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Outline"

•  Background!
•  Fan CFD Analysis – TURBO-AE Code!
•  Fan Performance – Clean Inflow, Distorted Inflow!
•  Structural Dynamics, Aeroelastic Formulation!
•  Inlet Distortion Forced Response, Dynamic Stress!
•  Blade Vibrations – Flutter Stability!

–  Clean Inflow!
–  Distorted Inflow!

•  Summary and Future Work!
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Background"

•  “Wake Ingestion Propulsion Benefits,” L. H. Smith, AIAA 
Journal of Propulsion and Power, 1993.!

•  Boundary Layer Ingestion (BLI)  
Propulsion has the potential for  
significant reduction (5-10%)  
in Aircraft Fuel Burn!

•  Previous system studies:!
Daggett, et al., NASA-CR-2003-212670 !
Kawai, et al., NASA-CR-2006-214534 !
Plas, et al., AIAA 2007-450 !
Nickol, NASA-TM-2008-215112 !
Nickol and McCuller, AIAA 2009-931!

•  Recent system studies:!
Tillman, et al., AIAA invited pres., 2011!
Hardin, et al., AIAA-2012-3993!
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Technical Challenges"

•  The potential benefits of Boundary Layer Ingestion (BLI) 
Propulsion can be diminished if key parameters do not 
meet their targets!
–  Inlet total pressure loss!
–  Fan efficiency reduction!
–  Fan stall margin reduction!

–  Fan aeromechanics requirements 
(dynamic stresses and flutter stability)!
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Fan CFD Analysis – TURBO Code"

•  Implicit, finite-volume solver!
•  Reynolds-Averaged Navier Stokes equations!
•  Structured multi-block code!
•  Multi blade-row code!
•  k-epsilon turbulence model!
•  Inlet distortion boundary condition!
•  Throttle exit boundary condition!

•  Dynamic grid deformation for blade vibration!
•  Prescribed harmonic blade vibrations with energy method 

to evaluate flutter stability!



7 Aeromechanics Analysis of a Boundary Layer Ingesting Fan!

Fan Computational Domain"

•  Analysis of an Aero Design Iteration (not the Final Design)!

•  H, O, and C blocks 
of mesh generated by UTRC!
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Fan Performance – Clean Inflow"

•  TURBO code (RANS solver) used with radial inlet profile 
of total pressure, total temperature, and flow angles!

•  Speedline traversed by setting exit throttle condition and 
converging flow solutions !
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Inlet Flowfield Provides Distortion Pattern"

•  Inlet flow computations were performed at UTRC for an 
inlet design iteration (not final design) and the flowfield 
results were provided to NASA!
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Fan Computation with Inlet Distortion"

•  Inlet distortion is prescribed as boundary condition at inlet 
boundary of the fan computational domain (18-blade fan 
rotor and splitter)!
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Periodicity of Flowfield Around the Rotor"

•  Total pressure ratio for various blade passages!

Variation of total pressure ratio in different blade 
passages shows flowfield is converged to periodicity 
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Periodicity of Flowfield Around the Rotor"

•  Total pressure ratio for various blade passages!

Inlet Distortion causes variations in mass flow 
rate and pressure ratio around the fan rotor 
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Structural Dynamics Model & Results"

Blade structural model created based on aero  
design iteration (structural design is in progress)!
•  8-node brick elements!
•  9,782 elements, 15,096 nodes!
•  222 nodes at the root constrained!

mode 1 
63.5 Hz 

mode 2 
156.6 Hz 

mode 3 
224.8 Hz 

mode 4 
346.6 Hz 

Blade Vibration Modes or Modal Displacements 
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Aeroelastic Formulation"

•  Blade structural dynamics modal equations with 
aerodynamic load!

  

€ 

ADi =
r 
δ i ⋅ pd

r 
A ∫

{AD} is the motion-independent  
aerodynamic load vector – 
Modal Force 

€ 

q{ } = K[ ] −ω 2 M[ ][ ]
−1

AD{ } Forced Response 

€ 

M[ ] ˙ ̇ q { } + K[ ] q{ } = AD{ }

Modal Force computation 
requires unsteady pressure  
and modal displacements 
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Time history over one rotor revolution!

Modal Force"

1,800 time steps 
per revolution 

-4000

-2000

0

2000

4000

0 600 1200 1800

mode 1
mode 2
mode 3
mode 4

M
od

al
 fo

rc
e,

 lb
f

Time step counter



16 Aeromechanics Analysis of a Boundary Layer Ingesting Fan!

Modal Force"

Fourier components!
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Campbell Diagram"

EO = engine order 

mode 4 
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7 EO 
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close to  

3 EO 
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Modal Force"

Fourier components!
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Forced Response –  
Vibration Amplitude and Dynamic Stresses"
•  Dynamic stresses are required to determine fatigue 

characteristics (Goodman diagram)!

€ 

qnr{ } = Kn[ ] −ωr
2 Mn[ ][ ]−1 ADnr{ } for nth mode, rth harmonic 

€ 

σ r = Σ
n
snqnr where sn is the modal stress dynamic stress 

harmonic or 
engine order 

vibration amplitude 
(inch) at tip t.e. 

dynamic stress 
amplitude (psi) 
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Flow Chart for Flutter Stability Computation"

•  Aerodynamic damping computation using TURBO-AE!

Configuration!
€ 

X = X0ei(ωt+ φ )
Prescribe Blade Motion 

Calculate Aerodynamic 
Damping 

γ = −
W
8πKE

€ 

W = − p.d A
→

surface
∫∫ • (∂ X

→

∂t
)dt

Calculate Work!
(for all ω  and φ of interest) 

Mode Shape!
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Flutter Stability with Clean Inflow"

•  Design operating speed, mode 1, 0 nodal diameter pattern 
(all blades in-phase), 18 blade passages (full rotor)!

mode 1 
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Flutter Stability with Clean Inflow"

•  Design operating speed, 18 blade passages (full rotor)!
•  Phase angle of vibration = 360 * Nodal Diameter / 18!

mode 1 

mode 1 
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•  Design operating speed, 18 blade passages (full rotor)!
•  Phase angle of vibration = 360 * Nodal Diameter / 18!
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Flutter Stability with Clean Inflow"

•  Design operating speed, 18 blade passages (full rotor)!
•  Phase angle of vibration = 360 * Nodal Diameter / 18!

mode 3 

mode 3 
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Flutter Stability with Distorted Inflow"

Various Approaches"
•  Circumferentially average the distorted inflow to obtain an 

equivalent radial profile; use work-per-cycle analysis!
•  Select a portion of the inlet distortion to represent a “worst-

case” inflow condition that is used at all circumferential 
locations; use work-per-cycle analysis!

•  Prescribe blade vibrations and distorted inflow; use work-
per-cycle analysis; average the results over all blades, and 
over multiple blade vibration cycles!

•  Use tightly-coupled aeroelastic analysis with distorted 
inflow; blade vibrations are determined as part of the 
computations; post-process time history to estimate 
average damping over all blades and multiple vibration 
cycles!
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Flutter Stability with Distorted Inflow"

Current Preferred Approach"
•  Prescribe blade vibrations and distorted inflow!
•  Use work-per-cycle analysis!
•  Average the results over all blades, and over multiple blade 

vibration cycles!

€ 

Work = −p.d A
→

surface∫cycle∫ • (∂ X
→

∂t
) dt

Unsteady pressure includes effect of 
1) inlet distortion 
2) blade vibration isolate this component to 

assess flutter stability 
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Flutter Stability with Distorted Inflow"

•  Design operating speed, mode 1, 0 nodal diameter pattern 
(all blades in-phase), 18 blade passages (full rotor)!

0.0

0.4

0.8

1.2

1.6

2.0

0 2 4 6 8 10

0 nodal diameter, all blades
average

A
er

od
yn

am
ic

 d
am

pi
ng

, %

Vibration cycle number

0.0

0.4

0.8

1.2

1.6

2.0

0 3 6 9 12 15 18

0 nodal diameter, all cycles
average

A
er

od
yn

am
ic

 d
am

pi
ng

, %

Blade number



28 Aeromechanics Analysis of a Boundary Layer Ingesting Fan!

Flutter Stability with Distorted Inflow"

•  Design operating speed, mode 1, 1 nodal diameter pattern 
(all blades in-phase), 18 blade passages (full rotor)!
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Summary"

•  Created structural model based on aero design iteration 
and computed structural dynamics characteristics!

•  Performed aeromechanical analysis of design iteration!
•  Performed fan flutter analysis with clean inflow at design 

speed – no flutter encountered at conditions analyzed; 
additional work needed at part-speed conditions!

•  Performed distorted inflow analysis for forced response 
vibrations to determine dynamic stress at design speed – 
additional work needed at on-resonance conditions near 
design speed!

•  Performed initial analysis with blade vibrations and 
distorted inflow to estimate flutter stability – additional 
flutter analyses needed for other vibration modes and 
operating conditions !
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Future Work"

•  Perform aeromechanical analysis on final inlet-fan design 
to ensure safe wind-tunnel test!

•  Develop tightly-coupled aeroelastic analysis capability in 
TURBO for more detailed analysis of blade vibrations with 
distorted inflow!

•  Perform aeromechanical analysis on updated fan stage 
design including non-axi-symmetric exit guide vanes!

•  Develop inlet-fan coupled aeroelastic analysis capability!
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Questions?"


