Design of a Medical Injection System for use During Contingency Space Operations

A. S. Weaver¹, S. L. Czerwien², C. A. Totman², and J. T. Zoldak²

¹NASA Glenn Research Center, Cleveland, OH ²ZIN Technologies Inc., Middleburg Heights, OH

HRP Investigators' Workshop Houston, TX February 14, 2012

Project Aim

 "Given the possibility that vehicle failures" could result in crew needing to remain in Extra-Vehicular Activity (EVA) suits ..., and given that medical operations may need to provide medications via injection during that time, NASA must develop reliable methods for delivering such medications through the EVA suit"

> Human Research Program Integrated Research Plan

Development Considerations

- Temperature and pressure dependant properties of the medication
- Temperature of the syringe and needle
- Ullage bubble formation in moderate vacuum
- Boiling and outgassing in high vacuum
- Crew members will be gloved
 - Operation of injector
 - Risk of accidental needle stick
- Legacy hardware applicability

Testing in a Vacuum - Syringe

Preliminary Testing

Dexterity of EVA Gloves

 To determine how the geometry and size of a potential injection device affects a gloved operator's ability to provide an injection, different syringes were manipulated with EVA gloves in a simulated pressure environment.

Energy Transfer Modeling for Liquid Temperature

- Unsteady State Energy Transfer
 - <25s to reach "viability limit" of medication for both high and low temp extremes
- Steady State Energy Transfer
 - Ave 7 7.5hr to reach 99% steady state without thermal conditioning or insulation

Apollo Injection Capabilities

Silicone Injection Disk

Clear side (facing body): 97.1% Si 1.6% Cl

STAINLESS STEEL

White side (facing out): 97.9% Si 1.5% Ti

STAINLESS STEEL

0.1 in thick

· INCH

Testing Vials in a Vacuum

Vials at 755 torr

Vials at 0.22 torr

Fluid Level

At low pressure, no fluid was lost to the atmosphere through the punctured septa

Testing Rubber Septa for Suit Interface

- Testing was conducted on 20 varieties of septa
 - Standard
 environmental,
 thermal, or vacuum
 - Puncture force and seal examined
- 0.125" thick silicone septa coated with either FEP or ETFE is recommended

Prototype Design

Current Design: Whole Injector

Adapter for shirt sleeve environment

Lock ring prevents inadvertent deployment

Current Design: 3 States

Ready:

Injected:

Delivered:

Current Design: Med Storage

 Vacuum seal is held between tip of needle and syringe plunger. The rest of the injector is exposed to the ambient environment.

Prototype Testing

- Vacuum testing
 - 16 hrs at 2.5 psia
 - 1 hr at 0.04 psia
- Pressure box testing
 - 19 psia
 - Represents pressurized septum
 - 4.3 psia
 - No liquid leaks between the suit and the leg.

Usability Testing

- Diameter of the device is constrained by two drivers
 - EVA glove testing
 - Diameter of the syringe

Conclusion

Project Archive

- Project has completed reviews by:
 - Medical Operations Board (MOB)
 - Space Medicine Configuration Control Board (SMCCB)
 - System Requirements Review (SRR)/System
 Definition Review (SDR)
 - Preliminary Design Review (PDR)

Project has been archived as of 12/31/11

ISIS Project Team

Aaron Weaver Sarah Czerwien Jim Stroh Craig Totman Wayne Borelli Christina Sulkowski Lauren Best DeVon Griffin John Zoldak Sam Hussey

www.nasa.gov