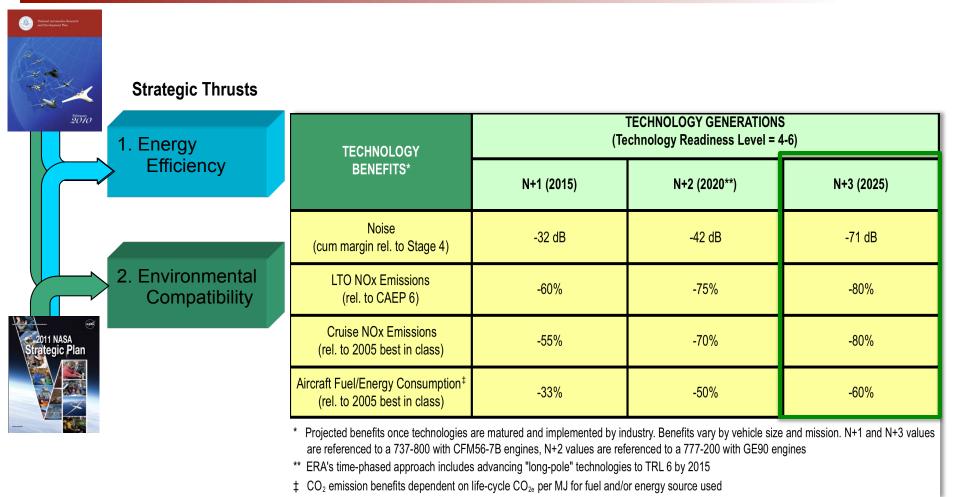
and the state of t

Propulsion Technologies for Future Aircraft Generations: A NASA Perspective

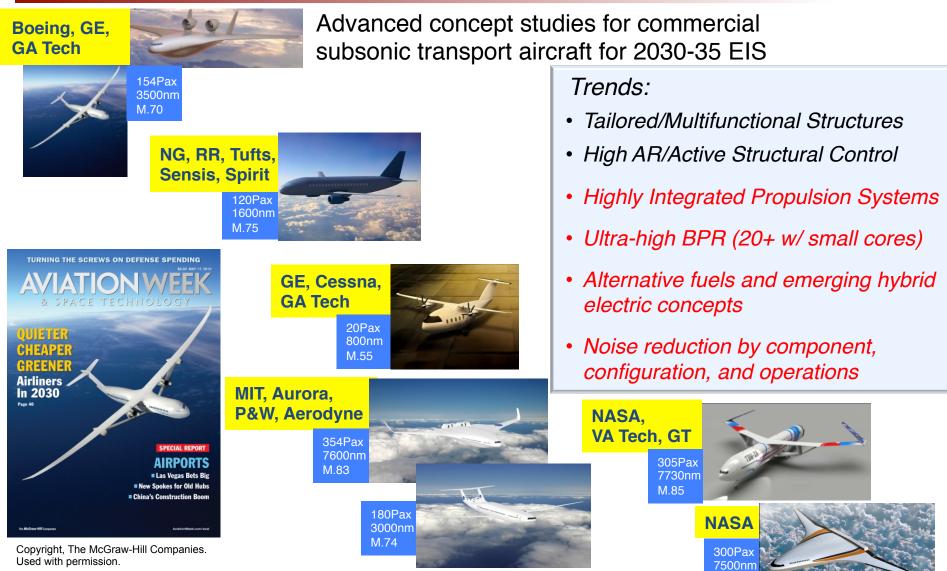

Dr. Rubén Del Rosario, Project Manager Subsonic Fixed Wing Project Fundament Aeronautics Program

ASME's Turbo Expo 2012 Copenhagen, Denmark June 11-15, 2012

www.nasa.gov

SFW Strategic Framework/Linkage

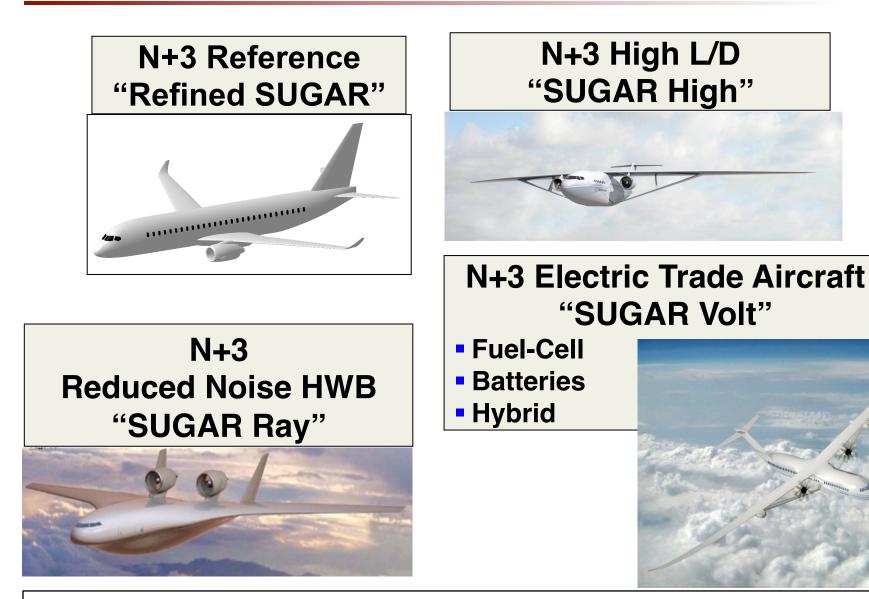
Research addressing revolutionary N+3 Goals with opportunities for near term impact


Goal-Driven Advanced Vehicle Concept Studies (N+3) purpose/approach

- Leverage external and in-house expertise
- Stimulate thinking to determine potential aircraft solutions to address significant performance, environmental, and operations issues of the future
- Identify advanced airframe and propulsion concepts and corresponding enabling technologies for commercial aircraft anticipated for 2030-35 EIS (market conditions permitting)
 - Develop plausible air travel scenario and define aircraft requirements
 - Generate advanced concept(s) that could thrive in future scenario
 - Anticipate changes in environmental sensitivity, demand, and energy
- Identify key driving technologies (traded at the system level)
- Prime the pipeline for future, revolutionary aircraft technology developments
- Use to inform and define SFW research portfolio and investments

Goal-Driven Advanced Vehicle Concept Studies (N+3) summary

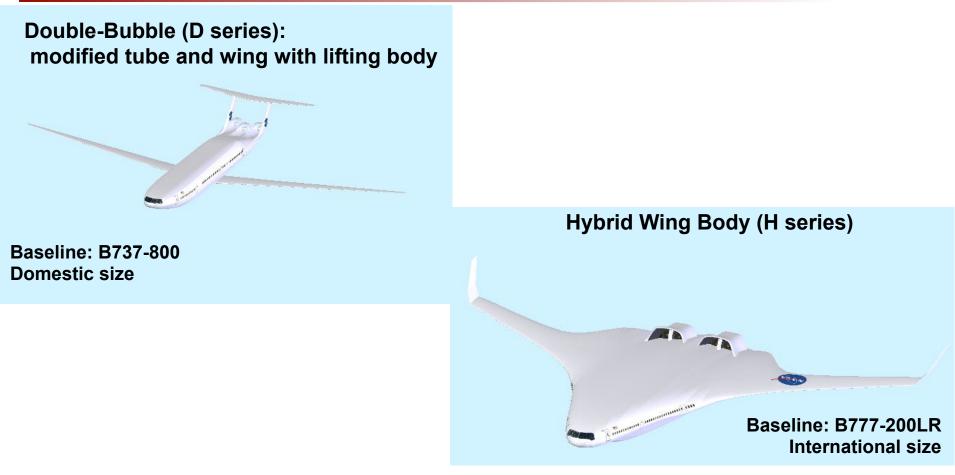
Advances on multiple fronts are required to meet national goals many broadly applicable features, some uniquely enabling. M.84


2030 Fleet Scenario – Boeing

Boeing Current Market Outlook based; growth tied to GDP growth 2030 Fleet Medium/Large Single-Medium Regional Large aisle aircraft envisioned to dominate composition 2,675 22,150 Number of Aircraft 7,225 of 2030 transport fleet and miles flown Family Midpoint # of 70 300 154 Seats 575 900 3,300 Avg. Distance Max Distance 2,000 3,500 8,500 Avg. Trips/day 6.00 5.00 2.00 525 Avg. MPH 475 500 Fleet Daily Air Miles 8,500 100,000 55,000 (K) 3,200 4,500 7,600 **Daily Miles** 9.23 **Daily Hours** 6.92 13.96

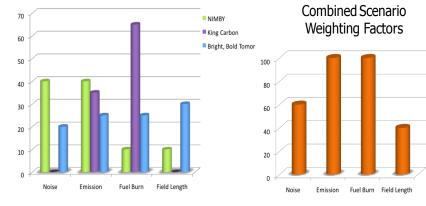
Scenario Driven Configurations – Boeing

Awarded Phase II NRA to continue work on SUGAR Volt concept


N+3 Scenario and Requirements - MIT

Size	 Domestic: 180 passengers @ 215 lbs/pax (737-800) International: 350 passengers @ 215 lbs/pax (777-200LR) Multi-class configuration Increased cabin baggage 	
Range	 Domestic: US transcontinental; max range 3,000 nm with reserves International: Transpacific; max range 7,600 nm with reserves 	
Speed	 Domestic: Minimum of Mach 0.72 International: Minimum of 0.8 (Driven by fuel efficiency) 	
Runway Length	 Domestic: 5,000 ft balanced field International: 9,000 ft balanced field 	
Fuel & Emissions	 N+3 target: 70% fuel burn improvement Meet N+3 emission target (75% below CAEP/6 NOx stringency) Consider alternative fuels and climate impact 	
Noise	N+3 target: (-71 dB cumulative below FAA Stage 4 limits)	
Other	 Compatibility with NextGen Wake vortex robustness Meet or exceed future FAA and JAA safety targets 	

Scenario Driven Configurations - MIT



- Developed 2 aircraft based on domestic or international usage
- Awarded Phase II NRA to continue investigation of D-series concept

Scenario Analysis – Northrop Grumman

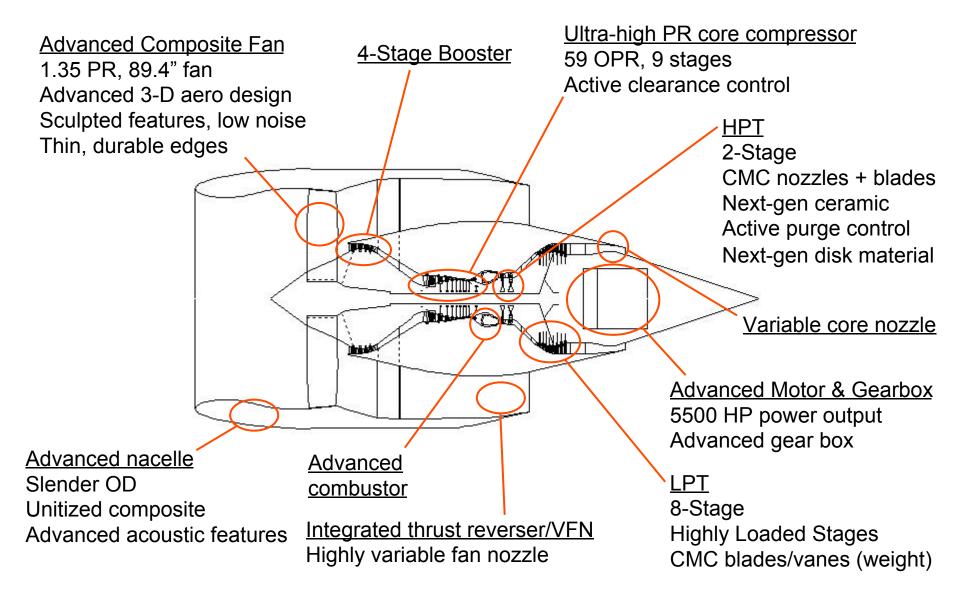
- Work entailed developing future scenario(s) that describe the challenges that may be facing commercial aircraft operators in the 2030-35 and beyond timeframe
 - Provides a context within which the proposer's advanced vehicle concept(s) may meet a market need/enter into service
- N-G provided four scenarios that covered the range of possibilities
 - King Carbon
 - Not In My Backyard
 - Bright Bold Tomorrow
 - Doom and Gloom
- Scenarios used to develop weighting factors for use in design trade studies

Individual Scenario Weighting Factors

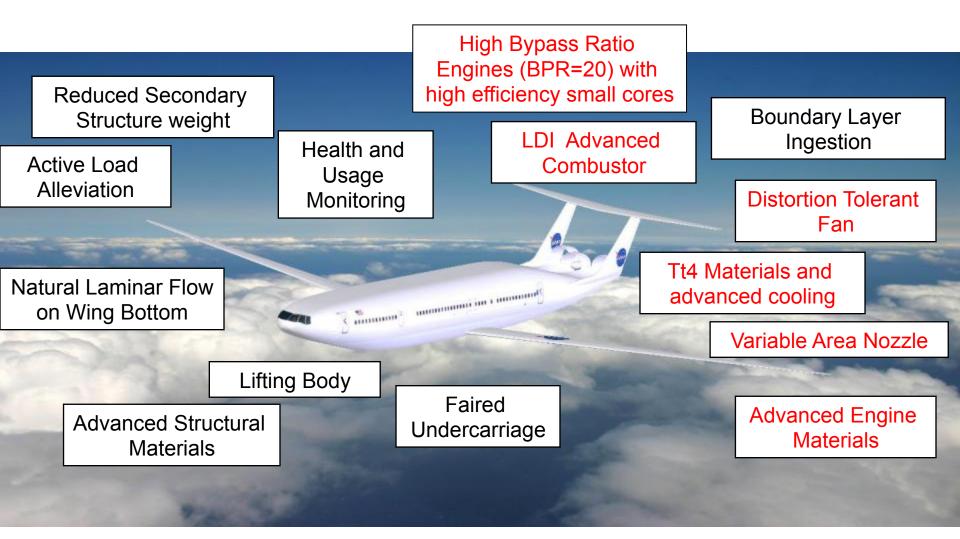
Scenario Driven Configuration – Northrop Grumman

Preferred Concept Vehicle

		<u>Target</u>	<u>Result</u>
N+3 (2030-2035 Service Entry) Advanced Aircraft Concepts Goals (Relative to User- Defined Reference)	Noise (Cum below Stage 4)	-71 EPNdB	-70 EPNdB
	LTO NOx Emmissions (below CAEP/6)	-75%	-75%
	Performance: Aircraft Fuel Burn	better than	64%
		70%	
	Performance: Field Length	Exploit	Exploit
		Metroplex	Metroplex
		Concepts	Concepts
Mission Requirements Derived from Traffic Study	Range	1600nm	1600nm
	Passengers	120	120
	Field Length, TO and Ldg (SL, Std Day)	5,000 feet	5,000 feet
	Cruise Mach	0.75	0.75
	Cruise Altitude	< FL450	< FL450


Subsonic Fixed Wing Project Fundamental Aeronautics Program

N+3 Propulsion Technologies


SUGAR Volt Engine Walkaround - hFan

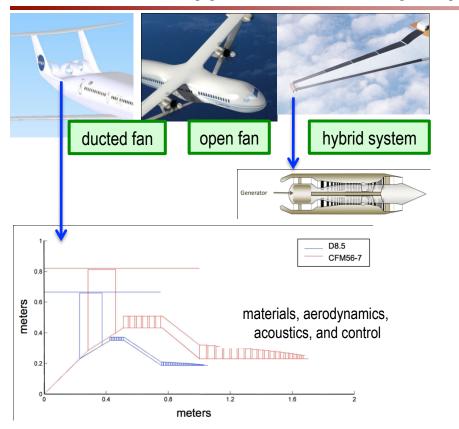
D8 Airframe & Propulsion Technology Overview

Key Propulsion Technologies listed in Red

Northrop Grumman Advanced Engine Architecture

Three-Shaft Turbofan • High BPR (~18) = propulsive efficiency • High OPR (~50) = thermal efficiency • Low noise • Low weight

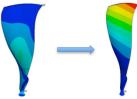
Technology Suite


Three-shaft Turbofan Engine Ultra-High Bypass Ratio of ~18 CMC Turbine Blades Lean-Burn CMC Combustor Intercooled Compressor Stages Swept Fan Outlet Guide Vanes Fan Blade Sweep Design Lightweight Fan/Fan Cowl Compressor Flow Control Active Compressor Clearance Control Variable Geometry Nozzles

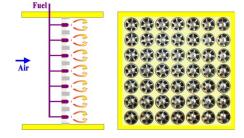
- Geared turbofan dropped due to similarities with three-shaft turbofan
- Open rotor had best sea level static fuel consumption
- Open rotor potential noise not quantified in time to be included

Propulsion Related Research Elements

versatile core applicable to variety of propulsion systems/installations



boundary-layer ingesting concepts thrust vectoring



distortion tolerance

adaptive fan blades

multi-point lean direct injection

jet/surface interaction acoustics

Wing-tip mounted superconducting turbogenerators

Superconducting-motor-driven fans in a continuous nacelle

Fundamental Aeronautics Program Subsonic Fixed Wing Project