administration

Advanced Concepts for Aircraft LTO NOx Reduction: A NASA Perspective

Dr. Rubén Del Rosario

Project Manager, Subsonic Fixed Wing NASA John H. Glenn Research Center Cleveland, OH USA

Collaborations by NASA ERA and SFW Projects

Aircraft Noise and Emissions Reduction Symposium Marseilles, France 25-27 October 2011

NASA Subsonic Transport System Level Metrics

... technology for dramatically improving noise, emissions, & performance

TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)		
	N+1 (2015)	N+2 (2020**)	N+3 (2025)
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-71 dB
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%

* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

** ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

‡ CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel and/or energy source used

Trading Performance & NOx Reduction

Overall Compressor Pressure Ratio (Thermal Efficiency)

Addressing LTO NO_x Emissions

Low NOx, Fuel-Flexible Combustors

Alternative fuels

- High bypass ratio,
 high pressure
 smaller-core
 engines
 - Superior alternative fuel properties

ASCR Combustion Rig

CMC Combustor Liner

CMC combustor liner for higher engine temperatures and reduced cooling air flows

CMC combustor liner

CFD Models and Validation Experiments

Validated CFD tools for emissions predictions

RANS, URANS, TFNS, LES CFD Modeling

Validation Experiments quantitative time resolved measurements of major species and temperature

Active Combustion Instability Control

Capability to suppress combustor instabilities for low emission combustors

High Temperature SiC electronics circuits and dynamic pressure sensors

Fuel Modulation – high frequency fuel delivery systems

Instability Models and Control Methods

Ultra-Low Nox, Fuel Flexible Combustor Objective: Reduce LTO NOx 75% from CAEP6

Low Emissions Combustors for N+3 Subsonic Fixed Wing Project

- Combustion CFD Model Development and Application
- Validation Experiments
- Low Emissions Combustion Concepts
 - N+3 Goals (Subsonic Fixed Wing and Supersonics Projects)
- Active Combustion Control
- Alternative Fuels

Combustion CFD Modeling

- Chemical Kinetics for conventional a alternative fuels
- Primary/Secondary Atomization moc
- Turbulent combustion modeling
- RANS/URANS/TFNS(VLES)/LES models
- Radiation Heat Transfer
- Combustion Dynamics
- Soot Modeling
- Spray Vaporization
- Coupled Combustor/Turbine
 calculations

Image: Gas-phase temperatures for two different length Single-element LDI Combustors coupled to the 1st stage of a High Pressure Turbine consisting of Stator and Rotor

N+3 Low Emissions Combustor Concepts

- Smaller Higher Pressure Engine Cores for Advanced Airframe Concepts: BWB, Hybrid Propulsion, etc.
- Emissions Goals may be expanded to include particulates and CO₂
- Fundamental Combustion Research
 - Fuel-Air Mixing
 - Combustion Dynamics
 - Passive Damping
- Advanced Concepts
 - Multipoint Lean Direct Injection, other advanced Lean Burn Concepts
 - Pressure Gain Combustion Feasibility

Alternative Fuels Research Effort

National Plan Goals:

Energy and Environment Goal 1: Enable new aviation fuels Energy and Environment Goal 3: Technologies and operational procedures to decrease Environmental Impact of Aviation

Technical Challenge:

Reduced Emission of Aircraft – Enable concepts and technologies to dramatically reduce or eliminate harmful emissions affecting local air quality/health and global climate change attributable to aircraft energy consumption.

Alternative Fuels Research Objectives:

- Characterize the performance and emissions of alternative & bio-fuels in aircraft propulsion systems.
- Predict the combustion performance and emissions characteristics to enable more effective design of combustors utilizing alternative fuels and bio-fuels.

Alternative Aviation Fuel Experiments (AAFEX 1 and 2)

Nonvolatile Aerosols @ 1m Differences in emissions greatest at idle, less at higher engine powers.

Flight Experiment planned for late FY12 using multiple fuels

 2×10^{14}

0

0

20

60

80

40

Engine Power (%)

100

Questions?