Please ensure that your abstract fits into one column on one page and complies with the *Instructions to Authors* available from the Abstract Submission web page.

Analysis of cosmic spherule candidates from the Kwajalein micrometeorite collection

P. J. WOZNIAKIEWICZ¹², M. C. PRICE², J. P. BRADLEY³, H. A. ISHII³, S. S. RUSSELL¹, M. E. ZOLENSKY⁴, D. E. BROWNLEE⁵

¹Earth Sci. Dept., Natural History Museum, London SW7 5BD. UK. <u>p.wozniakiewicz@nhm.ac.uk</u>
²Sch. Phys. Sci., Univ. of Kent, Canterbury, CT2 7NH. UK.
³Inst. Geophys & Planet, Univ. of Hawai'i, Honolulu. USA.
⁴NASA Johnson Space Centre, Houston, TX. USA
⁵Dept. Astronomy, Univ. of Washington, Seattle, WA. USA

The Kwajalein micrometeorite collection utilised high volume air samplers fitted with 5 um laser-etched polycarbonate membrane filters to capture particles directly from the atmosphere. The filters were changed weekly over several months throughout 2011/12, providing the opportunity to investigate the contemporary flux of micrometeorites [1]. We recently reported the results of our initial survey of cosmic spherule-like particles on several of these filters [2]. We identified three main groups of particle based on bulk compositions: 1. Silicate spherules rich in Mg, Ca and Fe, 2. Silicate spherules rich in Al, Ca, K and/or Na and 3. Fe-rich spherules. Abundances appearred to change over time suggesting links with celestial activity (e.g. meteor showers), however, spherules similar to groups 2 and 3 can be produced by terrestrial and anthropogenic activity (e.g. volcanic microspherules exhibit similar compositions to group 2 spherules and metallic spherules similar to those of group 3 can be formed during fuel combustion [3, 4]). We are now studying the internal structures and chemistries of these spherules and comparing against cosmic spherules identified in other collections to confrim their origins and further contrain the contemporary micrometeorite flux [e.g. 5, 6].

Particles are being picked, embedded in resin and polished through to reveal their interiors. Here we will describe our ongoing analyses of these particles via SEM. We will also introduce our new collection using this method that is currently being performed in the Antarctic.

[1] Wozniakiewicz et al. *LPSC XXXV* #1823 [2] Wozniakiewicz et al. 2014 77th MetSoc. #5274 [3] Lefèvre et al. 1986. Nature 322:817 [4] Snowball et al. 2014. In A Stratiagraphical basis for the Anthropocene. Geol. Soc., London. Spec. Pub. 395:119 [5] Taylor et al. 2000. MAPS 35:651 [6] Genge et al. 2008. MAPS 43:497.

Acknowledgements: PJW is funded by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme.