

Live Virtual Constructive

(LVC)

Interface Control Document
(ICD) for the LVC Gateway

Flight Test 3

February 26, 2015

LVC ICD-03

Release: Rev B

https://ntrs.nasa.gov/search.jsp?R=20150010976 2019-08-31T08:02:33+00:00Z

 LVC ICD-03 - REV B

2 | P a g e

UAS-NAS

Live Virtual Constructive – Distributed Environment (LVC)

Message Interface Control Document

For the LVC Gateway

Prepared by

Srba Jovic

Science Applications International Corporation (SAIC)

NASA Ames Research Center

Moffett Field, CA 94035-0081

February 26, 2015

 LVC ICD-03 - REV B

4 | P a g e

Version

Date Page

Author Description

Baseline May 1, 2013 All Srba Jovic Initial Release of Document

Rev A Mar 28, 2014 Srba Jovic Updates for IHITL

Rev B Feb 26, 2015 All Srba Jovic Update for FT3 Requirements, including

addition of Stratway+ SS Band messages

and Omni Band messages.

 LVC ICD-03 - REV B

5 | P a g e

1. Introduction

This Interface Control Document (ICD) documents and tracks the necessary information required for

the Live Virtual and Constructive (LVC) system’s components as well as protocols for

communicating with them in order to achieve all research objectives captured by the experiment

requirements. The purpose of this ICD is to clearly communicate all inputs and outputs from the

subsystem components.

Figure 1. General System Architecture for UAS-NAS Baseline LVC Simulation

The proposed general system architecture shown in Figure 1, describes network connectivity between

distributed subsystem participants for the live, virtual and constructive integrated test and evaluation in

support of the UAS in the NAS Project.

The integrated LVC system configuration will connect the High Level Architecture (HLA) through the

LVC Gateway Toolbox system component, the LVC Gateway, the LVC Gateway Data Logger and the

SAA Processor (SaaProc). The HLA distributed environment will provide constructive traffic at the rate

of 1Hz generated by the Multi-Aircraft Control System (MACS) in conjunction with Aeronautical Data

link and Radar Simulator (ADRS) as depicted in Figure 1.

The Vigilant Spirit Control Station (VSCS) publishes its own simulated Flight State data to the LVC

Gateway at a data rate of 10Hz. The fast rate VSCS ownship flight data will be transmitted through the

LVC Gateway to the Cockpit Situation Display (CSD), SaaProc for conflict detection between the

ownship and intruders, the LVC Gateway Toolbox and on to ATC display supported by MACS.

Network

Live Aircraft Virtual Aircraft

ATC and System Monitor

LVC
Gateway

LVC
Gateway

Toolbox

CSD Telemetry
UAS Sim

CSD

Research
Flight Data
Processor

Toolbox
HLA Data

Logger

NA 74 Cab

HLA - High Level Architecture

MACS
Sim Manager

Traffic
Generator

ADRS

Controller Station

Controller Station

 LVC ICD-03 - REV B

6 | P a g e

Figure 2. High Level System Architecture - Baseline LVC Gateway and Required Components

2. Applicable Documents

The following documents (or later, earlier versions superseded) form a part of this document to the

extent specified herein. In the event of conflict between the documents referenced herein and the contents

of this document, the contents of this document shall be considered a superseding requirement.

2.1. NASA Documents

IT&E CONOPS-01 Rev A IT&E Concept of Operation Document

IT&E ORD-01 Rev A IT&E Objective Requirements Document

2.2. References

LVC SWRD-02 Rev C LVC Software Requirements Document

LVC SRD-01 Rev C LVC System Requirements Document

RGCS SRD 01 Rev B Research Ground Control Station

2.3. Standards

TCP/IP Transmission Control Protocol / Internet Protocol (IPV4 /IPV6)

RF

LVC-DE LAB

NASA/ARC
DSRL LVC

Gateway
Toolbox

HLA

RGCS OPERATIONS CENTER
(ROC)

CSD
(Trial Planner)

NASA/ARC
DSRL

NASA DFRC
Labs

RF
LVC

Gateway

Gateway
Data
Logger

Gateway1

NTP
Server

RF
SaaProc

&
SAA Algorithm

RF

New Hardware
Component

New Software
Component

Core LVC Architecture

Vigilant Spirit
Control Station

VSCS Traffic
Display

 LVC ICD-03 - REV B

7 | P a g e

3. Definition of Messages Used in the LVC System

3.1. General Message Header

Every Multi-Purpose Interface (MPI) protocol message exchanged between different system

components will have a header immediately followed by the payload of the corresponding message.

struct MsgHeader

{

 int MsgTypeId; // defined in table below

 int MsgSize; // header size + (payload size defined by each message structure)

 int SrcId; // each client is defined in Table 2

};

The message type defined in the header will indicate the type of message contained in the payload.

This header is used for messages being passed between the LVC Gateway and the CSD, VSCS,

ADRS and VIRTUAL UAS. Total size of the header structure is 12 bytes.

Table 1 identifies different message types that will be transmitted between different system

components. Message data structure of corresponding message types are defined in tables below.

Table 1. Definitions of message types

Message Type Id

MsgFlightState 5310

MsgFlightPlan 5201

MsgTrajectoryIntent 5421

MsgDeleteAc 5202

MsgHandshake 5960

MsgSetOwnship 5901

MsgFlightStateADSB 7010

MsgFlightStateTISB 7011

MsgHeartbeat 7030

MsgSaaThreatResults 5830

MsgSaaResManeuvers 5831

MsgSaaResReroute 5832

MsgSaaFlightState 5833

MsgSaaRelease 5834

MsgNavMode 5835

MsgTrialTrajectoryIntent 5454

MsgSaaTrialThreatResults 5839

MsgSaaRecapManeuver 5840

MsgTrialAccepted 5452

MsgStrwayBands 5841

MsgAcasxuRaTa 5842

MsgSaaBands 5843

 LVC ICD-03 - REV B

8 | P a g e

For some tests or simulations, only a subset of the listed messages will be used. The data structure for

each message and its representation is presented in sections below.

The client handshake message header contains Source parameter that defines the data source

identification and names defined in the Table 2 below:

Table 2. Definitions of Client Names.

Source/Client Name Id
CSD 101
IkhanaSim 102
IkhanaUAS 103
LangleyUAS 104
LVCDatalogger 105

UASRP 106
LVCGateway 107
GlennUAS 108

ADRS 109

SaaProc 111

VSCS 112

CPDS 113

StratwayGCS 114

ACASXU 115

ExelisNextGen 116

3.2 Handshake Data Structure

The Handshake Data structure is defined below. This structure represents the payload of a message

sent by the client upon establishing the connection with the LVC Gateway (the server).

Note: The entire Handshake Data structure is continued on the next page.

struct MsgHandshake

{

 char clientName[12]; // Client name that is connecting to Gateway. See Table 2.

 char dataProviderName[12]; // callsign if ownship otherwise empty string

 bool b_publish_MsgFlightState;

 bool b_publish_MsgFlightPlan;

 bool b_publish_MsgTrajectory;

 bool b_publish_MsgFlightStateADSB;

 bool b_publish_MsgFlightStateTISB;

 bool b_subscribe_MsgFlightState;

 bool b_subscribe_MsgFlightPlan;

 bool b_subscribe_MsgTrajectory;

 bool b_subscribe_MsgFlightStateADSB;

 bool b_subscribe_MsgFlightStateTISB;

 LVC ICD-03 - REV B

9 | P a g e

 bool b_publish_MsgDeleteAc;

 bool b_subscribe_MsgDeleteAc;

 bool b_publish_MsgSetOwnship;

 bool b_subscribe_MsgSetOwnship;

 bool b_publish_MsgSaaFlightState;

 bool b_subscribe_MsgSaaFlightState;

 bool b_publish_MsgSaaThreatResults;

 bool b_subscribe_MsgSaaThreatResults;

 bool b_publish_MsgSaaResManeuver;

 bool b_subscribe_MsgSaaResManeuver;

 bool b_publish_MsgSaaResReroute;

 bool b_subscribe_MsgSaaResReroute;

 bool b_publish_MsgSaaRelease;

 bool b_subscribe_MsgSaaRelease;

 bool b_publish_MsgTrialTrajIntent;

 bool b_subscribe_MsgTrialTrajIntent;

 bool b_publish_MsgSaaTrialThreatResults;

 bool b_subscribe_MsgSaaTrialThreatResults;

 bool b_publish_MsgSaaTrialRecapManeuver;

 bool b_subscribe_MsgSaaTrialRecapManeuver;

 bool b_publish_MsgTrialAccpeted;

 bool b_subscribe_MsgTrialAccpeted;

 bool b_publish_MsgNavigationMode;

 bool b_subscribe_MsgNavigationMode;

 bool b_publish_MsgSaaBands;

 bool b_subscribe_MsgSaaBands;

 bool b_publish_MsgAcasxu;

 bool b_subscribe_MsgAcasxu;

 bool b_publish_MsgStrwayBands;

 bool b_subscribe_MsgStrwayBands;

 };

The role of the handshake message is twofold: 1) it is responsible for initiating the connection

between the client and the server; 2) it registers the client with the server and sets up a

publish/subscribe dependency.

 LVC ICD-03 - REV B

10 | P a g e

For example, if the client that connects to LVC Gateway is CSD then the clientName is “CSD” as

defined in Table 2. The dataProviderName attribute is set to a callsign of the ownship that provides

ownship data for the CSD client. On the other hand, if the client is, for example a VSCS, then the

clientName is set to “VSCS” while the dataProviderName is set to an empty string.

The client can publish and subscribe to certain data types specified by the Boolean attributes in the

structure defined above. If the client is a VSCS entity then the first three Booleans

(b_publish_MsgFlightState, b_publish_MsgFlightPlan, and b_publish_MsgTrajectory) will be set to

true indicating to the LVC Gateway server that the client will publish its own flight state vector, flight

plan and trajectory intent.

If the UAS is equipped with the ADS-B ”In” capabilitythen the Boolean attribute

b_publish_MsgFlightStateADSB will be set to true indicating that the client will publish the ADS_B

state data of the surrounding traffic including its own. In that case, the flag m_equipageFlags in the

MsgFlightState structure should be set by the publishing client to a value as defined in section 3.3.

Note that m_equipageFlags is set to a zero for all other Flight State messages that are not generated

using ADS-B and/or TIS-B tracks.

The Ikhana Sim will not consume external data. Hence all subscribe attributes will be set to false,

indicating to the server that it should not send any of the traffic data to the Ikhana Sim client.

If the client is a CSD entity, then all the publish attributes should be set to false, indicating that the

CSD is not publishing any data. However, the subscribe attributes will be selectively set to true or

false depending upon what type of data the CSD has requested. Subscribe attributes

b_subscribe_MsgFlightStateADSB and b_subscribe_MsgFlightStateTISB pertaining to FAA live

traffic will be set to true, notifying the Gateway server that it should send all the Flight State ADS-B

and the radar Flight State TIS-B data for background traffic. Note that m_equipageFlags structure

field in the MsgFlightState structure will be set to defPasCiEqpADS_B and defPasCiEqpTIS_B (as

defined in 3.3) for ADS-B and TIS-B tracks respectively. There will be cases when the two sets of

targets, ADS-B and TIS-B, will contain common targets. Duplicate targets from different traffic

sources will be filtered based on the criteria that will be devised in the future as needed.

3.3 Aircraft Flight State Data Structure

The Aircraft Flight State structure is defined below. This structure represents the payload of an

aircraft flight state message.

Note that if some simulations do not generate some of the data fields defined in the message those

values should be set to either -999999 for integers, -999999.0 for floats and doubles depending upon

the variable type.

Data fields represented by strings will be published with the constant length as defined in the message

interface by the ICD. If a string is shorter than the allocated space, blank spaces should be filled with

“\0” (a null character). For example, “AAL123” should be represented as “AAL123\0\0\0\0\0\0” in a

12 character array.

struct MsgFlightState

{

 char m_acid[eMPI_ID_LENGTH=12]; // A/C callsign

 int m_cid; // Computer generated A/C id

 double m_timeCreated; // UTC time in decimal seconds decimal

 double m_timeReceived; // UTC time in milliseconds

 LVC ICD-03 - REV B

11 | P a g e

 double m_latitude; // Decimal degrees signed +North/-South

 double m_longitude; // Decimal degrees signed +East/-West

 float m_pressureAltitude; // Pressure altitude in feet

 float m_geoAltitude; // not supported

 float m_indicatedAirSpeed; // Indicated airspeed in knots

 float m_mach; // Current Mach number, non-dimensional

 float m_bankAngle; // A/C bank angle in degrees

 float m_pitchAngle; // A/C pitch angle in degrees

 float m_groundSpeed; // A/C ground speed in knots

 float m_verticalSpeed; // A/C vertical speed in feet/min

 float m_trueHeading; // A/C true heading in degrees based on

// true North

 float m_magneticVariation; // Magnetic variance degrees

 float m_trueGroundTrack; // A/C true ground track in degrees

 float m_trueAirSpeed; // Airspeed in wind frame in knots

 float m_altitudeTarget; // feet

 float m_headingTarget; // degrees

 float m_speedTarget; // knots

 float m_verticalSpeedTarget; // not supported

 int m_equipageFlags; // used to set ADS-B or TIS-B type of

// tracks

 int m_modeFlags; // set to ADRS_MPI_FS_LNAV

 int m_dlnkFlags;

 int m_configurationFlags;

 float m_flaps;

 float m_speedBrakes;

 float m_windDirection; // degrees

 float m_windSpeed; // knots

 float m_outerAirTemperature; // not supported

 float m_mapRangeCaptain;

 float m_mapRangeFo;

 float m_headingBug;

 float m_vhfFrequency; // MHz

 int m_beaconCode; // octal number

 int m_geoSectorId;

 int m_atcSectorId;

 int m_acSectorId;

 char m_atcSectorName[eMPI_STRING_SECTOR=8];

 int dummy4pack;

};

The dummy4pack field should be used to transmit ICAO code as there is no dedicated field for that

attribute in any of the predefined structures.

Any int and float value that are undefined should be set to -99999.

Note that sign of longitude should follow the following convention. Westward longitude should have

a negative value while Eastward should be positive.

Specifics of this message are explained below depending upon the value of the m_equipageFlag:

 LVC ICD-03 - REV B

12 | P a g e

1. The MsgFlightState message is associated with any constructive, virtual or live non ADS-B

and non TIS-B data source. Note that m_equipageFlag field in the message structure for this case

will be set to zero.

2. The m_equipageFlag field will be set to a value defined in 3.3 corresponding to ADS-B track

representing flight state vector for the live ADS-B equipped aircraft.

3. The m_equipageFlag field will be set to a value defined in 3.3 corresponding to TIS-B track

representing flight state data for live aircraft that are not equipped with ADS-B.

The entity that is not equipped with ADS-B will publish flight state data where the m_equipageFlag

field is set to zero. The entity that is equipped with ADS-B will publish flight data that map to the

MsgFlightState structure with the m_equipageFlag field set to the value specified below that

corresponds to the ADS-B data.

Equipage enum bit map Definitions

Two bitmaps for ADS-B and TIS-B equipage are defined below. They shall be used to set the

m_equipageFlags in the MsgFlightState structure.

defPasCiEqpADS_B 0x00000400

defPasCiEqpTIS_B 0x00000800

The m_modeFlags field is set at least to ADRS_MPI_FS_LNAV in order for trajectory intent to show

in the CSD. The m_modeFlags field should be set as a minimum to ADRS_MPI_FS_LNAV or to a

value that is a result of a combination of different target flight statuses such as

ADRS_MPI_FS_LNAV | ADRS_MPI_FS_VNAV | ADRS_MPI_FS_ARRIVAL |

ADRS_MPI_FS_FREE_FLIGHT. The symbol “|” is a logical operation OR. The flight status types

are defined below

typedef enum {

 ADRS_MPI_FS_UNKNOWN = 0,

 ADRS_MPI_FS_LNAV = (1<<0),

 ADRS_MPI_FS_VNAV = (1<<1),

 ADRS_MPI_FS_ARRIVAL = (1<<2),

 ADRS_MPI_FS_OVERFLIGHT = (1<<3),

 ADRS_MPI_FS_DEPARTURE = (1<<4),

 ADRS_MPI_FS_PLAYBACK = (1<<10),

 ADRS_MPI_FS_IDENT_ON = (1<<11),

 ADRS_MPI_FS_FREE_FLIGHT = (1<<20),

 ADRS_MPI_FS_ATC_CONTROLLED = (1<<21),

 ADRS_MPI_FS_VFR = (1<<22),

 ADRS_MPI_FS_TFR = (1<<23),

 ADRS_MPI_FS_INACTIVE_INFLIGHT = (1<<24),

 ADRS_MPI_FS_PREDEPARTURE = (1<<25),

 ADRS_MPI_FS_CDTI = (1<<30),

 ADRS_MPI_FS_COUNT

} adrs_mpi_flight_status_types;

This data type is defined in the adrs_mpi.h interface file provided to the user.

 LVC ICD-03 - REV B

13 | P a g e

3.4 Aircraft Flight Plan Structure

The Aircraft Flight Plan structure is defined below. This structure represents the payload of an aircraft

flight plan message. All messages displayed below are defined in the adrs_mpi.h interface used

ADRS.

struct MsgFlightPlan

{

 int m_dataSource;

 char m_acid[eMPI_ID_LENGTH=12]; // aircraft callsign

 int m_adrsProc;

 int m_cid; // computer id

 char m_type[eMPI_STRING_TYPE=16]; // aircraft type

 char m_gateName[eMPI_STRING_NAME=20];

 char m_meterFixName[eMPI_STRING_NAME=20];

 char m_outerFixName[eMPI_STRING_NAME=20];

 int m_category;

 char m_route[eMPI_STRING_FILED_ROUTE=300];

 char m_departureFix[eMPI_ID_LENGTH=12];

 int m_departureTime; // UTC time in seconds

 int m_assignedAltitude; // feet

 float m_filedSpeed; // knots

 int m_timeEnroute; // seconds

 float m_approachSpeed; // knots

 float m_landingSpeed; // knots

 char m_coordinationFrd[eMPI_STRING_NAME=20];

 char m_coordinationFix[eMPI_STRING_NAME=20];

 float m_coordinationX; // nautical miles

 float m_coordinationY; // nautical miles

 int m_faaCoordTime; // seconds

 int m_coordinationTime; // UTC time in seconds

 char m_destinationFix[eMPI_STRING_NAME=20];

 char m_destinationName[eMPI_STRING_NAME=20];

 char m_runwayName[eMPI_STRING_NAME=20];

 int m_configuration;

 int m_beacon; // A 4 digit number, each

// digit is an octal value.

 char m_atcType[eMPI_STRING_TYPE=16]; // aircraft type

 int m_timeReceived; // UTC time in seconds

 short m_status;

 char m_fpDataSource;

 char m_equipmentAvailable;

 int m_dlnkEquipped;

};

This is an example of a m_route field in the Flight Plan structure conforming to the standard FAA

syntax: DFW.DALL7.LIT.J101.STL..CAP..BAYLI.BDF3.ORD.

Flight plans for constructive and/or live traffic will be published to LVC Gateway by the HLA via the

LVC Gateway Portal component that is part of the HLA distributed environment. In addition, any

constructive, virtual or live UAS entity connecting to the LVC Gateway will generate and publish

 LVC ICD-03 - REV B

14 | P a g e

flight plan in the MsgFlightPlan format. The Gateway will transmit UAS flight plans to the LVC

Gateway Portal and the HLA environment. The message field, m_adrsProc, should be set to the

corresponding enum data type adrs_proc_type defined in the adrs_interface.h header file provide to

the user. The m_adrsProc is set to ADRS_PROC_MPI_CLIENT_MACS = 35 if targets are generated

by MACS while ADRS_PROC_MPI_CLIENT_VAST = 38 if targets are generated external to

MACS, i.e. by a federate from the HLA distributed environment.

The m_status field as a minimum should be set to ADRS_MPI_FS_LNAV which corresponds

to the bit field for lateral navigation management. CSD will not function nominally if

m_status is set to a zero value.

3.5 Aircraft Flight Trajectory Intent Structure

The Aircraft Flight Trajectory Intent structure is defined below. It is a composite of two structures: 1)

the trajectory specification structure, and 2) the waypoint structure. Both structures are defined below.

The Trajectory Intent Structure represents the payload of an aircraft flight trajectory intent message.

struct MsgTrajectoryIntent

{

 MpiTrajSpec m_spec;

 MpiTrajPoint m_point[eMPI_MAX_TRAJ_POINTS=50];

};

 struct MpiTrajSpec

 {

char m_acid[eMPI_ID_LENGTH=12]; // aircraft sallsign

int m_adrsProc;

int m_cid; // computer id

int m_numberOfPoints;

int m_numberOfHorizPoints;

float m_climbSpeed; // Feet/min

float m_cruiseSpeed; // knots

float m_descentSpeed; // knots

float m_approachSpeed; // knots

float m_landingSpeed; // knots

float m_cruiseAltitude; // Feet

float m_currentGrossWeight; // not supported

float m_landingWeight; // not supported

float m_miscFloatValue;

char m_text[eMPI_STRING_TRAJ=128];

 };

 struct MpiTrajPoint

 {

eMpiTrajPtType m_type;

char m_waypointId[eMPI_ID_LENGTH=12];

 float m_latitude; // decimal degrees signed +North/ -South

float m_longitude; // decimal degrees signed +East/-West

float m_turnRadius; // not supported

int m_miscIntValue;

double m_eta; // UTC seconds

float m_calibratedAirSpeed;

 LVC ICD-03 - REV B

15 | P a g e

float m_altitude; // Feet

float m_fuelRemaining; // not supported

float m_outerAirTemperature; // not supported

float m_windDirection; // TBD

float m_windSpeed; // TBD

float m_trueAirSpeed; // knots

float m_trueCourseIntoPoint; // not supported by MACS

 // Note: used for “heading” Trial Planner

 // set to -999999.0 when not used

 // otherwise, set to the trial angle

float m_distanceToPoint; // (TBD: subject to computation:

// MACS uses EntryTime)
float m_predictedGrossWeight; // not supported by MACS

float m_x; // TBD

float m_y; // TBD

int m_constraint;

float m_miscFloatValue;

 };

The MpiTrajectory of the constructive and/or live traffic is published by the HLA via the LVC

Gateway Portal component to the LVC Gateway. The Gateway will publish the trajectory intent of

any constructive, virtual or live UAS entity connecting to the LVC Gateway. Subsequently,

MsgTrajectory messages associated with UAS entities will be transmitted to the LVC Gateway Portal

and HLA environment. The message filed, m_adrsProc, should be set to the corresponding data

source value defined in Table 2.

Note that sign of longitude should follow the following convention. Westward longitude should have

a negative value while Eastward should be positive.

Enumeration below defines waypoint types in the MpiTrajPoint structure. The size of the

enumeration field is 4 bytes.

enum eMpiTrajPtType

{

eMPI_TRAJ_TYPE_WP = 0, /* waypoint*/

eMPI_TRAJ_TYPE_HP = 1, /* holding pattern*/

eMPI_TRAJ_TYPE_PH = 2, /* proc hold*/

eMPI_TRAJ_TYPE_PT = 3, /* proc turn*/

eMPI_TRAJ_TYPE_RF = 4, /* rf leg*/

eMPI_TRAJ_TYPE_TC = 5, /* TOC*/

eMPI_TRAJ_TYPE_TD = 6, /* TOD */

eMPI_TRAJ_TYPE_SL = 7, /* start of level*/

eMPI_TRAJ_TYPE_CA = 8, /* crossover altitude*/

eMPI_TRAJ_TYPE_TA = 9, /* transition altitude*/

eMPI_TRAJ_TYPE_AC = 10, /* Aircraft position */

eMPI_TRAJ_TYPE_CS = 11, /* only constraint */

eMPI_TRAJ_TYPE_RT = 12, /* part of current rte*/

eMPI_TRAJ_TYPE_AP = 13, /* Airport DATA */

eMPI_TRAJ_TYPE_SC = 14 /* Speed Change Point */

};

 LVC ICD-03 - REV B

16 | P a g e

This data type is defined in the adrs_trajectory.h interface file provided to the user.

3.6 Aircraft Delete Structure

The Aircraft Delete structure is defined below. This structure represents the payload of an aircraft

delete message.

struct MsgDeleteAc

{

 char m_acid[eMPI_ID_LENGTH=12];

 int m_adrsProc;

 int m_cid;

};

This message is initiated by the Gateway clients Ikhana GCS, Ikhana Sim, Langley UAS or

VIRTUAL UAS and will be sent to the LVC Gateway. An aircraft may drop out of the simulation

environment due to a process crash, operational reasons (intentional shut down of the process) or

during the debugging process. The LVC Gateway will send the MsgDeleteAc message to all clients

that subscribe to the delete message. After the problem is addressed, the Ikhana, Ikhana Sim, Langley

UAS, or VIRTUAL UAS can reconnect during the run time and continue participating in the

simulation.

In addition, the delete message can be initiated by the HLA distributed environment when the aircraft

from the background traffic drops out of the simulation. This event will generate delete message in

the HLA environment which will be propagated throughout the entire distributed system informing

the system components that the HLA aircraft is no longer active and that the local instance of the

aircraft should be removed.

In case of the lost link between the Ikhana GCS and the Ikhana aircraft the delete message will be

sent from the RFDP to the Gateway. During the lost link event either data sources, telemetry data

provided by the GCS and ADS-B/TIS-B provided by the laptop will stop supplying data.

3.7 Set Ownship Structure

The Aircraft Ownship structure is defined below. This structure represents the payload of an aircraft

set-ownship message.

struct MsgSetOwnship

{

 char m_acid[eMPI_ID_LENGTH=12];

 char m_host[eMPI_STRING_HOST=24];

 int m_cid;

 int m_control;

};

This message is used to inform a CSD system component about the target it is associated with. The

CSD will initially provide the ownship callsign by the handshake message sent to the LVC Gateway.

The ownship callsign is specified by the dataProividerName data field. Upon receiving handshake

message, the Gateway will generate MsgSetOwnship message using the received callsign and the cid

corresponding to the target with the specified callsign and will send it back to CSD.

 LVC ICD-03 - REV B

17 | P a g e

3.8 Sense and Avoid (Saa) Aircraft Flight State Data Structure

Note that the new terminology for Sense and Avoid (SAA) has been introduced recently. SAA has

been replaced by the Detect and Avoid (DAA) term. However, it has been decided to retain all the

legacy references to SAA in all of the pertinent messages in this ICD. This preserves and maintains

consistent terminology between the current ICD and the software that had been developed using the

previous version of the ICD for the earlier phases of the UAS-in-the-NAS project.

The Saa Aircraft Flight State structure, MsgSaaFlightState, is defined in section 3.3. The Saa

Aircraft Flight State message is a result of the sensor surveillance range filtering (part of the sensor

model) applied to the entire simulated traffic (defined by the MsgFlightState message) that is received

by the Sense and Avoid Process (SaaProc) from the LVC Gateway. Only the filtered traffic is visible

by the surveillance system of the ownship aircraft. The MsgSaaFlightState is then published back to

the LVC Gateway which in turn sends the data to the subscribing clients such as the Cockpit Situation

Display (CSD) or the VSCS traffic display, depending upon which traffic display is active during the

test event, to be displayed for the pilot’s situation awareness.

Note that if some simulations do not generate some of the data fields defined in the message those

values should be set to either -99999 or to an empty string, depending upon the variable type.

Message type is defined in Table 1.

3.9 Sense and Avoid (Saa) Threat Results Message

The Saa Threat Results Message data structure is defined below. It is a composite of two structures:

1) the threat specification data structure, and 2) the threat data structure. Both structures are defined

below.

The Saa Threat Results Message Structure represents the payload comprised of array of SaaThreat

data structures defined below.

struct MsgSaaThreatResults

{

 SaaThreatSpec m_spec;

 SaaThreat m_threats[SAA_MAX_THREATS=50]; // arbitrary, feel free to change

};

struct SaaThreatSpec

{

 char m_acid[eMPI_ID_LENGTH=12]; // ownship callsign

 int m_cid; // ownship flight number

 int m_numberOfThreats;

};

Note that the eSaaType is type defined as an int, i.e. typedef int eSaaType.

struct SaaThreat

{

 eSaaType m_saaType; // int - alert level

int m_intruderCid;

double m_conflictStartTime; // UTC seconds

double m_conflictEndTime; // UTC seconds

 LVC ICD-03 - REV B

18 | P a g e

double m_conflictDuration; // seconds

double m_timeToCpa; // seconds

double m_timeToFirstLoss; // seconds

 double m_dTauSimple; // range divided by range rate

 double m_dTauModified; // range divided by range rate
float m_minHorzSep; // nm

float m_minVertSep; // feet

double m_ownshipCpaLat; // degrees

double m_ownshipCpaLon; // degrees

double m_intruderCpaLat;

double m_intruderCpaLon;

double m_ownshipFirstLossLat;

double m_ownshipFirstLossLon;

double m_intruderFirstLossLat;

double m_intruderFirstLossLon;

float m_ownshipCpaAlt; // feet

float m_ownshipCpaGroundSpeed; // knots

float m_ownshipCpaCalibratedAirSpeed; // indicated airspeed in knots

float m_ownshipCpaVerticalSpeed; // feet/min

float m_ownshipCpaHeading; // degrees

float m_intruderCpaAlt;

float m_intruderCpaGroundSpeed;

float m_intruderCpaCalibratedAirSpeed;

float m_intruderCpaVerticalSpeed;

float m_intruderCpaHeading;

float m_ownshipFirstLossAlt; // feet

float m_ownshipFirstLossGroundSpeed; // knots

float m_ownshipFirstLossCalibratedAirSpeed;// indicated airspeed in knots

float m_ownshipFirstLossVerticalSpeed; // feet/min

float m_ownshipFirstLossHeading; // degrees

float m_intruderFirstLossAlt; // feet

float m_intruderFirstLossGroundSpeed; // knots

float m_intruderFirstLossCalibratedAirSpeed;// indicated airspeed in knots

float m_intruderFirstLossVerticalSpeed; // feet/min

float m_intruderFirstLossHeading; // degrees

 bool m_isPredictedStricter //true if alert is predicted to be

 //stricter later in time, i.e. if SS

 //alert and predicted to be CA later

 char pad[7];

};

The definition of alert levels in the previous version of the ICD, LVC_ICD-03_REV_A, has been

replaced by values defined in the table below.

 LVC ICD-03 - REV B

19 | P a g e

Table 3. Definitions of Alert Levels.

0 no alert

1 proximate alert

2 self–separation preventive alert

3 self–separation alert

4 self–separation warning alert

The color scheme, symbology, and the threshold levels associated with the alert levels are presented

in Appendix B.

3.10 Saa Release Structure

The SaaProc sends the SaaRelease message when the Sense And Avoid algorithm returns

RELEASE as the threat state for the ownship. This indicates that the conflict has been cleared as a

result of executing a previously advised maneuver.

typedef int eSaaType; // 4 bytes long

struct MsgSaaRelease

{

 char m_acid[eMPI_ID_LENGTH=12]; // ownship callsign

 int m_cid; // ownship flight number

 eSaaType m_saaType; // int - alert level

}

3.11 Sense and Avoid (Saa) Resolution Maneuver

The Saa Resolution Maneuver data structure is defined below. It is a composite of two structures: 1)

the maneuver specification data structure, and 2) the maneuver data structure. Both structures are

defined below.

The MsgSaaResManeuver structure describes the payload of a Saa Resolution Maneuver message.

struct MsgSaaResManeuver

{

 SaaResManeuverSpec m_maneuverSpec,

 SaaManeuver m_maneuvers[SAA_MAX_MANEUVERS=20]

};

struct SaaResManeuverSpec

{

 char m_acid[eMPI_ID_LENGTH=12]; // ownship callsign

 int m_ownshipCid;

 int m_numberOfManeuvers;

};

 struct SaaManeuver

{

 eManeuverType m_maneuverType; // enum

 eSaaType m_saaType; // int – alert level

 double m_startTime; // UTC seconds

 LVC ICD-03 - REV B

20 | P a g e

 double m_endTime ; // UTC seconds

 float m_altitude; // not set if maneuver type != altitude

 float m_headingAbs; // absolute heading in deg (0-359);

 // not set if maneuver type != heading

 float m_headingRel; // relative heading in deg where +30

 // means 30 degrees right turn;not set if

 // maneuver type != heading

 float m_speed; // not set if maneuver type != speed

};

enum eManeuverType

{

 eSAA_MANEUVER_TYPE_REROUTE = 0,

 eSAA_MANEUVER_TYPE_HEADING = 1,

 eSAA_MANEUVER_TYPE_SPEED = 2,

 eSAA_MANEUVER_TYPE_ALTITUDE = 3,

 eSAA_MANEUVER_TYPE_COMPOUND = 4,

 eSAA_MANEUVER_TYPE_APP_REFINED = 5,

 eSAA_MANEUVER_TYPE_NOT_SET = -999999 // same as INT_NOT_SET

};

3.12 Sense and Avoid (Saa) Resolution Reroute

The Saa Resolution Reroute data structure is defined below. It is a composite of two structures: 1) the

resolution reroute specification data structure, and 2) the resolution waypoints data structure. Both

structures are defined below. The MsgSaaResReroute structure represents the payload of an aircraft

flight trajectory intent message.

struct MsgSaaResReroute

{

 SaaResRerouteSpec m_rerouteSpec;

 SaaResWayponts m_waypoints[MPI_MAX_NUM_OF_WAYPOINTS=50] ;

};

struct SaaResRerouteSpec

{

 char m_acid[eMPI_ID_LENGTH=12]; // ownship callsign

 int m_ownshipCid;

 eSaaType m_saaType; // int – alert level

 double m_startTime; // UTC seconds

 double m_endTime ; // UTC seconds

 int m_numberOfWaypoints;

 double m_turnOutAngle; // turn angle to the next

 // fix from the current

 // location; + right turn, - left turn in degrees

};

struct SaaResWaypoint

{

 char m_name[eMPI_ID_LENGTH=16]; // nav wpt name, or arbitrary if not

 // available

 LVC ICD-03 - REV B

21 | P a g e

 double m_latitude; // decimal degrees

 double m_longitude; // decimal degrees

 float altitude; // above sea level in ft

 float speed; // true air speed in knots

};

3.13 NavigationMode Message Structure

The Navigation Mode Message is used whenever the ownship flight control system executes a

maneuver or when the ownship consumes a waypoint on the route. The purpose is to send the SAA

system intent information, so it can build an accurate trajectory prediction while detecting threats.

struct MsgNavMode

{

// Note: the three fields in the first group below are mandatory for

// all four Nav Modes including Flightplan, Autopilot mode, Override and Manual mode

// Flighthplan mode and Manual mode have only three fields shown below

//

eNavMode m_eNavMode; // enum

 char m_acid[eMPI_ID_LENGTH=12]; // ownship callsign

 int m_ownshipCid;

// Autopilot mode – set -999999.0 to the two fields if not autopilot mode

 float m_heading; //degs. True North (absolute)
 float m_altitude //feet

// Override mode - set -999999.0 to the four fields if not Override mode
 float m_overrideAltitude //feet

 float m_tas //true airspeed in knots

 float m_cas //calibrated airspeed in knots

 float m_mach //NOTE: at least one speed must be set

};

enum eNavMode

{

 eNAV_MODE_FLIGHT_PLAN = 0,

 eNAV_MODE_AUTO_PILOT = 1,

 eNAV_MODE_OVERRIDE = 2,

 eNAV_MODE_MANUAL = 3,

 eNAV_MODE_NOT_SET = -999999 // same as INT_NOT_SET

};

3.14 Trial Trajectory Intent Message

The Trial Trajectory Intent Message, MsgTrialTrajectoryIntent, is sent across the LVC system by

CSD during the trial planning operation. Alternately, the VSCS traffic display contains a trial

planning function that provides the same capability as the CSD. Only one traffic display may

 LVC ICD-03 - REV B

22 | P a g e

perform trial planning function during a simulation on one gateway. The interface between the VSCS

trail planning function and the LVC Gateway utilizes the same MsgTrialTrajectoryIntent message.

Trial planning messages will be sent at a 15Hz rate to LVC Gateway that will transmit those

messages to SaaProc component for conflict assessment with intruders. The payload of the Saa Trial

Trajectory Intent Message is the same data structure as the one defined by the Aircraft Flight

Trajectory Intent Structure in section 3.5.

For clarity, the MsgTrialTrajectoryIntent message is shown below

struct MsgTrialTrajectoryIntent

{

 MpiTrajSpec m_spec;

 MpiTrajPoint m_point[eMPI_MAX_TRAJ_POINTS=50];

};

where MpiTrajSpec and MpiTrajPoint are defined in section 3.5.

3.15 Trial Threat Results Message

Upon receiving the Trial Trajectory Intent message, the Saa algorithm will assess whether the well

clear state of the ownship is violated against the surrounding traffic. If the well clear is violated the

pilot will receive MsgSaaTrialThreatResults message which is the same data structure as the one

defined by MsgSaaThreatResult message data structure as defined in section 3.9.

For clarity, the MsgSaaThreatResult message is defined below

struct MsgSaaTrialThreatResults

{

 SaaThreatSpec m_spec;

 SaaThreat m_threats[SAA_MAX_THREATS=50]; // arbitrary, feel free to change

};

where SaaTrajSpec and SaaThreat are defined in section 3.9.

3.16 Trial Recap Maneuver Message

TBD.

3.17 Trial Accepted Message

Pilot evaluates trial planned ownship trajectory by rubber-banding it across the CSD display. He

selects trajectory that provides well clear condition for the ownship. After he negotiates heading

and/or altitude maneuver to the first way point in the trajectory with the ATC controller, he presses

the RAT (Route Assessment Tool) button on the CSD to send the Saa Trial Accept Message,

MsgTrialAccepted data structure, to the VSCS via the LVC Gateway. The message payload is the

selected trialed Trajectory Intent defined in section 3.14. It has been determined that this message will

not be used at this time.

 LVC ICD-03 - REV B

23 | P a g e

3.18 Release Message

When the SAA algorithm determines that SS or CA threat no longer exists, SaaProc

generates the MpiReleaseMsg and sends it out to the LVC Gateway. The threat symbology is

subsequently removed from the CSD or VSCS displays.

3.19 ACAS_Xu Data Structures

ACAS-Xu algorithm combining STM (Surveillance and Tracking Module) and TRM (Threat

Resolution Module) modules will produce a TRM output given the intruder inputs in a prescribed

format. The pertinent data structures and input requirements are defined in the ACAS-Xu

documentation that is handled by the ACAS-Xu team. The AcasxuProc is a process that wraps the

ACAS-Xu STM and TRM libraries and by utilizing the STM and TRM API calls the traffic input

data generates the MsgAcasxu Ta and RA output message defined below.

#define ACASXU_MAX_INTRUDERS 20 // As defined by IT&E team

#define PADSIZE_7BYTES 7 // for DOUBLEWORD alignment

typedef struct AcasxuTrmIntruderSpec

{

 int m_numOfIntruders; // | 004 bytes | 004 bytes |

 int m_numOfExpiredIntruders; // | 004 bytes | 008 bytes |

} AcasxuTrmIntruderSpecType; // | total ----> 008 bytes |

typedef struct AcasxuTrmIntruderOut

{

 double m_tds; // track display score | 008 bytes | 008 bytes |

 unsigned int m_id; // id of the intruder | 004 bytes | 012 bytes |

 uint8 m_cvs; // cancel vert complement | 001 bytes | 013 bytes |

 uint8 m_vrc; // vert resolution complement | 001 bytes | 014 bytes |

 uint8 m_vsb; // vert sense bit | 001 bytes | 015 bytes |

 uint8 m_code; // track code; | 001 bytes | 016 bytes |

} AcasxuTrmIntruderOutType; | total ----> 016 bytes |

typedef struct MsgAcasxuTrmOut
{

 char m_callsign[eMPI_ID_LENGTH]; // ownships allsign | 012 bytes | 012 bytes |

 int m_cid; // ownship cid | 004 bytes | 016 bytes |

 TrmIntruderSpecType m_intruderSpec; | 008 bytes | 024 bytes |

 double m_target_rate; // ft/s | 008 bytes | 032 bytes |

 double m_dh_min; // ft/s | 008 bytes | 040 bytes |

 double m_ddh; // | 008 bytes | 048 bytes |

 double m_dh_max; // ft/s | 008 bytes | 056 bytes |

 uint8 m_combined_control; // | 001 bytes | 057 bytes |

 uint8 m_vertical_control; // | 001 bytes | 058 bytes |

 uint8 m_up_advisory; // | 001 bytes | 059 bytes |

 uint8 m_down_advisory; // | 001 bytes | 060 bytes |

 bool m_turn_off_aurals; // | 001 bytes | 061 bytes |

 bool m_crossing; // | 001 bytes | 062 bytes |

 LVC ICD-03 - REV B

24 | P a g e

 bool m_alarm; // | 001 bytes | 063 bytes |

 bool m_alert; // TA active | 001 bytes | 064 bytes |

 char m_sensitivity_index; // | 001 bytes | 065 bytes |

 char m_pad[PADSIZE_7BYTES]; // |007 bytes | 072 bytes |

 TrmIntruderOutputType m_intruders[MAX_INTRUDERS]; | 160 bytes | 232 bytes |

 TrmIntruderOutputType m_expiredIntruders[MAX_INTRUDERS];// | 160 bytes | 392 bytes |

} MsgAcasxuTrmOutType; // | total ----> 392 bytes|

The four fields m_combined_control, m_vertical_control, m_up_advisory, and m_down_advisory

are described in the resolution advisory, RA, as defined in the ARINC 270 labels document attached

in the Appendix A.

3.20 Stratway Bands Data Structure

The original Stratway Bands message is defined in the Stratway+ External Interface (Stratway+

ExternalInterface_Dec_22) ICD provided by LaRC team. The Stratway ICD is shown in Appendix C.

The LVC Gateway will receive the Stratway Bands message from the Stratway+ GCS. A UDP

client/server multicast protocol is used to send/receive Stratway+ bands data. In this configuration,

Stratway+ GCS socket is a server while LVC Gateway socket is a client. The detailed ICD for this

interface is specified in the Stratway+ Interface Specification Document published by the NASA

LaRC SSI team.

LVC Gateway will transmit the Stratway+ bands data to the subscribing clients based on the

following Stratway+ Bands Message definitions.

#define STRWAY_MAX_INTERVALS 10

#define STRWAY_MAX_INTRUDERS 10

 typedef char CharString8Type[8]; // 8 bytes long

 enum eIntervalType{

 eSTRWAY_INTERVAL_TYPE_UNKNKOWN = 0,

 eSTRWAY_INTERVAL_TYPE_NONE = 1,

 eSTRWAY_INTERVAL_TYPE_NEAR = 2,

 eSTRWAY_INTERVAL_TYPE_RECOVERY = 3

 }

typedef struct StratwayInterval

{

 eIntervalType m_eIntervalType; // | 004 bytes | 004 bytes

 double m_low_interval; // | 008 bytes | 012 bytes

 double m_up_interval; // | 008 bytes | 020 bytes

} stStratwayIntervalType; // total---> | 020 bytes

typedef struct StratwayIntruder {

 CharString8Type m_callSign; | 008 bytes | 008 bytes

 eSaaType m_alertLevel; // int - alert level | 004 bytes | 012 bytes

} stStratwayIntruderType; | total---> | 012 bytes

 LVC ICD-03 - REV B

25 | P a g e

The alert level, m_eSaaType, can have any value between 0 and 4 as defined in Table 3. in section

3.9.

typedef stStratwayIntervalType

StratwayIntervalListType [STRWAY_MAX_INTERVALS];// | 24 * 10 = 240 bytes

typedef stStratwayIntruderType

StratwayIntruderListType [STRWAY_ MAX_INTRUDERS];// | 12 * 10 = 120 bytes

The Stratway+ bands data message that is sent from MACS’s External Interface Communications

Thread consists of the following data members:

typedef struct MsgStrwayBandsMessage

{

 CharString8Type m_callSign; // 008 bytes | 008 bytes |

 double m_timeSeconds; // 008 bytes | 016 bytes |

 int m_participantAddress; // 004 bytes | 020 bytes |

 int m_numberOfHeadingIntervals; // 004 bytes | 024 bytes |

 StratwayIntervalListType m_headingIntervalList; // 160 bytes | 184 bytes |

 int m_numberOfTrueAirSpeedIntervals; // 004 bytes | 188 bytes |

 int m_pad1; // 004 bytes | 192 bytes |

 StratwayIntervalListType m_trueAirSpeedIntervalList; // 160 bytes | 352 bytes |

 int m_numberOfVerticalSpeedIntervals; // 004 bytes | 356 bytes |

 int m_pad2; // 004 bytes | 360 bytes |

 StratwayIntervalListType m_verticalSpeedIntervalList; // 160 bytes | 520 bytes |

 int m_numberOfAltitudeIntervals; // 004 bytes | 524 bytes |

 int m_pad3; // 004 bytes | 528 bytes |

 StratwayIntervalListType m_altitudeIntervalList; // 160 bytes | 688 bytes |

 int m_numberOfIntruders; // 004 bytes | 692 bytes |

 int m_pad4; // 004 bytes | 696 bytes |

 StratwayIntruderListType m_intrudersList; // 120 bytes | 816 bytes |

} MsgStrwayBandsType; // total---> | 816 bytes |

The data structure presented above is applicable for both 32 bit and 64 bit applications since

alignment is 8-byte double-word aligned. However, padding has to be introduced in the structure to

enforce the alignment.

3.21 Stratway Clear Bands Data Structure

TBD

3.22 Omni (SAA) Band Message

Defines an interval with the same alert levels (i.e. PROX, SS, CA, or NONE as defined by eSaaType)

throughout. The interval is defined as [min, max] inclusive.

The same structure (OmniBandInterval) will be used to represent heading and altitude bands in the

OmniBand concept (see MsgSaaOmniBands). For heading OmniBandInterval, min and max indicate

heading in degrees relative to current ownship heading, e.g. -30 is 30 degrees left of ownship’s

current heading, and +30 is 30 degrees right of ownship’s current heading. For altitude bands, min

and max values will always be set to the same value as altitude bands represent a single altitude level

in feet above MSL.

 LVC ICD-03 - REV B

26 | P a g e

A heading OmniBandInterval indicates that between min and max the band should be colored

according to the associated alertLevel. For example, if min = -45, max = 0, and alertLevel=0, then

the interval from 45 degrees left of ownship to its current heading should be painted green.

For altitude OmniBandInterval, min = max, so either can represent the altitude level to be shown in

the altitude menu and the alertLevel describes the color of its outline in the menu. For example, if

min and max=15000 and alertLevel=3, this means that the altitude menu will include 15000 feet

entry, whose outline should be red meaning ownship would cause a loss of well-clear if it maneuvers

to 15,000 ft.

#define JADEM_MAX_BAND_INTERVALS 20

typedef struct OmniBandInterval

{

 eSaaType m_alertLevel; // int - alertLevel; | 004 bytes | 004 bytes |

 int m_min; //for heading – relative degrees, | 004 bytes | 008 bytes |

// for altitude - feet above MSL

 int m_max; //for heading – relative degrees, | 004 bytes | 012 bytes |

// for altitude - feet above MSL

} OmniBandIntervalType; | total = 20 bytes |

typedef struct MsgSaaOmniBands

{

 char m_callsign[eMPI_ID_LENGTH]; // Onwship callsign | 012 bytes | 012 |

 int m_pad; | 004 bytes | 016 |

double m_timeCreated; // time msg created | 008bytes | 024 |

// Number of heading and alt band intervals

 int numberOfHeadingIntervals; | 004 bytes | 028 |

 int numberOfAltitudeIntervals; | 004 bytes | 032 |

 // List of alerted/non-alerted intervals

 OmniBandInterval headingIntervals[SAA_MAX_BAND_INTERVALS]; //| 400 bytes | 432 |

 OmniBandInterval altitudeIntervals [SAA_MAX_BAND_INTERVALS]; //| 400 bytes | 832 |

} MsgSaaOmniBandsType; | total = 832 bytes |

3.23 CSD and VSCS Displays

CSD has the Basic and the Advanced mode for displaying SAA threat and resolution

advisories. The Basic mode is set by entering values 0, 0 in the two text fields in the primary

CSD UI display. Consequently, CSD publishes the Handshake message to LVC Gateway

specifying the data to which it publishes/subscribes. In the Basic mode, CSD subscribes to:

SAA Flight State of the background traffic (1Hz update rate), Flight State of the ownship

(10Hz update rate), ownship Trajectory Intent (published when changed), SAA Threat

Results (1Hz update rate), and SAA Release message (published when the threat is cleared).

In Basic mode, CSD displays traffic icons but does not show any special alerting symbology

beyond the imminent severity levels of traffic conflicts using white, yellow, and red

colors. The Trial Planning tool is not enabled for the Basic mode.

 LVC ICD-03 - REV B

27 | P a g e

The Advanced mode is set by entering 0, 2 in the same text fields. The Trial Planning tool is

enabled for the Advanced mode. CSD publishes the Handshake message to LVC Gateway

specifying the data to which it publishes/subscribes. In addition to what it subscribes to in

Basic mode, CSD subscribes to: the SAA Resolution Maneuvers, SAA Resolution Reroute,

and SAA Trial Threat Results, while it publishes the Trial Trajectory Intent message (15Hz

update rate). Pilots may use the CSD trial planner, formally called the Route Assessment

Tool (RAT), to make further refinements to route resolutions or provide a manual one from

scratch. By pushing the RAT button and rubber-banding the current ownship trajectory, the

Trial Trajectory Intent message (15Hz update rate) is published to LVC Gateway for

processing by the SAA algorithm.

VSCS has three modes: None, Basic and Advanced. In the None mode, VSCS publishes ownship

messages containing Flight Plan, Flight State and Trajectory Intent. VSCS does not subscribe to any

messages form LVC Gateway. In the Basic mode, in addition to the publishing the same messages as

in the None mode, VSCS subscribes to intruder SAA Flight State and following SAA related

messages: SAA Threat Results, SAA Res Maneuvers, SAA Res Reroute, SAA Trial Threat Results,

and SAA Release messages. The Trial Planning tool is not available while VSCS is in Basic mode but

it is coupled with trial planning performed in CSD. In the Advanced mode, VSCS subscribes to

intruder SAA Flight State, while it publishes Nav Mode message in addition to its Flight State, Flight

Plan and Trajectory Intent messages. The Trial Planning tool is enabled when Trial Trajectory Intent

messages (15Hz update rate) are published to LVC Gateway.

2.23.1 CSD Display

When the VSCS display is in the Basic mode, Self Separation (SS) alerts are accompanied with visual

and aural alerts. Ownship and Intruder pop-up data tags will be displayed underneath the baseball

card during a traffic alert, and a yellow halo will be displayed around the ownship. An aural alert

“traffic, traffic” will be provided. When a Collision Avoidance (CA) alert is received, visual and aural

alerts are provided to the pilot. Ownship and Intruder data tags will pop up (or stay up if already

active) while a traffic alert will be displayed underneath the baseball card. A red halo will be

displayed around the ownship and at the same time a directive aural alert will be given, e.g. “Climb,

Climb”.

When the CSD display is in the Advanced mode, SS alerts are accompanied with visual and aural

alerts. The recommended maneuver is shown in upper right corner. The RES button on the primary

CSD UI will be highlighted if a new maneuver is available. Both the lateral and vertical trial planning

tools are available for use at that time. The pilot will verify maneuver with the controller. After

receiving ATC clearance, the pilot will execute the maneuver. When a Collision Avoidance (CA)

threat is received, visual and aural alerts are provided to the pilot. The CA maneuver is shown in

upper right corner and the trial planning tools are no longer enabled for use. The pilot will fly the first

CA maneuver that is displayed.

2.23.2 VSCS Display

When the VSCS display is in the Basic mode, Self Separation alerts are accompanied with visual and

aural alerts. Ownship and Intruder data tags will pop up when a traffic alert will be displayed

underneath the baseball card and a yellow halo will be displayed around the ownship. An aural alert

“traffic, traffic” will be given. When Collision Avoidance (CA) alert is received, visual and aural

 LVC ICD-03 - REV B

28 | P a g e

alerts are provided to the pilot. Ownship and Intruder data tags will pop up (or stay up if already

active) while a traffic alert will be displayed underneath the baseball card. A red halo will be

displayed around the ownship and at the same time a directive aural alert will be given, e.g. “traffic,

traffic”.

When the VSCS display is in the Advanced mode, during Self Separation alerts pilots are provided

with visual and aural alerts. The recommended maneuver is shown to the right of the baseball card. If

multiple maneuvers are provided for the encounter, pilot will press the REFRESH button to view

maneuvers. Both the lateral and vertical trial planning tools are available for use. Once the pilot has

decided on an appropriate maneuver, he will negotiate the maneuver with the controller and if cleared

he will press send button in the steering window. If the VSCS receives a Collision Avoidance alert,

visual and aural alerts will be provided. The CA maneuver is shown to the right of the baseball card

and the green arrow on the compass rose graphically depicts the CA maneuver. At that time, the trial

planning tools are not available for use. The pilot must execute the CA maneuver by clicking the

‘Execute’ button.

2.24 Note about Heartbeat Message

Optionally, the Gateway shall periodically send heartbeat message to the clients with enumeration

defined below.

The LVC Gateway will send a periodic heartbeat message at a configurable time interval to every

client for the sole purpose of detecting whether the client socket port has been shut down, or closed.

This infrastructure will detect a process that crashed and was running on the client connected to the

Gateway. Upon detecting the closed socket, the Gateway will send MsgHeader message to every

client unconditionally. The MsgHeader message requires no action, i.e. no response by recipients. A

message of type MsgHeader of size 12 bytes shall contain the value of 7030 in the MsgType field

according to the definitions in Table 1. The MsgSize field (i.e. sizeof(MsgHeader)) shall be set to 12

bytes which essentially means there is no subsequent payload. Therefore, there is no need for the

recipient to read the socket port of any further payload data.

Clients that receive the MsgHeader message shall be expected to consume this message nominally.

Consequently, if the LVC Gateway does in fact detect a closed socket port, then it will forward a

delete aircraft message to all other active and valid subscribers. A MsgDeleteAc message shall be

sent for each aircraft that was owned by the closed client.

2.25 Primitive Data Type Definitions and Sizes in Bytes

The "C" structures displayed above are used on a Windows platform using x86 or x86-64

architecture. The byte order for Windows platforms is little endian (the least significant byte is stored

first) and the sizes of the primitive data types are given below:

 long: 4 bytes

 unsigned long: 4 bytes

 int: 4 bytes

 unsigned int: 4 bytes

 short int: 2 bytes

 unsigned short int: 2 bytes

 char: 1 byte

 float: 4 bytes

 LVC ICD-03 - REV B

29 | P a g e

 double: 8 bytes

2.26 Byte Order and Need for Byte Swapping

All clients will publish messages in network byte order as computer networks transmit multi-byte

numbers in this particular byte order. The most significant byte of a multi-byte number that is

transmitted first over a network constitutes network byte order. Generally, different hosts (different

CPUs) in the distributed environment can be little-endian or big-endian depending upon how bytes

are ordered within a single word in the host memory. Therefore, when the little-endian host sends

messages over the network it needs to convert (byte swap) them to network byte order before sending

the messages out. Consequently, when the little-endian host receives a message over the network, it

needs to convert the message back to host native byte representation, i.e. little-endian byte order.

 LVC ICD-03 - REV B

30 | P a g e

Acronym List

ADRS – Aeronautical Data link and Radar Simulator

ADS-B - Automatic Dependent Surveillance-Broadcast

ATC – Air Traffic Control

FAA – Federal Aviation Administration

FIS-B - Flight Information Services-Broadcast

FLAPS – Flexible Acquisition Processing System

CSD - Cockpit Situation Display

GCS - Ground Control Station

HLA - High Level Architecture

LMA – Link Management Assembly

LVC - Live Virtual Constructive-Distributed Environment

MACS - Multi-Aircraft Control System

MPI –Multipurpose Protocol Interface

VIRTUAL UAS - Multi-UAS Simulator

NASA – National Aeronautics and Space Administration

SAA – Sense and Avoid

SaaProc – Sense And Avoidance Processor

TCP/IP - Transmission Control Protocol/Internet Protocol

TIS-B - Traffic Information Service-Broadcast

UAS-NAS - Unmanned Aircraft System-National Airspace System

UAT – Universal Access Transceiver

UTC - Coordinated Universal Time

VAST- HLA Virtual Airspace simulation Technology-High Level Architecture

VSCS - Vigilant Spirit Computer System

 LVC ICD-03 - REV B

31 | P a g e

Appendix A

ARINC CHARACTERISTIC 735B - Page 103

ATTACHMENT 6

DATA WORDS APPLICABLE TO TRAFFIC COMPUTER (TCAS WITH ADS-B)

PART 6E

ARINC 429 CONTROL WORD –TCAS TO DISPLAY

TCAS Vertical Resolution Advisory RA Data Output Word

LABEL 270
BIT FUNCTION CODING NOTES

1 Label 1st Digit MSB 2 1

2 Label 1st Digit 0

3 Label 2nd Digit MSB 7 1

4 Label 2nd Digit 1

5 Label 2nd Digit 1

6 Label 3rd Digit MSB 0 0

7 Label 3rd Digit 0

8 Label 3rd Digit 0

9 SDI BIT 0

10 SDI BIT 1

11 Advisory 100 ft/min [9]

12 Rate to 200 ft/min

13 Maintain 400 ft/min

14 Binary Two's 800 ft/min

15 Complement 1600 ft/min

16 3200 ft/min

17 Sign

18 Combined Control

19 Combined Control [1]

20 Combined Control

21 Vertical Control

22 Vertical Control

23 Vertical Control [2]

24 Up Advisory

25 Up Advisory [3] [8]

26 Up Advisory

27 Down Advisory

28 Down Advisory [4] [8]

29 Down Advisory

30 SSM

31 SSM [5] [6] [7]

32 Parity (Odd)

1. Combined Control
BITS

20 19 18

MEANING

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

No Advisory

 LVC ICD-03 - REV B

32 | P a g e

Clear of Conflict

Spare

Spare

Up Advisory Corrective

Down Advisory Corrective

Preventive

Not Used

2. Vertical Control
ARINC CHARACTERISTIC 735B - Page 104

ATTACHMENT 6

DATA WORDS APPLICABLE TO TRAFFIC COMPUTER (TCAS WITH ADS-B)

BITS

23 22 21

MEANING

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Adv is not one of the

following types:

Crossing

Reversal

Increase

Maintain

Not Used

Not Used

Not Used

3. Up Advisory
BITS

26 25 24

MEANING

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

No Up Advisory

Climb

Don't Descend

Don't Descend >500

Don't Descend >1000

Don't Descend >2000

Not Used

Not Used

4. Down Advisory
BITS

29 28 27

MEANING

0 0 0

 LVC ICD-03 - REV B

33 | P a g e

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

No Down Advisory

Descend

Don't Climb

Don't Climb >500

Don't Climb >1000

Don't Climb >2000

Not Used

Not Used

5. Sign Status Matrix (SSM)(DISC)
BITS

31 30

MEANING

0 0

0 1

1 0

1 1

Normal Operation

No Computed Data

Functional Test

Failure Warning

6. The presence of a No Computed Data report in the SSM field

indicates that the information in bits 11 through 29 is

unreliable. Therefore, no RA should be issued by the Display.

7. The TCAS Computer should also set the SSM of this word to

NCD when it is in STBY or TA Only mode (as reflected in the

SL and RI fields of TX Word 2, label 274). Failure Warning

should be reported in the SSM field only if the TCAS computer

itself has failed. The presence of a Functional Test report in
ARINC CHARACTERISTIC 735B - Page 105

ATTACHMENT 6

DATA WORDS APPLICABLE TO TRAFFIC COMPUTER (TCAS WITH ADS-B)

the SSM field of this word indicates that a TCAS Functional

Test sequence should be performed by the displays. Refer to

Section 4.2.

[8] Whenever “Climb” (Bits 24-26 = 1,0,0) or “Descend” (Bits 27-

29 = 1,0,0) are set in Word 270, the TCAS computer sets the

Advisory Rate Field (Bits 11-17) to the desired Climb/Descend

value.

[9] If no RA is present, bits 11-17 should be set to zero.
ARINC CHARACTERISTIC 735B - Page 106

ATTACHMENT 6

DATA WORDS APPLICABLE TO TRAFFIC COMPUTER (TCAS WITH ADS-B)

PART 6F

ARINC 429 CONTROL WORD –TCAS TO DISPLAY

TCAS Horizontal RA Data Output Word
INTENTIONALLY LEFT BLANK

 LVC ICD-03 - REV B

34 | P a g e

Appendix B

 LVC ICD-03 - REV B

35 | P a g e

THIS PAGE INTENTIONALLY LEFT BLANK

